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Flow batteries for energy management: Novel algebraic modelling approaches to

properly assess their value

D. Roberts, S. Brown∗

Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S10 2TN

Abstract

Redox Flow Battery (RFB) systems are promising technologies for the multi-hour electrical energy storage that will

be necessary for on-demand electricity supply based on wind and solar power. Deriving maximum value from a

RFB requires optimisation of both the system design and its operation. In this work three novel algebraic modelling

approaches are introduced to represent RFB operation more accurately while maintaining quick optimisation times.

First the typical linear programming (LP) optimisation problem is re-posed in terms of current-density rather than

power, allowing voltaic losses to be expressed as a quadratic function (QP). Secondly, it is then shown that the

current-density framework supports a novel constraint for the avoidance of high cell voltage that may damage the

stack. Thirdly, for the first time a binary variable (MIQP) to describe active/idle states is introduced. This allows

coulombic leakage and pumping losses to be modelled as fixed terms without constantly draining the RFB, and it

allows for the optimisation of pump rating in a VRFB. In a day-ahead energy management case study, it is found that

the QP optimisation predicts an additional 19 % annual revenue when compared to the LP optimisation. This capture

of the true flexibility of the RFB operation allows its full value to be assessed, and therefore advances the case for their

deployment within the energy system. Furthermore, the formulations developed are not only applicable to RFBs but

to the scheduling of other battery systems, particularly Li-ion, and balance of plant optimisation, such as the sizing of

inverters and climate control systems in the context of parasitic losses.

Keywords: Redox Flow Battery, Optimisation, Mixed Integer Quadratic Programming, Techno-Economic Analysis,

Scheduling, VRFB

1. Introduction

Worldwide, the need to reduce CO2 emissions is stimulating the development of a wide range of renewable energy

sources. The growth of renewable energy is forecast to be highest in the electrical power sector, from 24% in 2017
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to 30% in 2023. Although hydro power presently accounts for 50% of renewable power generation, the intermittent

power sources wind and solar are forecast to contribute most to this growth (International Energy Agency (IEA),

2018). Indeed, in a number of large European economies, such as Germany, UK, Italy and Spain 23% to 30% of

electrical energy was obtained from non-hydro renewable power in 2017 (BP, 2018). In the US, Texas obtained

around 17% of electrical energy supply from wind power in 2017, whereas California obtained 9% from wind and

10% from solar (ERCOT, 2017; California Energy Commision, 2018).

To maintain grid stability in these regions, the fluctuating output from wind and solar is supplemented to match

demand primarily by varying output from thermal plant. In the UK, this is specifically achieved by closed cycle gas

turbines and to a lesser extent coal plant (Drax Group, 2018).

The price of electricity at a given moment is set by the operating costs and finance requirements of the least

economic generator that must be called upon to supply it (Staffell and Green, 2016). As wind and solar power

have zero marginal cost, or even negative marginal cost where economic incentives are applied, the output of such

installations depresses the electricity price intermittently. At the same time, the capacity factors of the dispatchable

fossil plant will decrease, and hence a premium is added to their operating cost in order to cover CAPEX and other

costs. Across the EU, the operating cost of fossil generation is further increased by the required purchase of credits

under the Emissions Trading System (Staffell, 2018). The overall effect of these developments would be an increase

in price variability, although this has been mitigated in some markets by capacity payments, made on the basis of

power availability rather than energy sold (ENGIE, 2016).

Electricity price variability presents an opportunity for arbitrage by battery energy storage systems (BESS), which

may charge and discharge in periods of low and high price respectively. At present however, this revenue alone is

not sufficient to justify BESS investment, even under optimistic economic assumptions (Hu et al., 2010). Hence

an important aspect of BESS economics is revenue stacking, where multiple revenue streams are captured by the

same asset. For example by providing grid reliability services as well as performing market arbitrage. In the UK

this is illustrated by the fact that the majority of successful BESS applicants for enhanced frequency response (EFR)

contracts also have capacity market contracts (National Grid, 2017).

Sabihuddin et al. (2015) classify the services that BESS may provide by the continuous charge/discharge duration,

from power quality and regulation (< 1min), through bridging power (1min to 1 h) to energy management (>

1 hour). In order to satisfy a given duration a BESS must be specified with the corresponding energy to power ratio.

