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Reviewer: 1

The revised version of manuscript is suitable for publishing.

Reviewer 2

Thank you for answering all the previous questions. I still have a minor revision, a question and a 

suggestion for future works:

i) The revision is as follows: “The formation of the grooves and localised wear debris regions within the 

wear track are PROBABLY associated with the experimentally recorded fluctuations in interfacial 

friction visible in the COF curves (Fig. 10).”

Response: Thank you for the valuable comment. Revision is made accordingly in section 4.3.

ii) About the question: In many tribological systems, it is interesting to obtain a fine carbide distribution. 

I think the honeycomb structure is homogeneously distributed at the macroscopic level, but comparing 

to other works you mentioned, can you affirm that it is also homogeneous at the microscopic level?

Response: As far as we can see, the carbide distribution is dependent on the morphology of the pre-

coated carbon layer on the Ti64 powder surface, which we can affirm that has completely transformed 

to TiC phase after the reactive SPS process based on our SEM, EBSD and Raman results. Therefore, 

the carbide distribution may be less homogeneous at the microscopic level down to the Ti64 cellular 

size range as occasionally there were areas with less or no carbon coated on the Ti64 powder surface 

(Fig. 2), which led to discontinuity of the TiC cellular boundaries phase (Fig. 5).   

iii) My suggestion for future works:

 The increase of wear resistance with the presence of hard particle is expected since it is well discussed 

in literature. Maybe it would be more interesting to compare, in a future work of your group, the wear 

behavior of honeycomb structured material with other TiC reinforced TMC (from carbon nanotubes, 

carbon fiber cloth, and graphene) and also with materials which the manufacturing processes had been 

directly involved with conventional mechanical blending or ball milling.

Response: Thanks for the valuable suggestion. Yes. We agree that it is worth further investigating on 

the effect of our unique honeycomb structure on the wear behaviour comparing to other TiC reinforced 

TMC, in particular on the exact effects of carbide concentration and distribution.  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



 A new powder-based process to produce TiC reinforced Titanium Matrix Composites

 Ti spherical powders are pre-coated by graphite flakes as carbon sou�������� �	


 H�neycomb-like cellular microstructure TiC 2nd phase forms during in-situ reaction

 Enhanced wear resistance due to the reinforcement of the TiC hard ph�a� ��
�� ����

 Wear debris builds up on the raised TiC hard phase forming a protective barrier layer
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Ti-6Al-4V/TiC Composites Synthesized by Reactive Spark Plasma Sintering: Processing, 

Microstructure, and Dry Sliding Wear Behaviour 

Mingwen Bai*, Righdan Namus, Yidong Xu, Dikai Guan, Mark W Rainforth, Beverley J Inkson*

Department of Materials Science and Engineering, The University of Sheffield, Sheffield, S1 3JD, UK

*Corresponding author Email: m.bai@sheffied.ac.uk; beverley.inkson@sheffield.ac.uk

Abstract: Titanium carbide (TiC) reinforced Titanium Matrix Composites (TMCs) have been 

synthesized via an in-situ reactive spark plasma sintering (SPS) process using commercial Ti-

6Al-4V spherical powders pre-coated with 1 wt.% carbon nanoparticles by low-energy ball 

milling. Graphite flakes are used as carbon source, which aids powder flow during mixing as 

lubricant. Graphite transforms to nano-crystallite carbon during mixing which is favourable for 

the rapid formation of TiC second phase in the following SPS process. The composites 

exhibited a novel honeycomb-like cellular microstructure with the formation of 5-6 vol.% fine 

TiC submicron grains interconnected in the titanium α/β matrix. In addition, the reinforcement of 

the TiC phase with a nano-hardness of 12.4 GPa, improves the wear resistance of the parent 

alloy matrix (5.1 GPa), with a reduction of 26-28 % in wear rate during dry reciprocating sliding 

tests against Si3N4 balls. During sliding, the wear debris (predominantly anatase TiO2) builds up 

on the raised TiC hard phase forming a barrier layer of adhered oxide that can protect the alloy 

matrix underneath from abrasion and oxidation, leading to a reduced wear rate.  

Keywords: Titanium Matrix Composites; Powder Processing; SPS; Graphite; TiC; Wear. 

