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Cooperative OFDM-IM Relay Networks with

Partial Relay Selection under Imperfect CSI
James Crawford, Student Member, IEEE, and Youngwook Ko , Senior Member, IEEE

Abstract—In this work, we investigate the performance of
cooperative orthogonal frequency division multiplexing with
index modulation (OFDM-IM) with the low complexity greedy
detection (GD). In particular, we propose a novel partial relay
selection (PRS) scheme whose search criteria are designed to
exploit the IM sub-carriers. To provide low-complexity receiver,
we further examine the energy-sensing based GD design for
the cooperative OFDM-IM. For the performance analysis we
derive novel upper bound and approximate closed form solutions
for both the average index error probability (IEP) and the
average symbol error probability (SEP) over Nakagami-m fading
channels with imperfect channel state information (CSI) at the
relays and destination. Unlike the information theoretical works,
in presence of positive detection error in the relays, the derived
expressions provide a useful insight into the error performance
of cooperative OFDM-IM under various fading conditions. The
numerical and simulation results clearly present that the pro-
posed scheme harmonizing partially selected relays and their IM
sub-carriers with GD can outperform the benchmark schemes,
under uncertain CSI, at reduced complexity.

Index Terms—OFDM-IM, index modulation, cooperative di-
versity, energy detection.

I. INTRODUCTION

Index modulation (IM) is a range of promising new mod-

ulation techniques which have increased in popularity in

recent years. Due to its ability to transmit data without the

consumption of additional bandwidth or no additional power,

IM is a promising candidate for 5G [1]. Moreover, index

modulation is an ideal solution for other applications that fall

under the 5G umbrella, such as machine type communications

(MTC) due to its flexibility in terms of data-rate, complexity,

and energy efficiency (EE).

Inspired by the concept of spatial modulation (SM) [2], sub-

carrier index modulation (SIM) for OFDM [3] was developed.

Here, the indices of sub-carriers are used as an additional

degree of freedom. However, the original SIM was limited

in terms of the spectral efficiency (SE). Subsequently, this

was rectified with the introduction of OFDM-IM [4]. Since

then research interest in OFDM-IM has increased significantly.

Some of the major contributions can be found in [5]–[13].

However, there has been less of a focus on OFDM-IM for

MTC systems, where energy efficiency and system complexity

is critical. To address this issue, a low-complexity energy

based detection scheme for OFDM-IM was introduced in [14].
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In addition, the performance of OFDM-IM for in-vehicular

D2D wireless networks was analyzed in [15], and [16]. The

limitation of the achievable power gain of the energy based

detection scheme was improved by utilizing various diversity

combining techniques in [17].

Relay networks are an efficient method used to improve the

reliability of a communication network. In [18], an overview

of relay selection for mutli-carrier systems is presented. In

[19], multicarrier relay selection schemes for OFDM are

presented. However, to the best of our knowledge partial relay

selection (PRS) for index modulated multicarrier systems has

not yet been investigated. For PRS, channel information is

only required locally at the source node, which enables to

achieve high cooperative diversity at reduced overall com-

plexity. Decode-and-forward (DF) relays are the ideal choice

for cooperative MTC due to its EE [20], simple interference

cancellation [21], and unlike AF relaying does not suffer from

high peak-to-average power ratio (PAPR) [22].

In this work, we consider an OFDM-IM based multiple DF

relay network, where a source device intends to communicate

with a destination device via multiple relays and direct links,

under imperfect CSI. For each transmission, we propose the

cooperative OFDM-IM with greedy detection (GD) leveraging

benefits of designing a novel partial relay selection (PRS)

scheme based on OFDM-IM sub-carriers. The main contri-

butions can be summarized as follows:

• We create a novel partial relay selection rule which

refers to the IM sub-carriers and ensures cooperative

OFDM-IM transmission to improve the reliability. This

structure will benefit from exploiting both active sub-

carriers and relays. We develop GD-based OFDM-IM

algorithms with multiple relays to improve the reliability

at low complexity.

• For the performance evaluation, we derive approximate

and upper bound closed form expressions for both the

average index error probability (IEP) and the average

symbol error probability (SEP) over Nakagami-m fading

channels with imperfect CSI.

• With presence of positive detection errors in relays and

destination, the derived expressions provide a useful in-

sight into the error performance of PRS based cooperative

OFDM-IM as well as the impact of PRS and relay

strategy, under various fading conditions.

• Theoretical guide lines of the performance of the pro-

posed scheme is provided through asymptotic analysis.

In particular, using extreme value theory, we examine

various asymptotic cases: ultra-dense relay networks and

large degree of imperfect channel estimation.
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• The numerical results clearly show that the proposed

scheme is superior to the benchmark schemes, in terms

of reliability at a reduced complexity.