Redox flow battery (RFB) systems are promising candidates for multi-hour applications and revenue stacking, as

the incremental cost of energy capacity is low. Systems deployed so far have an average energy to power ratio of 3.5

(Newbery, 2018). In order to quantify the economic merits of RFB systems in comparison to other BESS, or indeed
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ESS, it is necessary to perform techno-economic analyses (TEA) for particular applications. TEA should involve

optimisation of the operation of a BESS to maximise revenue (or minimise costs). This should be done at various

energy and power ratings (as these are decoupled in a non-hybrid RFB) to find the global optimum, as described by

Oudalov et al. (2007). The optimisation of operation involves determining the schedule, that is the power input/output

of the battery in each sub-period, that maximises benefit without violating energy conservation.

Johnston et al. (2015) used a linear programming (LP) formulation to optimise the scheduling of a vanadium RFB

(VRFB) installed at a wind farm. The objective was to maximise revenue on the wholesesale electrical market and

the frequency response market, while always maintaining an energy reserve in order to meet mandatory frequency re-

sponse requirements. By repeating this process at different energy and power ratings, the authors found that increasing

the capacity of the VRFB in order to perform additional wholesale market arbitrage is not economical. The authors

also suggested that a hybrid system may be suitable, as the economically optimal VRFB operates in a narrow SOC

window when providing frequency regulation, with the remaining SOC held in reserve for large frequency deviations

that occur infrequently. Vaca et al. (2017) compared a hybrid system consisting of a VRFB and a supercapacitor with

the individual systems. They found that the hybrid system was the optimal choice, with the VRFB providing the

energy capacity and the supercapacitor the low cost power capacity.

It is worth noting that both Johnston et al. (2015) and Vaca et al. (2017) assume a higher cost of energy capacity

than power capacity for the VRFB. This contrasts with earlier modelling of system costs by Viswanathan et al. (2014)

and Ha and Gallagher (2015), where the energy cost is markedly lower.

A full system LP schedule optimisation problem was posed by Chen et al. (2012) to assess the benefit of a VRFB

in a micro-grid with a load, PV, wind and dispatchable micro-generation. When the micro-grid was isolated, the

objective was to minimise the start-up and running costs of micro-generators used to back up the renewable power

output. The authors used a mixed-integer LP (MILP) approach, where the integer variables were required to factor

start-up costs. Additional global constraints were required to guarantee reliability of the micro-grid.

Gomes et al. (2017) studied the application of a VRFB in order to cope with stochastic deviations from the forecast

exports of wind and solar power into a day ahead market. A two stage optimisation was applied, and LP was used

to optimise the VRFB schedule based on the forecast in the first stage. Hu et al. (2010) optimised the schedule of a

VRFB and a poly-sulphide bromine RFB in order to maximise arbitrage revenue on the Danish day ahead electrical

spot market. This approach was not strictly LP, but the problem may be reposed in LP form.

In all of the above studies, the RFB has a fixed state represented by a list of parameters such as round-trip effi-

ciency and maximum charge/discharge power. In reality, these properties are functions of the RFB state at a given

moment. For example, the round-trip efficiency parameter is in reality a composite of voltaic and coulombic effi-
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ciency, the first of which is dependant on the required current, which in turn depends on the SOC, itself a function

of the charge/discharge transactions in all preceding periods. The pursuit of a dynamic model capable of accurately

describing the state of an RFB has resulted in a number of approaches, from equivalent circuit models (ECM) using

Kalman filters (Mohamed et al., 2013) to a combination of a simplified electrochemical model with an ECM for shunt

current losses, and a fluid-dynamics model for pumping losses (Viswanathan et al., 2014) (see Wei et al., 2018, for a

summary). However, the complexity of these models restricts their use within a schedule optimisation.

The most detailed representation of an RFB in a schedule optimisation problem is described by Nguyen et al.

(2015). The authors apply a previously developed state model (Nguyen et al., 2014) to calculate the state of the

RFB at hourly resolution within the optimisation window. The resultant non-convex problem is solved by a search

approach with dynamic programming (DP) to break the problem down. This is more computationally intensive than

the LP method, but the authors state that an optimum schedule may be found in an acceptable time-scale as the small

number of variables and the presence of constraints limit the search space. A DP search approach is also used by

Oudalov et al. (2007), where the internal resistance of the BESS is expressed as a function of SOC in a schedule

optimisation as part of a TEA of a VRFB and a lead acid battery for industrial peak-shaving.

Sarker et al. (2017) incorporated the dependency of efficiency on power in a MILP scheduling problem (although

applied to a Li-ion battery rather than a RFB). To maintain a convex problem, the authors change the boundary

definition for the discharge power variable. A piece-wise linear approximation is used to solve the problem. This

work is discussed further in section 2.2.