1. Introduction

Titanium matrix composites (TMCs) have shown great potential in a wide range of applications 

including aerospace, automobiles and biomedicine owing to their improvement in strength, 
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creep resistance and wear resistance over Titanium alloys [1-4]. A selection of candidates for 

TMC reinforcements have already been investigated including SiC, Si3N4, Al2O3, TiC, TiN, and 

TiB [5-10]. Amongst these reinforcements, TiB and TiC exhibit outstanding chemical stability 

and compatibilities with the Ti matrix due to their similar density (Ti: 4.51, TiB: 4.57, TiC: 4.91 

g/cm3) [11] and coefficient of thermal expansion (CTE, 7.2 X 10-6 K–1 for TiB and TiC, 8.2 X 10-6 

K–1 for Ti matrix [12, 13]). In most cases, these reinforcements have been directly added as 

particles to the metallic powders by conventional mechanical blending or ball milling. By mixing 

particles, however, it is difficult to achieve a homogeneous composition especially when adding 

nano-particles which have a high tendency for agglomeration [14, 15]. Moreover, conventional 

mechanical mixing of Ti powders with TiC or TiB hard particles can cause pronounced 

flattening of the soft Ti powder particles [16]. This usually leads to reduction in powder 

flowability when such composite powders are used as feedstock for a series of materials 

forming processes including powder-bed fusion, thermal spray, and cold deposition. To avoid 

these issues, recent studies on TMCs have introduced an in-situ fabrication method by adding 

carbon or boron reactants in the Ti-matrix to form TiC or TiB phase through the chemical 

reaction during the forming process [16-19]. This can achieve fine dispersion of the ceramic 

reinforcement and offer good control of the particle-matrix interface.

Considering the TMCs reinforced by in-situ TiC formation, a selection of carbon reactants have 

been added to Ti-alloy including carbon nanotubes, carbon fibre cloth, and graphene [20-23]. In 

this study, we offer an alternative route to prepare TiC reinforced TMC using graphite flakes, 

which are widely used as a cheap solid lubricant. The addition of graphite flakes to Ti-alloy 

powders during processing is also expected to aid the powder flow, and thereby minimize the 

deformation of Ti powder particles when using a low-energy ball milling process. The carbon-

coated precursor composite powders are used as feedstock to form TiC phase by in-situ 

reacting with Ti matrix via spark plasma sintering (SPS) as an efficient method to produce TMC 

[24, 25]. Here the fabrication, microstructural characterization and dry sliding wear behaviour of 

the in-situ TiC reinforced TMCs have been evaluated, and wear mechanisms discussed.
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2. Experimental 

2.1. Powder mixing

A commercial Ti-6Al-4V powder (hereafter referred to as Ti64 powder, PREP®, TIMET, UK) 

with a perfectly spherical shape and a nominal size distribution of 106 ± 44 μm has been used 

in this study. This particle size is suitable for powder metallurgy (e.g. hot isostatic pressing and 

SPS), whereas it is too coarse for powder-bed additive manufacturing or powder injection 

moulding [26]. The Ti64 powder was mixed with 1 wt% of graphite flakes (99%, metals basis, 

Alfa Aesar, USA) with a flake diameter of 7-10 μm in a planetary ball mill (PM100, RETSCH 

GmbH, Germany) at a speed of 300 rpm for 1-8 hours with 30 min cooling per hour.

2.2. Spark plasma sintering process

The composite powder was loaded into a cylindrical graphite die (Ф 20 mm) with interfacial 

graphite foils to avoid welding and obtain a more uniform current flow. The pre-pressed powder 

was sintered by SPS (FCT Systeme GmbH, HP D1050, Germany) under vacuum at a 1000 ºC 

with a heating rate of 100 °C/min followed by a dwell time of 5 min and a maximum uniaxial 

pressure of 80 MPa to achieve the highest density. These processing conditions were chosen 

based on the results of preliminary experiments. The SPS processed materials are hereafter 

referred to as Ti64-TiC composite; while the Ti64 powder was also processed by SPS with the 

same conditions, and is referred to as Ti64 alloy for comparison.