II. SYSTEM MODEL

A. Cooperative OFDM-IM

Consider an OFDM-IM based multiple DF relay network

where a source node (S) intends to communicate to the

destination (D), while cooperating with Q DF relays (Rq),
for q = {1, . . . , Q} as illustrated in Fig. 1. Assume that the

transmissions between S → Rq , S → D , and Rq → D,
occur in two orthogonal hops. In the first hop the transmissions

between S → Rq and S → D occur. In the second hop the

transmission between Rq → D occurs. For each transmission

link, we employ a multi-carrier framework with Nc = GN
total sub-carriers, being divided into G clusters of N sub-

carriers. Each cluster independently employs the OFDM-IM

such that only K of N sub-carriers per cluster are dynamically

activated and the information bits are conveyed by both the K
active sub-carriers and their active indices. We will examine

opportunities of harmonizing best relay selection and dynamic

active sub-carriers (which will be discussed in Section II.B).

Specifically as for OFDM-IM in each cluster, set of K
active sub-carrier indices represents the index modulation

(IM) symbol, denoted by Jg = [ig (1) , . . . , ig (K)] ,
for cluster g, where ig (k) ∈ {(g − 1)N + 1, . . . , gN},

g = 1, . . . , G, and k = 1, . . . ,K . Correspondingly, a cluster

of K data symbols are denoted as sg = [sg (1) , . . . , sg (K)]
where sg (k) ∈ S is a M -ary symbol and S denotes the

complex symbol constellation. Each OFDM-IM symbol

per cluster is generated using both Jg and sg , as xg =

[xg ((g − 1)N + 1) , xg ((g − 1)N + 2) , · · · , xg (gN)]
T

,

where xg (α) ∈ S, for α ∈ Jg , and xg (α̃) = 0 for α̃ /∈ Jg .

The transmit power of non-zero data symbols is defined as

E |xg (α)|
2

= ES/τ, where Es is the average power per

M -ary symbol, and τ = K/N is the sub-carrier sparsity ratio.

Subsequently, G clusters are concatenated together to create

the OFDM-IM block, i.e., x =
[
xT
1 ,x

T
2 , · · · ,x

T
G

]T
.

The number of potential IM symbols is considered to be

2⌊log2 (
N
K)⌋ for simplicity and efficient mapping of data bits.

Hence, in each cluster, mJ,g = ⌊log2
(
N
K

)
⌋ bits are used

to modulate the active sub-carrier indices (i.e., IM symbols)

and mS,g = K log2 M bits determine the M -ary symbols to

modulate the sub-carriers of the active indices.

Based on these, in the first hop, the received signals at Rq

and D in the frequency domain can be given as,

ySRq
= HSRq

x+ nSRq
, (1)

ySD = HSDx+ nSD, (2)

respectively, where HΣ is the channel matrix for Σ ∈
{SRq, SD}, x is an N × 1 OFDM-IM block, n =

[n (1) , . . . , n (Nc)]
T

is an independent additive complex

Gaussian noise vector, i.e., n ∼ CN (0, N0I), where I is the

identity matrix and N0 is noise variance, and the average trans-

mit SNR per active sub-carrier is defined as ρ = ES/ (N0τ).

Fig. 1. Block diagram of cooperative OFDM-IM network with a single source,
single destination, and multiple relays. Using the channel information between
S → R, the best relay is selected on a per sub-carrier basis.

In the second hop the signals are received via Rq → D,

which is given as,

yRqD = HRqDx̃+ nRqD, (3)

where HRqD is the channel matrix in the frequency domain

between Rq → D, x̃ is the N × 1 OFDM-IM block that was

recovered at Rq . Subsequently ySD and yRqD are combined

at D using the maximal ratio combiner (MRC). Omitting any

subscripts of node for clarification, the received signal at any

node can be given as y (j) = h (j)x (j)+n (j) for sub-carrier

j, where j = (1, . . . , N).

For simplicity in analysis and without loss of generality, we

focus on only one cluster and the cluster index g is omitted

from subscripts hereafter as each cluster operates indepen-

dently. The partial relay selection process with imperfect CSI

will be addressed in detail in the following.

B. Opportunistic Partial Relay Selection (OPRS) in Coopera-

tive OFDM-IM

In practical systems, notice that CSI may not be estimated

perfectly at the node. We assume that the estimated CSI

between any two nodes, in the frequency domain, is given

as, Ĥ = H − E, where H = diag (h (1) , . . . , h (Nc)) is

the channel matrix, h(α) is assumed to face independent, and

identically distributed (i.i.d.) Nakagami-m fading distribution

for α ∈ J, m ≥ 0.5, E = diag (e (1) , . . . , e (Nc)) is the

channel estimation error matrix, e (α) ∼ CN (0, νe), and νe is

the variance of the channel estimation errors, representing the

level of CSI uncertainty. Ĥ = diag
(
ĥ (1) , . . . , ĥ (Nc)

)
can

accordingly consist of ĥ(α) = h(α) − e(α), ∀α.