The key innovation of the present work is the introduction of a RFB schedule optimisation framework posed in

terms of current-density rather than power. This allows the separation of the voltaic and coulombic components of the

power input/output. Using the introduced framework, two dynamic state functions may be posed within the schedule

optimisation while maintaining an easily computable convex problem:

• Quadratic expression of ohmic losses (I2R) in the objective function under linear constraints.

• Maximum cell voltage constraint in terms of OCV and overpotential

In order to further improve the representation of losses we also demonstrate a novel MIQP approach that allows

the RFB to be placed in an idle state in order to avoid fixed losses associated with electrolyte pumping and coulombic

leakage.

The formulation of each of these elements and the corresponding treatment of the VRFB are described in Section 2.

The impact of the improvements to the optimisation formulation are demonstrated in Section 3, using the case study

of a 4 h rated VRFB performing day-ahead energy management on the N2EX electricity market.
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2. Model formulation

Pure price arbitrage is chosen as the application for schedule optimisation due to its simplicity, allowing a focus

on the treatment of the RFB within the problem. In the following section, an LP formulation for schedule optimisation

for maximum arbitrage revenue is first posed in current-density terms to serve as a reference. Then the improvements

to the model described in Section 1 are introduced. Finally, the process for specifying the RFB within the problem is

defined.

2.1. Reference LP Schedule Optimisation in Current-Density Terms

In the literature on RFB schedule optimisation, scheduling problems are posed using either power (Chen et al.

(2012); Hu et al. (2010); Nguyen et al. (2015)) or energy (Johnston et al. (2015); Vaca et al. (2017)) as the time-

indexed variables. This is not an important difference, as the former only requires that the timestep τ be included

as a coefficient. Here, the power convention is adopted, as it allows the timestep to be varied independently. The

objective function for pure arbitrage revenue described by Hu et al. (2010) is adopted here, but adapted so that separate

charge and discharge power variables are explicitly defined. Specifying a single power variable with negative values

representing charge and positive discharge is not practical for LP optimisation, as the solver will drive the variable to

extremes which is likely to be sub-optimal.

In the period Y , made up of sub-periods t, the schedule is optimised by maximising the revenue defined by:

R =
τ

1× 106

∑

t∈Y

(PDis,t − PChg,t)pt (1)

where PDis,t and PChg,t represent the bounded variables discharge and charge power (W) between the RFB and

the rest of the system in sub-period t. pt is the price of electrical energy (£MW−1 h−1) in sub-period t, and τ the

time-step parameter (h).

The SOC of the RFB at time t is defined after Gomes et al. (2017) by:

SOCt = SOCt−1 +
τPChg,tηChg

EBESS

− τPDis,t

EBESSηDis

(2)

where EBESS is the parameter energy capacity and ηChg and ηDis are the charge and discharge energy efficiency

parameters respectively. The SOC must at all times be constrained between a maximum of 1 and a minimum of 0,

though a narrower window may be used Vaca et al. (2017).

The above problem was reposed in terms of current-density by replacing the charge/discharge power variables

with charge/discharge current-density variables, and multiplying the overall expression by a representative voltage in
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order to obtain power input/output by the classical P = IV expression. Current-density was chosen over current

as the former is a scale-independent metric commonly used in the RFB literature. The use of current-density makes

multiplication by stack area necessary to obtain absolute current. Separate efficiencies representing voltaic and cou-

lombic losses must now be specified, rather than the single energy efficiency term in Equation (2). As current-density

is defined based on the current at the RFB terminals, coulombic losses are dealt with upstream in Equation (4). It is

however necessary to incorporate voltaic losses in the objective function, as these affect the power input/output. In

current-density terms, the LP objective function for arbitrage revenue in period Y to be maximised is defined by:

RLP =
A.τOCV50%

1× 106

∑

t∈Y

pt(ID,t

√
η̄V (1− lBOP )−

IC,t√
η̄V (1− lBOP )

) (3)

where IC,t and ID,t are independent variables representing charge and discharge current density (Am−2) respect-

ively. A is the stack area parameter (m2) and OCV50% the open cell voltage at 50% SOC. η̄V is the representative

round-trip voltaic efficiency. The placement of the additional fractional balance of plant losses parameter lBOP reflects

the assumption that balance of plant power consumption is primarily due to electrolyte pumping, and that pumping

power is proportional to current. The validity of this assumption is discussed in Section 3.7.

The SOC may now be expressed in purely coulombic terms by replacing the power variables in Equation (2) with

current-density variables, the energy efficiency parameters with a coulombic efficiency parameter, and the energy

capacity of the RFB with a coulombic capacity. The resultant function for the SOC at the end of sub-period t is

defined by:

SOCt = SOCt−1 +
A.τ

1000C
(IC,t

√
ηC − ID,t√

ηC
) ∀t ∈ Y (4)

where C is the coulombic capacity of the RFB (Ah). It is assumed that the coulombic efficiency ηC does not vary

with SOC or current-density, and that coulombic losses for charge and discharge are symmetrical. This assumption is

discussed in Section 3.7.