2.3. Materials Characterization

The morphology and microstructure of the powder and the composite samples were examined 

by a field emission gun scanning electron microscopy (FEG-SEM, Inspect F50, FEI, USA). The 

phase composition was identified by powder X-ray Diffraction (XRD, D2 Phaser, Bruker, 

Germany) using Cu-Kα radiation at 30 kV and 10 mA, a step size of 0.05°(2θ), a step time of 2 

s between 20 and 90°(2θ), and all data collected at 25 °C. Quantitative Rietveld refinement 

(TOPAS V5 software package) was used to determine the composition of TiC and α-Ti phase 

in the Ti64-TiC composite based on the XRD patterns. Electron backscatter diffraction (EBSD) 

was performed on a FEG SEM (7100F, JEOL Ltd., Japan) at an accelerating voltage of 15 kV. 
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EBSD scans were carried out using AZtechHKL software (Oxford Instruments, UK) with a step 

size of 0.1 μm. Elastic modulus and hardness of the Ti64 powder on polished cross-sections, 

the TiC phase and the Ti64-matrix were measured by a nano-indentation (Triboscope, Hysitron, 

USA) equipped with a Berkovich diamond tip at 10 mN load. Micro-hardness was measured by 

DuraScan hardness tester (Struers, USA) under 1N load. Raman spectra were acquired using 

a Renishaw InVia Raman Microscope with 50x objective at an excitation wavelength of 514 nm 

at ambient condition in extended mode ranging from 100 to 3500 cm-1. 

2.4. Reciprocating wear tests

Tribological tests were carried out on a UMT-2 TriboLab (Bruker, USA) at room temperature 

20-25 °C, relative humidity 50-60%, unlubricated, and under an ambient atmospheric condition. 

All sample surfaces were polished down to mirror-like surfaces by using a colloidal silica 

suspension, and carefully cleaned in an isopropanol ultrasonic bath before wear tests. For the 

reciprocating sliding tests, a ball on plate configuration, which conformed to ASTM G133, was 

used with parameters: normal load of 0.5 N, sliding stroke of 2.5 mm at 6Hz and 1Hz, and total 

sliding distance of 54 m. The loading condition applied in this study corresponds to an initial 

Hertzian contact pressure of 537 MPa and a maximum shear stress of 161 MPa. 

During the sliding tests, the dynamic coefficient of friction (COF) was recorded as a function of 

time by the servo-controlled normal load and lateral load on the DFM-0.5 loading cell (0.05 to 5 

N) with a resolution of 0.25 mN. At least two tests were conducted at each test condition, and 

the averaged specific wear rates are reported. The number of repeated tests was determined 

by the repeatability of the COF measurements, i.e. if the measured COF varied significantly 

between two tests, then further repeated measurements (up to 3) were carried out to evaluate 

the statistical spread. Si3N4 ceramic balls (TSN-03NH, Grade 5) with a diameter of 4 mm (± 

0.0013 mm) and a maximum surface roughness (Ra) of 0.02 µm were chosen as counter-faces 

for sliding tests. Si3N4 balls were used because of their minimum damage in comparison with 

other types of ball materials including Al2O3, stainless steel, and ZrO2 after identical trial sliding 

tests against Ti64 base alloys. Wear volumes of the disk samples and the counter-face Si3N4 
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balls were measured by an 3D optical profilometer (Contour GT Bruker, USA). The surface 

morphology and the composition of the wear debris in the wear track were analysed by SEM 

equipped with energy dispersive spectroscopy (EDX, Oxford Instruments, UK).   

3. Results

3.1. Ti64 and graphite composite powder

Typical morphology of the starting Ti64 powder and graphite flakes are shown in Fig. 1. The 

Ti64 powders have spherical shape and smooth surfaces (Fig. 1 (a, b)) with minimal satellite 

particles (Fig. 1 (a) arrowed). The graphite flakes exhibit typical plate-like morphology and a 

lamellar structure (Fig. 1 (c, d)). After mixing by planetary ball mill for 8 h, it is observed that the 

graphite flakes were completely coated onto the Ti64 powders surfaces (Fig. 2 (a, b)) with no 

excess left or adhered to the wall of the powder container. The Ti64 particles were coated with 

~50% surface coverage of carbon clusters comprising predominantly nano-particles with a size 

of <100 nm (Fig. 2 (c, d)). Occasionally Ti64 particle satellites (as marked by white arrow in Fig. 

2 (a)) can be observed, which cause lower coverage of carbon in the vicinity of the particle-

particle junctions as indicated by the contrast. In addition, the mixing process was sufficiently 

mild so that the Ti64 powders retained their spherical shapes without any severe deformation, 

which will ensure a good powder flowability in subsequent processing. 