We now propose the opportunistic partial relay selec-

tion (OPRS) rule for cooperative OFDM-IM networks. Sup-

pose that ĤSR =
[
ĤSR1 , . . . , ĤSRQ

]T
is known at S,

where ĤSRq
= diag

(
ĥSRq

(1) , . . . , ĥSRq
(Nc)

)
. Particularly,

OPRS refers to the CSI only during the first hop and chooses

the best relay(s) that provides the largest channel gain, for

each active sub-carrier, between S and Rq .
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The criterion for the relay selection at the αth active sub-

carrier is to find the best among Q relays, whose channel gain

satisfies,

ĥSr̃α (α) = max
q∈{1,...,Q}

∣∣∣ĥSRq
(α)
∣∣∣
2

, (4)

where the subscript r̃α denotes the selected relay. Notice that

the selected relay r̃α forwards signals on each active sub-

carrier α and this post-selection relaying process allows at

most K relays to be chosen. Hence, let R = (r̃1, . . . , r̃K)
denote a set of selected relays, where |R| ≤ K .

The instantaneous SNR of links S → r̃α, S → D, and

r̃α → D, is given as γ∆ (α) = ρ
∣∣∣ĥ∆(α)

∣∣∣
2

/ (ρνe + 1) =

γ
∣∣∣ĥ∆(α)

∣∣∣
2

, where ∆ ∈ {Sr̃α, SD, r̃αD} and γ denotes

the average SNR per sub-carrier. Applying the MRC to the

received signals from both r̃α and D, the instantaneous SNR

is defined as, γD (α) = γ

(∣∣∣ĥSD (α)
∣∣∣
2

+
∣∣∣ĥr̃αD (α)

∣∣∣
2
)

=

γ
∣∣∣ĥD (α)

∣∣∣
2

, where ĥD (α) is the estimated channel gain at

the output of the MRC at D.
Subsequently, the received signals at r̃α and D are demodu-

lated using the greedy detector (GD). In the following section

the GD algorithm for OPRS-OFDM-IM is given.

C. Greedy Detector (GD) Receiver

The GD requires a two stage detection process, where the

indices of the active sub-carriers and the corresponding M -

ary symbols are estimated separately. In the first stage, GD

measures the signal energy of each sub-carrier |y (j)|2 , and

detects K active sub-carriers with the greatest energy, which is

given as, α̂ = argmax
j

|y (j)|2 . Note that channel estimation

errors have no effect on energy detection.

In the second stage, the non-zero M -ary symbols in x

are detected, applying the maximum likelihood (ML) decision

individually to the K estimated active sub-carriers, which is

given as, z (α̂) = arg min
x(α̂)∈S

∥∥∥y (α̂)− ĥ (α̂)x (α̂)
∥∥∥
2

, where

ĥ (α̂) is the αth diagonal element of Ĥ. Thus, referring to

(α̂, z(α̂)), we can detect both IM and M -ary symbols.

III. ERROR PROBABILITY ANALYSIS

A. Index Error Probability (IEP) Analysis

1) Instantaneous IEP for OPRS-OFDM-IM: The IEP is de-

fined as the case when the greatest noise energy of any inactive

sub-carrier is greater than the energy of any active sub-carrier,

i.e., IEP = maxα̃ |n (α̃)|2 > |h (α)x (α) + n (α)|2. This can

occur at D under two different scenarios. In the first scenario

an error occurs at D when the S → R transmission is received

correctly and the transmission at D is received incorrectly,

i.e., P1 = [1− IEPSr̃α ] × IEPD, where [1− IEPSr̃α ] is

the complementary IEP at R, and IEPD is the IEP at D.

In the second scenario the S → R transmission is received

incorrectly, i.e., P2 = IEPSr̃α , where IEPSr̃α is the IEP

at R. Hence, the overall instantaneous IEP is determined by a

miss-detection of sub-carrier indices. Using the law of the total

probability, this can be represented as, PI = K/N
∑N

α=1
P1+P2.

The approximate instantaneous IEP at Λ ∈ {Sr̃α, D} is for-

mulated as [15], IEPΛ ≈ (N −K) /2·exp
[
−ρ |hΛ(α)|

2 /2
]
.

Substituting IEPΛ into PI , gives the instantaneous IEP ,

which is given as,

PI ≈
K

N

N∑

α=1

N −K

2

{
e−

ρ|hSr̃α
(α)|2

2 + e−
ρ|hD(α)|2

2

−
N −K

2
e−

ρ

(
|hSr̃α

(α)|2+|hD(α)|2
)

2

}
. (5)

Remark 1. Note from (7), PI is not affected by νe. This can

be explained by the fact that energy detection does not require

channel information. Hence, a poorly estimated channel will

have no effect on the IEP.

2) Average IEP for OPRS-OFDM-IM: To examine the

average IEP, we take the expectation of PI , which is given

as,

P I = K E|hSr̃α |2 {IEPSr̃α}︸ ︷︷ ︸
I1

+K E|hD|2 {IEPD}
︸ ︷︷ ︸

I2

−K E|hSr̃α |2 {IEPSr̃α}︸ ︷︷ ︸
I1

E|hD|2 {IEPD}
︸ ︷︷ ︸

I2

. (6)

To solve (6), the higher order statistics can be used to derive

the PDF of the largest random variable, |hSr̃α |
2
, but it becomes

mathematically intractable for complex generalized channel

fading models, such as Nakagami-m fading. Therefore, the

extreme value theory approach can be employed to yield an

asymptotic distribution for the maximum of Q i.i.d. RVs.

This approach is clarified to provide a tight bound to the

exact PDF even for as little as Q = 10, [23]. Given |hSr̃α |
2

is

Gamma distributed the asymptotic distribution of the largest

of Q Gamma random variables is given in the form of a

Gumbel random variable, i.e., z =
(
|hSr̃α |

2 − µQ

)
/βQ.

The generalized inverse and the auxiliary function

are given as µQ = W−1 (m,Q−1/Q) /m, and βQ =

Γ (m)
[
mQW−1 (m,Q−1/Q)

m−1
exp

(
−W−1 (m,Q−1/Q)

)]−1

,

respectively, where Γ (·) is the gamma function, and W (·, ·)
is the regularized lower incomplete Gamma function.

In (6), the solution to I1 can be found by taking the

expectation of IEPSr̃α w.r.t. z =
(
|hSr̃α |

2 − µQ

)
/βQ that

is Gumbel distributed, and its PDF is given as, gz (z) =
exp [−z − e−z] /βQ. As for I2, we take notice that |hD|2

follows Gamma distribution, and its PDF is given as,

f|hDα |2 (h) = m2mh2m−1e−hm/Γ (2m) . The detailed expres-

sions for I1 and I2 are referred to Appendix A.

Hence, substituting the above closed-form outcomes of I1
and I2 into (6) yields the average IEP expression:

P I = K
N −K

2

[
Ψ+ Ξ−

N −K

2
ΨΞ

]
, (7)

where Ψ(ρ) = exp (−ρµQ/2)γ [ρβQ/2 + 1, exp (µQ/βQ)],
γ [m,x] =

∫ x

0 tm−1etdt is the lower incomplete gamma

function, and Ξ (ρ) = [2m/ (2m+ ρ)]
2m

.
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Remark 2. Note from (5), P I behaves concavely with K for

given N , ρ, and hΛ, due to ∂2P I/∂K
2 < 0, ∀K . The concave

behaviour of (5) can result in a value for K that minimizes

the P I as either the smallest or largest over a given set of Ks.

B. Data Symbol Error Probability (SEP) Analysis

1) Instantaneous SEP for OPRS-OFDM-IM: The SEP is

defined as the number of symbols in error divided by the num-

ber of symbols transmitted, where we consider errors in both

sub-carrier index and data symbol recovery. Referring to the

derivation of the instantaneous IEP, the overall instantaneous

SEP is formulated as,

Ps =
K

N

N∑

α=1

SEPSr̃α + SEPD − SEPSr̃αSEPD, (8)

where for each sub-carrier, SEPΛ denotes the instantaneous

SEP at Λ ∈ {Sr̃α, D}, which is given as,

SEPΛ = IEPΛ + PM,Λ − [IEPΛ × PM,Λ] , (9)

where PM,Λ is the instantaneous SEP of M -ary

symbols. Notice that we use the approximated PM,Λ

as [24], PM,Λ ≈ exp
[
−3γ |hΛ(α)|

2
/2M − 2

]
/6 +

exp
[
−4γ |hΛ(α)|

2
/2M − 2

]
/2.

Particularly, substituting IEPΛ and PM,Λ, into SEPΛ, we

have,

SEPΛ ≈
N −K

2
e−

ρ|hΛ(α)|2

2 +
1

6
e−

3γ|hΛ(α)|2

2M−2

+
1

2
e−

4γ|hΛ(α)|2

2M−2 −
N −K

4

×

(
e

−ρ(M−1)+3γ
2M−2 |hΛ(α)|2

3
− e

−ρ(M−1)+4γ
2M−2 |hΛ(α)|2

)
.

(10)

Remark 3. For clarity, (10) is the instantaneous SEP for

a single hop between any two nodes within the proposed

network. Moreover, it is conditioned on the channel of a single

sub-carrier. Inserting (10) into (8), the instantaneous SEP can

be simply obtained taking into account the index symbols and

data symbols for OPRS-OFDM-IM.

2) Average SEP for OPRS-OFDM-IM: Taking the expec-

tation of the instantaneous SEP over the channel gain, the

average SEP can be written as:

P s = K E|hSr̃α |2 {SEPSr̃α}︸ ︷︷ ︸
I3

+K E|hD|2 {SEPD}
︸ ︷︷ ︸

I4

−K E|hSr̃α |2 {SEPSr̃α}︸ ︷︷ ︸
I3

E|hD|2 {SEPD}
︸ ︷︷ ︸

I4

. (11)

In (11), notice that I3 and I4 are the expectation of (9). Hence,

the expectation of I3 (and I4) can involve the expectations

of IEPΛ and PM,Λ. In particular, I3 consists of two unique

expectations, which can be given as,

I3 = E|hSr̃α |2 {IEPSr̃α}︸ ︷︷ ︸
I3.a

+E|hSr̃α |2 {PM,Sr̃α}︸ ︷︷ ︸
I3.b

− E|hSr̃α |2 {IEPSr̃α}︸ ︷︷ ︸
I3.a

E|hSr̃α |2 {PM,Sr̃α}︸ ︷︷ ︸
I3.b

. (12)

The solution to I3.a = I1, and the solution to I3.b can be

referred to (A.3) and (B.1), respectively.