The phase change of the composite powder after mixing was examined by XRD (Fig. 3). After 

both 4 h and 8 h mixing, the composite powder only exhibits XRD peaks of the constituent 

powders indicating no significant chemical reactions (e.g. oxidation or TiC formation) occurred 

during mixing. Compared to the starting powders, however, it is noticeable that the crystalline 

graphite peak (marked by shaded area in Fig. 3) in the XRD pattern became weaker and 

narrower after 4 h ball milling, and then completely disappeared after 8 h milling. This indicates 

that the starting graphite flakes are gradually transformed to near-amorphous nanoparticles 

during the powder mixing. After 8 h ball milling, no excess graphite flakes remained in the 

composite powder, which is consistent with the SEM observations of the composite (Fig. 2). 
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The microstructural evolution of graphite during mixing was further examined by Raman 

Spectroscopy (Fig. 4). After 8 h mixing, the Ti64-Graphite composite powder shows the 

appearance of a prominent band around 1350 cm-1, which is known as the carbon D band (Fig. 

4 (a)). This band is often referred to as the disorder band or the defect band as opposed to the 

carbon G or G’ band as always seen in graphite and graphene. The formation of the disordered 

structure indicates that during powder mixing, the original ordered graphite flakes transformed 

to partially disordered nano-crystalline graphite corresponding to the nano-particles as 

observed in Fig. 2 (d). This transformation to nano-crystalline carbon can also be confirmed by 

the increase of the I(D)/I(G) peak intensity ratio, and the up-shift of G-position with peak 

deconvolutions of G1 and G2 indicting two varying degrees of disorder (Fig. 4 (b)). 

3.2. Ti64-TiC composite microstructure

The microstructure of theTi64-TiC composite after SPS consolidation of the composite powder 

containing 1 wt.% of graphite was examined by SEM under both SE and BSE modes (Fig. 5). 

In SEM, a novel honeycomb-like microstructure is observed with two distinctive phases: (1) 

Ti64 matrix and (2) TiC phase with a brighter contrast in SE (Fig. 5 (a-c)). In cross-section, the 

TiC phase is interconnected in a grain-boundary-like structure with a ribbon-like shape and a 

width of 1-3 μm. The honeycomb microstructure is consistent with a 3D TiC-Ti64 cellular 

morphology, with cell dimensions inherited from the original Ti64 particles (Fig. 2). The mean 

diameter of the angular cells in the composites is 80 ± 14.0 μm as measured by SEM imaging 

analysis. Compared to the original Ti64 particle sizes of 106 ± 45 μm, a reduction of 24-25 % in 

size is observed as the result of the compression and densification of the powders during the 

SPS process. Additionally, the TiC cell boundaries have straight morphologies compared to the 

curved carbon coating on the original enveloped particles. The interface between the Ti64 

matrix and TiC phase is seen to be coherent with no cracks and defects (Fig. 5 (c)). 

In Fig. 5 (d), the cellular-morphology TiC phase is embedded in the Ti64 matrix which has 

mixed α/β grains exhibiting a microstructure of equiaxed (or globular) α-grains (grey) within a β-

matrix. The β-phase appears to be brighter than α under BSE imaging due to the enrichment of 
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Vanadium. More detailed grain microstructure can be revealed from the EBSD analysis of the 

Ti64 α/β matrix together with the new formed TiC phase (Fig.6 (a-c)), in comparison to that of 

the parent Ti64 alloy (Fig.6 (d, e)). Fine TiC grains (Fig. 6 (b), blue colour) with a phase volume 

of 4.2 % and a grain size of 1-2 μm were identified in the TiC phase layer surrounding the Ti64 

cells, which themselves exhibited different crystallographic variants throughout the Ti64 α/β-

phase matrix. Here, the modification of the Ti64 grain microstructure does not have significant 

effect on its mechanical properties either at micro or nano-scale. The nano-hardness of the 

Ti64 matrix is 5.0 GPa for the Ti64-TiC composite and 5.1 GPa for the Ti64 alloy only, as 

measured by nano-indentation at a load of 10 mN. The micro-hardness of both Ti64 matrices is 

in the range of 340-380 HV. On the other hand, nano-indentation of the TiC boundary phase 

gives a nano-hardness of 12.4 GPa, which is nearly three times that of the Ti64 alloy matrix. 