Using (A.3) and (B.1) and after some mathematical manip-

ulation I3 can be expressed as,

I3 =
(N −K)Ψ

2
+

Υ (3)

6
+

Υ (4)

2

−
(N −K)Ψ

2

[
Υ(3)

6
+

Υ (4)

2

]
, (13)

where Ψ is recalled to (7), and

Υ(c) = e−
cγµQ
2M−2 γ

(
cγβQ

2M − 2
, e

µQ
βQ

)
. (14)

Similarly, to solve I4 in (11), we re-express I4, referring to

SEPΛ in (10), as:

I4 = E|hD |2 {IEPD}
︸ ︷︷ ︸

I4.a

+E|hD |2 {PM,D}
︸ ︷︷ ︸

I4.b

− E|hD |2 {IEPD}
︸ ︷︷ ︸

I4.a

E|hD |2 {PM,D}
︸ ︷︷ ︸

I4.b

. (15)

For brevity, we provide the solution to I4.a = I2, and the

solution to I4.b in (A.5) and (B.2), respectively.

Using these, (15) can be re-written as:

I4 =
(N −K)Ξ

2
+

Φ (3/2)

6
+

Φ (2)

2

−
(N −K) Ξ

2

[
Φ (3/2)

6
+

Φ (2)

2

]
, (16)

where Φ (c) = [cγ/ (Mm−m) + 1]−2m
, and Ξ is in (7).

Finally, the average SEP can be found by inserting (13) and

(16) into (11). Taking into account the first two distinct terms,

we can provide P s as,

P s ≤
K

2

{
(N −K)Ψ +

Υ (3)

3
+ Υ (4)− (N −K)Ψ

×

[
Υ(3)

3
+ Υ (4)

]
+ (N −K)Ξ +

Φ (3/2)

3

+Φ (2)− (N −K) Ξ

[
Φ (3/2)

3
+ Φ (2)

]}
. (17)

Remark 4. We have now examined the average error proba-

bility overall symbols including both index symbols and data

symbols on the active sub-carriers. Note that (17) clearly

shows that P s decreases with ρ, through Ψ, Ξ, Υ(·) and Φ (·),
for a given K, N, and m.
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C. Special Case: Rayleigh fading

As a special case, let us consider Rayleigh fading channel

coefficient on each sub-carrier. Accordingly, using the Gamma

distribution when m = 1 and taking the expectation of Ps, we

can compute the upper bound average SEP as

P s.R ≤ K





(N −K)Λ
(
ρ
2

)

2
+

Λ
(

3γ
2M−2

)

6
+ Λ

(
3γ

2M − 2

)

−
(N −K) Λ

(
ρ
2

)

2



Λ
(

3γ
2M−2

)

6
+ Λ

(
3γ

2M − 2

)


+
2 (N −K)

(2 + ρ)
2 +

2

3
Ω (3) + Ω (2)−

2 (N −K)

(2 + ρ)
2

×

[
2

3
Ω (3) + Ω (2)

]}
, (18)

where Λ (c) = (Q+ c+ 1) · B (c+ 1, Q+ 1), where

B (x, y) =
∫ 1

0
tx−1 (1− t)y−1

dt is the Beta function, and

Ω (c) = [(M − 1) / (2M − 2 + cγ)]
2
. The details of the

derivation are shown in Appendix C.

Remark 5. Given d = − limρ→∞ ln (I4.R) / ln (ρ) = 2, it is

shown that the diversity order of P s.R is limited to 2, and for

Q > 2 the error performance will marginally increase.

Remark 6. Note, from (18) the Beta function is the dominant

term in I3.R, i.e., the first hop. Hence, as Q increases linearly,

I3.R decreases exponentially for a given N,K,M, and γ.

However, typical of DF relay schemes, the performance of

OPRS-OFDM-IM is determined by the weakest hop.

Remark 7. For a fixed νe, P s.R becomes a deterministic value

as γ increases. Hence, for a fixed νe there is zero diversity

order and power gain as there is an error floor. Thus, the error

performance does not improve for large SNR.

IV. ASYMPTOTIC ANALYSIS

In this section various extreme cases are considered in order

to investigate the asymptotic behaviour of OPRS-OFDM-

IM, in terms of the average SEP. For simplicity in analysis,

the upper bound average SEP over Rayleigh fading (18) is

considered in asymptotic cases.

A. Large SNR: ρ → ∞

Consider a scenario where the SNR grows large. As a

special case, perfect CSI is also considered, i.e., νe → 0.

Hence, the overall average SEP in this scenario is given as,

lim
ρ→∞

P s.R ≈
(2τ)

Q

SNR
Q

+
(τ2M − 2τ)

Q

(
3SNR

)Q +
(τM − τ)

Q

(
2SNR

)Q

= Θ
[
MQτQSNR

−Q
+M2τ2SNR

−2
]
. (19)

where Θ [·] is big-theta notation, and SNR = Es/N0.

From (19), it is shown that the achievable diversity order

is given as d = − limSNR→∞ ln
(
P s.R

)
/ ln

(
SNR

)
= 2.

Intuitively, this is because the achievable diversity order by

the detection at D is dominant, even with the use of Q relays.

However, it is clear that increasing Q will reduce the first term

in (19). Hence, leading to the enchanced SEP.

B. Large Number of Relay: Q → ∞

Consider a large number of relays in a dense D2D network.

In this asymptotic case when Q → ∞ perfect CSI is consid-

ered, i.e., νe → 0.

In this extreme scenario the average SEP of the first hop,

i.e., I3.R, is given as,

lim
Q→∞

I3.R ≈ (N −K)Q− ρ
2 Γ
(ρ
2
+ 1
)
+

Q− 3ρ
2M−2

3

× Γ

(
3ρ

2M − 2
+ 1

)
+Q− 2ρ

M−1Γ

(
2ρ

M − 1
+ 1

)

= Θ
[
Q−SNR

Mτ

]
. (20)

Hence, (20) shows how I3.R scales with respect to the diversity

gain (i.e., SNR/τM ) if Q is large.

Notice that I4.R is unaffected by Q as it represents the

average SEP between S → D where no relays are used.

Hence, the overall average SEP in this scenario is given as,

lim
Q→∞

P s.R = Θ
[
M2τ2SNR

−2
]
. (21)

From (21) it can be seen that the diversity order of 2 is

achieved in this scenario. In particular, it is found that the

system performance in such extreme case is dominated by the

second hop.

C. Severe CSI Uncertainty: νe → 1

Now, consider when νe → 1, i.e., the estimated CSI

becomes highly unreliable. Here, a large SNR is also consider.

In this scenario the average SEP is given as,

lim
νe→1

P s.R ≈

(
M − 1

2M − 2

)Q

+

(
M − 1

M − 1

)Q

+

(
M − 1

2M + 1

)2

+

(
M − 1

M + 1

)2

= Θ

[(
M − 1

M + 1

)Q

+

(
M − 1

M + 1

)2
]
. (22)

As can be observed from (22), increasing Q decreases the

average SEP, even in the presence of highly uncertain CSI.

It is important to mention that in this asymptotic case, the

average SEP is not affected by SNR and instead, the average

SEP will be floored at the error level which relies on M and

Q, for very large ve ≫ 0. This observation will be validated

by simulations in the next section.

V. SIMULATION RESULTS AND DISCUSSION

We now present simulation results for OPRS-OFDM-IM.

For illustrations, we consider Nc = 128 total sub-carriers with

various values of the parameters, that is, N ∈ {2, 4} , K =
1, M ∈ {2, 4}, m ∈ {0.5, 1, 2, 3} , Q ∈ {1, . . . , 8, 10}, and

νe ≥ 0.003. Here, the average SEP is evaluated on a per cluster

basis, as each cluster of N sub-carriers is detected individually.

Minimum mean square error (MMSE) channel estimation is

used in various simulations. In this case, the variance of the

channel estimation error matrix becomes, νe = 1/ (ρ+ 1).
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Fig. 2. Comparison of Analytical (A.) and Simulated (S.) Average SEP of
OPRS-OFDM-IM for N = 4, K = 1, M = 4, and (a) m = 1, and
Q = {1, 2, 4, 8}, and (b) m = {0.5, 1, 2, 3}, Q = 10.

Fig. 2.a depicts the comparison between the analytical (A.)

and simulated (S.) average SEP of the OPRS-OFDM-IM with

GD, when using the MMSE channel estimation with N = 4,
K = 1, M = 4, m = 1, and Q = {1, 2, 4, 8} . It is observed

that the average SEP significantly improves as Q increases.

For example, the power gain of 12 dB can be achieved for

the average SEP of 10−3 between Q = 1 and Q = 2.

However, between Q = 2 and Q = 4 the power gain is only

marginal, and the diversity order remains the same. This can be

explained by the average SEP being dominated by the weakest

hop, i.e., the average SEP at D. It is also observed from Fig.

2.a that the analytical (A.) curves from (18) provide a tight

bound to the simulation results with an approximately 2 dB

gap for the average SEP of 10−3 when Q = {1, 8}.