Therefore, the honeycomb/cellular structure of the hard TiC phase enveloping the softer “cells” 

of Ti64 will strongly affect the composites’ mechanical/wear behaviour. This is supported by the 

evidence as shown in Fig. 7 of the surface of the as-polished Ti64-TiC composites. The TiC 

phase forms topographic crests with an overall surface roughness of 0.2 µm, due to slower 

polishing of the harder TiC ceramic phase resulting in a raised surface profile compared to the 

surrounding Ti64 matrix, which can also be observed by the image contrast in Fig. 5.

Quantitative Rietveld refinement of the XRD spectra (Fig. 8) calculates that the Ti64-TiC 

composite comprises 7.0 wt.% TiC phase, corresponding to 6.4 vol.%, assuming the density is 

4.51 g/cm3 for Ti64 matrix and 4.91 g/cm3 for TiC phase [11]. This is slightly higher than the 

theoretical value, which is maximum 5 wt% TiC by adding 1 wt% of carbon in Ti64 according to 

the stoichiometric C/Ti ratio of 1:1. This may arise because TiC phase is a typical interstitial 

carbide, which is generally stable over a range of C/Ti compositional ratio from 0.5 to 1 [27], 

which would give rise to 5-9 wt% of TiC phase and match well with the XRD analysis. The 

lattice parameters were also retrieved from the Rietveld Refinement analysis. The c/a ratio in 

the α-phase (1.61) and the lattice parameter of a in the β-phase (3.23 Å) of the Ti64-TiC 

composite is 1-2 % higher than those of the SPS processed Ti64 alloy (1.59 and 3.21 Å, 
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respectively) under the same conditions indicating a minor incorporation of carbon into the α-Ti 

phase as random solid solution expanding the lattice structure during the SPS process. 

3.3. Dry sliding wear behaviour of the Ti64-TiC composites

Fig. 9 summarizes the specific wear rates of the Ti64-TiC composite in comparison to the Ti64 

alloy at two speeds (6Hz and 1Hz corresponding to 30 mm/s and 5 mm/s, respectively). It is 

evident that the higher speed at 6Hz accelerated the wear rates of both balls and disks 

compared to the lower speed at 1Hz. Also, in comparison to the wear rates of the Ti64 alloy, a 

clear reduction of 26-28 % in specific wear rates is found for Ti64-TiC composites at both 

speeds. In Fig. 9, the wear rates of Si3N4 balls are also presented using the right y-axis with 

values of two orders of magnitude lower. The wear of the Si3N4 balls was over 50% slower on 

the composite than on the Ti64 alloy at both speeds. The recorded COF values did not show 

measurable difference in friction between the Ti64 alloy and the Ti64-TiC composite at these 

two speeds (Fig. 10), while repeated short-term fluctuations are observed in all COF curves. 

To evaluate the wear mechanism, further analysis was carried out to examine the wear tracks 

post mortem. Typical morphology and microstructure of the reciprocating wear tracks on the 

Ti64 alloy and Ti64-TiC composite after rubbing with a 4mm Si3N4 ball are shown in Fig. 11. 

Parallel grooves are identified in all wear tracks along the direction of ball movement for these 

two samples at both speeds. Patches of wear debris clusters can also be observed adhered on 

the surface of the wear tracks as indicated by regions of dark SE and BSE contrast. These 

debris “patches” are randomly distributed in the wear track of Ti64 alloy, but have a much more 

ordered distribution on the Ti64-TiC composite surfaces which matches perfectly with the 

dimensions of the “honeycomb” like microstructure of the TiC cells (Fig. 5-7). In addition, the 

wear tracks of both samples at the lower speed (1Hz) are seen to exhibit a relatively higher 

surface area of residual wear debris than those tested at the higher speed (6Hz). 

Considering the chemistry of the wear track, BSE images and EDX mapping (Figs. 12 and 13) 

reveal that the “patches” are chemically distinct from the surrounding materials, consisting of 

oxides with an enrichment of Ti and Si originating from the Si3N4 balls. Typical morphology and 
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composition of wear debris nanoparticle clusters inside the wear track under BSE shows 

variable contrast: the darker phase regions have relatively higher Si content; while the brighter 

high BSE yield regions comprise predominantly Ti-rich oxide. More detailed compositional 

analysis measured by semi-quantitative EDX point analysis are shown in Tables 1 and 2. 

Table 1. EDX point analysis on the worn surface of the Ti64 alloy (wt. %)

b1 b2 b3 c1 c2 c3 c4 c5

Ti 61.0 63.5 41.3 85.7 63.5 43.4 47.9 46.5

O 27.4 23.9 43.9 0 23.7 44.0 41.0 42.8

Si 3.2 0.4 3.6 0 0.7 4.2 3.2 2.8

Al 2.9 4.1 3.2 6.3 4.1 2.8 2.8 2.6

V 2.3 3.3 1.9 3.8 2.5 1.9 1.8 1.8

C 3.2 4.9 6.2 4.3 5.4 3.6 3.2 3.4

Table 2. EDX point analysis on the worn surface of the Ti64-TiC composite (wt. %)

b1 b2 b3 c1 c2 c3 c4 c5

Ti 58.9 51.0 72.4 85.7 54.6 62.6 52.7 68.4

O 30.8 39.9 17.7 0 37.1 27.2 38.3 21.4

Si 1.5 2.1 0.4 0 0.7 0.7 1.0 0.6

Al 3.8 3.2 4.1 6.2 3.2 4.0 3.4 3.0

V 2.5 2.0 2.5 2.2 2.2 2.6 1.9 2.7

C 2.5 1.7 2.8 5.9 2.2 2.8 2.7 4.0

The structure of the wear track also varies along its length, for example, near the track end 

where the sliding direction is reversed (Fig.12 (b) and 13 (b)) and in the middle of the track 

(Fig.12 (c) and 13 (c)). The end of stroke area has a higher content of nanoparticle debris 
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containing Si-rich oxide than the mid-stroke zone as the wear debris gradually accumulates 

during the reciprocating Si3N4 ball motion forming an oxide tribolayer build-up. The end-stroke 

debris is composed of nano-sized (100-300 nm) oxide globular particles (Fig. 12 (d) and 13 (d)). 

These wear debris on both samples comprised of predominantly TiO2 throughout the wear 

tracks as indicated by the characteristic Raman peaks of TiO2 anatase phase (Fig. 14), 

compared to the Raman spectra of the TiC phase and Ti64 matrix prior to wear testing. 

4. Discussion 

4.1. Powder processing

The results here have demonstrated a new method via in-situ SPS for the production of Ti64-

TiC composites reinforced by interconnected TiC in a honeycomb-like cellular microstructure. 

The use of graphite flakes to pre-coat the Ti64 powder (feedstock) has shown several 

advantages over a selection of other carbon sources in previous literature that have been 

added into the Ti64 matrix for the in-situ formation of Ti64-TiC composite, e.g. multi-walled 

carbon nanotubes (MWCNTs) [20], vapour grown carbon fibres/nanotubes (VGCFs) [18, 22], 

and woven carbon fibre cloth [25]. Apart from the graphite’s economically low cost and great 

availability, graphite flakes can also aid the powder flow during mixing as a lubricant and do not 

affect the alloy powder’s original spherical shape, as shown in Figs. 1 and 2. Retention of 

spherical particles is very important to ensure good flowability for following processes. 

The transformation from graphite flakes to nano-crystallite carbon during ball milling, as shown 

in Figs. 3 and 4, produces a fine dispersion of carbon nanoparticles on the Ti64 powder surface 

(Fig. 2). Nano-crystalline graphitic materials are conventional products of ball milling of graphite, 

with the introduction of defects into the crystallites prior to complete amorphisation [28]. This 

transformation is also favourable for the rapid formation of nano-crystalline TiC during the 

following SPS process owing to the increase of the carbon specific surface area [29]. All of 

these benefits from using graphite contribute to improved production efficiency (i.e. utilization of 

the raw materials, energy consumption, and time) as the addition of 1 wt.% graphite flakes in 

the Ti64 powder converts to 7 wt.% TiC after the fast in-situ SPS process (5 min at 1000 ºC). 
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4.2. In-situ SPS process

The resulting Ti64-TiC composite exhibited a unique honeycomb-like cellular microstructure 

with interconnected TiC grains forming boundaries separating discrete Ti64 cells (Figs. 5-8). 