Fig.2.b depicts the average SEP with various m, i.e., m =
{0.5, 1, 2, 3}, and Q = 10. It is observed that as m increases

the average SEP significantly decreases. In particular, the

power gain of 14 dB is achieved for the average SEP of 10−3

between m = 0.5 and m = 1. The diversity order increases

as m in increased, where the diversity order, in the presence

of Nakagami-m fading, is given as d = argminD (D),
D ∈ {dR, dD}, dR = Qm is the diversity order attained at

R and dD = 2m is the diversity order achieved at D. In this

figure it is depicted with Q = 10 that the analytical results

from (17) provide a tight bound to the simulation, providing

less than 1 dB difference for large m (≥ 2).

Fig. 3 now illustrates the comparison with the proposed

OPRS-OFDM-IM with GD, against the benchmark OPRS-

OFDM with ML, both using MMSE channel estimation, in

terms of average SEP, with N = 2, K = 1, M = 2,
m = {0.5, 1, 2, 3}, Q = {1, . . . , 8} , and a SNR of (a) 10

dB and (b) 15 dB. For a fair comparison the transmission

data-rate of both schemes are set to be same, i.e., 4 bits

per cluster. Fig. 3.a depicts a marginal difference between

the proposed scheme and the benchmark scheme in terms of

the average SEP, when m = 1, 2, 3 and in the presence of
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Fig. 3. Comparison with the proposed OPRS-OFDM-IM and MMSE, over
the OPRS-OFDM with ML and MMSE when N = 2, K = 1, M = 2,

m = {0.5, 1, 2, 3}, Q = {1, . . . , 8} , and SNR of (a) 10 dB (b) 15 dB.

channel estimation errors. In particular, it is observed that the

proposed scheme outperforms the benchmark when m = 3.
In the presence of channel estimation errors, this is because

the proposed scheme does not require channel information

for the detection of sub-carriers. However, for m = 0.5 it

can be observed that the benchmark scheme outperforms the

proposed scheme. Intuitively, this is caused by the degraded

energy detection for sub-carrier indices at m < 1.

In Fig. 3.b the comparison between the proposed OPRS-

OFDM-IM and MMSE, against the benchmark OPRS-OFDM

with ML and MMSE in terms of average SEP is illustrated

for an SNR of 15 dB. Here, it can be seen that the proposed

scheme outperforms the benchmark scheme when m = 2. It

is clear that as the SNR increases, the smaller m is needed for

the proposed scheme to outperform the benchmark scheme.

Fig. 4 depicts the simulated average SEP of OPRS-OFDM-

IM using both the GD and ML which are compared with νe =
{0.003, 0.007, 0.03, 0.07, 0.3, 0.7, 1}, N = 4, K = 1, M = 4,
m = 1, and Q = {1, 2, 3} . It is clear from Fig. 4.a that when

Q = 1, ML outperforms GD, for lower values of νe. However,

as νe increases the performance of GD and the ML detector are

identical. Also, as Q increases, the performance gain of ML

over GD decreases. In Fig. 4.b the SNR is increased. Here, the

performance gain of ML over GD is reduced in comparison

with Fig. 4.a, when Q = 1. For Q > 1 the performance of

GD and ML become identical. It is important to note that,

due to large complexity of the ML detector, the GD is the

preferable detector for OPRS-OFDM-IM in the presence of

channel estimation errors, as it has the same performance as

the ML while maintaining a reduced complexity.

Fig. 5.a compares the proposed OPRS-OFDM-IM with GD,

against the best relay selection (BRS) based OFDM-IM with

GD when N = 2, K = 1, M = 2, m = 1, Q = 4, and νe =
{0.5, 0.1, 0.05}, where the BRS chooses the relay with the

highest end-to-end SNR at each sub-carrier. It can be seen that,

over a range of CSI uncertainty, proposed scheme outperforms

the BRS scheme for Q = 4. In particular as νe decreases the
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Fig. 4. Using the OPRS-OFDM-IM, the proposed GD is compared over the
ML, with νe = {0.003, 0.007, 0.03, 0.07, 0.3, 0.7, 1}, N = 4, K = 1,

M = 4, m = 1, Q = {1, 2, 3} , and SNR of (a) 15 dB (b) 30 dB.

performance improvement increases at high SNRs.

In Fig. 5.b we further illustrate the comparison against

BRS-OFDM-IM with GD, in terms of νe = 0.5 and various

Q = {2, 4, 6, 8}. It is clear from the figure that the proposed

scheme outperforms the BRS scheme as Q ≥ 2 increases. In

particular, the error floor of the proposed scheme with Q = 4
is lower than that of the BRS scheme with Q = 8. This

comparison clearly presents that the proposed scheme is much

less susceptible to channel uncertainty than the BRS scheme.

VI. CONCLUSIONS

We proposed the cooperative OFDM-IM with GD for dual

hop multiple DF relays network, designing a novel PRS

scheme based on OFDM-IM sub-carriers. The derived ex-

pressions provide a useful insight into the error performance

of the cooperative OFDM-IM system under various fading

conditions. In the presence of detection errors in the relays,

we clearly showed that the achievable diversity order is less

than or equal to 2m, while the power gain is proportional

to the number of relays and active sub-carrier index rates.