The novel Ti64-TiC composite fabricated here exhibited better wear resistance compared to the 

parent Ti64 alloy with a 26-28% reduction in wear rate. The Ti64-TiC composites here also 

exhibit a distinct α/β grain microstructure in the Ti64 cells compared to the SPS Ti64 alloy 

processed under the same conditions (Fig. 6 (d, e)). The SPS Ti64 microstructure is typical of a 

β-processed Ti64 alloy with lath-like precipitates formed during fast cooling from above the β-

transus temperature. In Fig. 6, the matrix of the Ti64-TiC composite however consists of more 

equiaxed (or globular) α-precipitates within a β-matrix rather than a predominantly laths (or 

lamellar) shape. The formation of equiaxed Ti-α phase in TMCs has also been observed by Hill 

et al. [30] in TiB reinforced Ti64 composites, and it was suggested that TiB precipitates can act 

as heterogeneous nucleation sites for equiaxed α formation during the cooling process. 

4.3. Wear mechanisms

The dry sliding wear behaviour of both Ti64 alloy and Ti64-TiC composites are consistent with 

a combination of abrasion and adhesion, based on the experimental results and related 

investigations [31, 32]. It is evidenced by the deep parallel grooves in worn surfaces produced 

by ploughing, and adhesive clusters of wear debris present across the wear scar (Figs. 11-13). 

The observed 3rd body debris will arise from a number of mechanisms including direct abrasion 

of the Ti64 alloy/Ti64-TiC composite surfaces (and associated oxide layers) by the counter-face 

Si3N4 balls [33-35], adhesive wear processes between the Si3N4 balls and the alloy/composite 

surfaces, and complex follow-on 3rd body abrasion/adhesive wear processes involving the 

generated 3rd body wear debris within the reciprocating wear track. The formation of the 

grooves and localised wear debris regions within the wear track are probably associated with 

the experimentally recorded fluctuations in interfacial friction visible in the COF curves (Fig. 10). 

For the novel honeycomb-like cellular microstructure Ti64-TiC composite produced in this study, 

key aspects of its wear mechanism are illustrated schematically in Fig. 15. First of all, the 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



��

presence of the cellular-structured hard TiC phase, with indentation hardness of 12.4 GPa, 

leads to a lower local penetration depth of the abrasive asperities when in contact, and 

ultimately a reduced abrasive wear rate. It was observed that after polishing the TiC cellular 

boundaries formed raised ridges up to 1 μm higher than the surrounding Ti64 matrix (Fig. 7), 

due to the differential TiC<Ti64 wear rate. In the vicinity of the raised TiC ridges, the direct 

contact between the Si3N4 hard counter body and the Ti soft matrix underneath will be reduced. 

Furthermore, the raised TiC ridges can trap surrounding wear debris forming a region of 3rd 

body debris which can act as a “protective barrier” to reduce direct wear of the Ti64 surface. 

This mechanism is evidenced by the formation of the honey-comb shape stripes of adhered 

debris layer in the wear track segregated at the underlying TiC phase (Fig. 13) as opposed to 

the randomly distributed “patches” found in the wear track of the Ti64 alloy (Fig. 12). 

Considering the influence of oxidation on the tribology of Ti64 and Ti64-TiC composites, the 

high affinity of Ti to O2 causes the formation of a very thin oxide layer on the surface of Ti64 

alloys in air at room temperature [36]. Anatase TiO2 was identified by Raman Spectroscopy in 

the wear debris on all sample surfaces after the wear process (Fig. 14). TiC phase can also be 

oxidized at temperatures above 300 ºC with the products of TiO2 (anatase) and CO2 [37]. In 

addition, TiC is more thermodynamically and kinetically stable than Ti64 alloy against oxidation. 

Huang et al. [38] demonstrated that the oxidation resistance of a Ti64-TiC composite was over 

10% higher than that of the Ti64 alloy during isothermal oxidation at temperatures of 600-800 

ºC. The slower growth of oxide on TiC compared to the Ti64 matrix may also contribute to the 

reduction of material loss during dry sliding leading to a lower wear rate for the composite.

5. Conclusions

This work has presented a new SPS-based process to prepare Ti64-TiC composites; and 

evaluated the resulting microstructure, phase distribution and wear behaviour. Specifically, 

spherical Ti64 powders were first ball-milled with 1 wt. % of graphite flakes forming a uniformly 

carbon coated composite powder while retained a good powder sphericity and flowability. The 

composite powders were consolidated by in-situ reactive SPS process, forming 5-6 vol % of 
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TiC phase within the Ti64 matrix. The TiC precipitates also promote equiaxed α-formation in the 

Ti64 matrix by acting as heterogeneous nucleation sites offering a potential of better resistance 

to crack growth/propagation. The composite exhibits a novel cellular microstructure consisting 

of 80 ± 14 μm cells of Ti64 alloy bonded by 1-3 μm thick TiC cell boundaries.