Through asymptotic and simulation results, we have clearly

shown that: OPRS-OFDM-IM with channel estimation errors

outperforms the benchmark scheme, i.e., OPRS-OFDM, as

channel information is not require for the detection of sub-

carriers; The GD is the preferable detector for OPRS-OFDM-

IM in the presence of channel estimation errors.

APPENDIX A

DERIVATION OF I1 AND I2

Firstly, |hSr̃α |
2 = zβQ + µQ and |hSr̃α |

2 = βQdz are

substituted into I1 from (6),

I1 =
(N −K) e−

ρµQ
2

2

∫ ∞

−
µQ
βQ

e
−
(

ρβQ
2 +1

)
z−e−z

dz, (A.1)
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Fig. 5. Comparison of the proposed scheme, over the BRS-OFDM-IM with
GD, in terms of average SEP, with N = 2, K = 1, M = 2, m = 1, and (a)
νe = {0.05, 0.1, 0.5}, and Q = 4 (b) νe = 0.5 and Q = {2, 4, 6, 8}.

From (A.1), an additional substitution, z = t − µQ

βQ
is made,

which yields,

I1 =
(N −K) e

µQ
βQ

2

∫ ∞

0

e
−
(

ρβQ
2 +1

)
t−e

µQ
βQ e−t

dt. (A.2)

It is observed that (A.2) is in the form,∫∞

0
exp (−Ax−Be−x) dx. The integral solution can be

found in [25, eq. (3.331-1)], in the form, B−Aγ (A,B)
conditioned on [ReA > 0]. Hence (A.2) becomes,

I1 =
(N −K) e−

ρµQ
2

2
γ

(
ρβQ

2
+ 1, e

µQ
βQ

)
. (A.3)

Secondly, I2 is given as,

I2 =
N −K

2

m2m

Γ (2m)

∫ ∞

0

h2m−1e−(
ρ
2+m)hdh. (A.4)

Referring to [25, (3.381-4)], (A.4) is in the form,∫∞

0 xν−1e−µxdx. Hence, the integral solution can be found

in [25, eq. (3.381-4)], in the form, µ−νΓ (ν) . Therefore,

I2 =
N −K

2

(
2m

2m+ ρ

)2m

. (A.5)

APPENDIX B

DERIVATION OF I3.b AND I4.b

Similar to (A.2), I3.b is in the form,∫∞

0
exp (−Ax−Be−x) dx. Hence its solution becomes,

I3.b =
e−

3γµQ
2M−2

6
γ

(
3γβQ

2M − 2
, e

µQ
βQ

)

+
e−

4γµQ
2M−2

2
γ

(
4γβQ

2M − 2
, e

µQ
βQ

)
(B.1)
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Secondly, I4.b is found to be in the same form as (A.4), i.e.,∫∞

0 xν−1e−µxdx. Referring to [25, (3.381-4)], I4.b yields,

I4.b =
1

6

(
3γ

2m (M − 1)
+ 1

)−2m

+
1

2

(
2γ

m (M − 1)
+ 1

)−2m

(B.2)

APPENDIX C

DERIVATION OF I3.R AND I4.R

Using the higher order statistics, we have |hSr̃α |
2

as the

maximum of Q exponential RVs, whose PDF is given as,

f|hSr̃α |2 (h) = Q
∑Q−1

q=0

(
Q−1
q

)
(−1)

q
exp [−h (q + 1)] .

Similar to (11), the upper bound average SEP over

Rayleigh fading channel can be given as, P s.R =
K (I3.R + I4.R − I3.RI4.R).

Firstly, I3.R is formulated in the same manor as, (12). How-

ever, it is now found by taking the expectation w.r.t. |hSr̃α |
2
,

which is formulated as, I3.R = I3.a.R + I3.b.R − I3.a.RI3.b.R.

Where I3.a.R is given as,

I3.a.R =
N −K

2
Q

Q−1∑

q=0

(
Q− 1

q

)
(−1)

q

∫ ∞

0

e−h(q+1+ ρ
2 )dh.

(C.1)

The integral in (C.1) is in the form,
∫∞

0 e−pxdx. Utilizing

integral solution [25, (3.310)], which is in the form, 1/p,
yields,

I3.a.R =
(N −K)B

(
Q+ 1, ρ2 + 1

)

2
(
Q+ ρ

2 + 1
)−1 . (C.2)

I3.b.R is formulated in the same manor as, (15). However,

as before, it is now found by taking the expectation w.r.t. the

Rayleigh channel gain. As before the integral in is in the form,∫∞

0
e−pxdx. Hence, I3.b.R becomes,

I3.b.R =
B
(
Q + 1, 3γ

2M−2 + 1
)

6
(
Q+ 3γ

2M−2 + 1
)−1 +

B
(
Q+ 1, 2γ

M−1 + 1
)

(
Q+ 2γ

M−1 + 1
)−1 .

(C.3)

Secondly, I4.R is simply solved by setting m = 1 in I4.
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