Dry reciprocating sliding test results demonstrated that the wear resistance of the cellular Ti64-

TiC composite is superior to the Ti64 alloy with a reduction of 26-28 % in wear rate. The Ti64-

TiC composite exhibits a wear/friction behaviour that is dominated by the oxidation of Ti-matrix 

and TiC phase during sliding forming adhered wear debris clusters or “patches” that consist of 

predominantly anatase TiO2 in the wear track. It was found that the wear debris oxide built up 

alongside the raised TiC hard phase cell boundaries (with a nano-hardness of 12.4 GPa), 

forming a protective barrier against abrasion and oxidation to the Ti64 matrix underneath (5.1 

GPa), and leading a significant reduction of wear rate of the SPS Ti64-TiC composite.
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Figure Captions

Fig. 1. SEM imaging of (a, b) Ti64 powder and (c, d) graphite flakes showing the morphology of 

the starting powder before mixing under low and high magnifications.

Fig. 2. SEM imaging of the composite powder after mixing showing retained spherical shapes, 

and an evenly distributed but discontinuous carbon layer comprising nanoparticles.

Fig. 3. Combined XRD patterns of the Ti64 powder, graphite flakes, and the Ti64-Graphite 

composite powder after 4h and 8h mixing. Graphite (002) peak is indexed in shaded area.

Fig. 4. Raman spectra of (a) the starting graphite flakes and the Ti64-Graphite composite 

powder after 8h mixing with shaded areas indexed as the D, G and G’ band; and (b) detailed 

peak deconvolutions of G band showing the shift of the G-position after mixing. 

Fig. 5. SEM imaging of the Ti64-TiC composite microstructure under SE (a, b, and d) and BSE 

(c and e), together with the Ti64 alloy microstructure under BSE (f) as a comparison. 

Fig. 6. EBSD analysis of (a-c) Ti64-TiC composites and (d, e) Ti64 alloy: (a, d) band contrast 

maps; (b, e) normal direction inverse pole figure (ND-IPF) colour maps; (c) phase maps. 

Fig. 7. Surface morphology of the as-polished Ti64-TiC composite sample prior to the wear 

testing measured by 3D optical interferometry showing the topography of the surface with a 

measured roughness Ra of 0.215 μm due to the “ridge-like” raised TiC-phase. 

Fig. 8. Combined XRD patterns of the Ti64-TiC composite and the Ti64 alloy. The inset values 

are the results of Rietveld refinement showing the calculated phase compositions. 

Fig. 9. Specific wear rates of the Ti64-alloy and Ti64-TiC composite sample disks (y-axis on the 

let) and the Si3N4 ball (y-axis on the right) at load of 0.5 N and speeds of 6Hz and 1Hz.  

Fig.10. Coefficient of friction (COF) measured as a function of sliding cycles of the Ti64-alloy 

and Ti64-TiC composite at load of 0.5 N and speeds of (a) 6Hz and (b) 1Hz.
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Fig. 11. SE and BSE imaging of the surface morphology of the wear track in the Ti64 alloy and 

Ti64-TiC composites after 10800 sliding cycles at load of 0.5 N and speeds of 6Hz and 1Hz.

Fig. 12. BSE images and corresponding EDX maps of O, Si, Ti and Al, showing the 

microstructure and composition of the debris in the wear tracks (centre and edge) of the Ti64 

alloys after 10800 sliding cycles at load of 0.5 N and speeds of 6Hz.

Fig. 13. BSE images and corresponding EDX maps of O, Si, Ti and Al, showing the 

microstructure and composition of the debris in the wear tracks (centre and edge) of the Ti64-

TiC composite after 10800 sliding cycles at load of 0.5 N and speeds of 6Hz.

Fig. 14. Raman spectra of the wear debris identified as TiO2 anatase, in comparison with the 

Si3N4 phase in the ball and the TiC phase in the Ti64-TiC composite prior to the wear testing.

Fig. 15. Schematic drawing to illustrate the wear mechanism of Ti64-TiC composites.
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