The following constraints are applied to the list of SOC values generated by the above expression. Firstly the

constraint on SOC range is formalised by:

SOCmin ≤ SOCt ≤ SOCmax ∀t ∈ Y (5)

where SOCmin and SOCmax are the minimum and maximum permitted SOC parameters.

So that the optimisation may be legitimately performed on consecutive periods of historical data, it is necessary
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that the SOC at the end of the period be returned to the starting value. Hu et al. (2010) set this value at 0, but in order

to avoid imposing low SOC behaviour, it is here set at 0.5. This constraint is formalised by:

SOC0 = SOCn = 0.5 (6)

where n is the final sub-period in Y .

Finally, the current-density in and out of the RFB is constrained by:

0 ≤ ID,t, IC,t ≤ Imax ∀t ∈ Y (7)

where Imax is the maximum permitted current-density.

2.2. QP treatment of voltaic losses

A major simplification in the LP problem in terms of power is the assumption of a constant energy efficiency

parameter. This assumption also applies to the LP problem in current-density terms introduced in Section 2.1, al-

though separate voltaic and coulombic efficiency parameters are specified. In reality, ohmic (and pseudo-ohmic)

over-potential is a linear function of current-density. The faradaic, or activation over-potential, which occurs when

the circuit is closed, may be considered constant with respect to current-density Aaron et al. (2011). Equation (3)

was adapted to include these losses, by subtracting/adding the faradaic over-potential from/to the OCV during dis-

charge/charge, and including the ohmic losses in the form of the classical PLoss = I2R equation. This results in a

quadratic (QP) objective function for revenue in period Y to be maximised is given by:

RQP =
A.τ

1× 106

∑

t∈Y

pt(ID,t(OCV50% − Va)(1− lBOP )−
IC,t(OCV50% + Va)

1− lBOP

− (I2D,t + I2C,t)ASR) (8)

where Va and ASR are scalar parameters representing faradaic over-potential (V) and area specific resistance

(Ωm2). The simplification of over-potential as a scalar is discussed further in section 3.7. The placement of Va and

ASR reflects an assumption of symmetry in voltaic losses between charge and discharge, which is discussed further

in Section 3.7. The objective function is subject to the same constraints as described in Section 2.1.

Although non-linear, the objective function in Equation (8) is convex, as it requires maximising a negative quad-

ratic, hence a gradient based algorithmic solver is guaranteed to find the optimum from any starting point. This is in

contrast to the formulation of Nguyen et al. (2015), which is non-convex.

Under the constant coulombic efficiency assumption Equation (4) is linear, and so by extension are the constraints
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in Equations (5) and (6). The overall formulation hence comprises a non-linear objective function subject to linear

constraints.

This is an improvement over the formulation of losses expressed in power efficiency terms by Sarker et al. (2017),

which initially comprises a non-linear objective with a non-linear constraint on SOC. Non-linear constraints are more

challenging computationally than non-linear objectives Hart et al. (2017), and the authors apply a piece-wise linear

approximation to the efficiency expression. The introduced framework also benefits from a consistent definition of the

current-density variables in terms of flow between the terminals and the external system, unlike in Sarker et al. (2017)

where, in order to maintain a convex constraint on SOC, the discharge power variable is redefined to be upstream of

losses.

2.3. Cell Voltage Constraint

It has so far been assumed that the RFB may accept the maximum charge current-density right up to the maximum

permitted SOC. In reality this may result in the cell-voltage being too-high, an issue discussed further in Section 3.4.

An alternative charging approach, which is common for Li-ion batteries where high cell voltages pose safety con-

cerns, is to switch to a constant voltage taper charge at high SOC, where the current declines until a cut-off value is

reached. In the case of a RFB fixed losses associated with pumping would likely make taper charging uneconomical,

as demonstrated by the low efficiency at low current-density reported by Nguyen et al. (2014). Rather than globally

adjust the maximum permitted charge current-density or SOC, which may lead to underestimation of revenue, we

apply a new linear constraint in terms of cell-voltage, defined by:

OCVt + Va + IC,tASR ≤ Vmax ∀t ∈ Y (9)

where Vmax is the maximum permitted cell-voltage and OCVt is the average open cell voltage in sub-period t,

defined by:

OCVt = a
SOCt + SOCt−1

2
+ b (10)

Where a and b are parameters describing the relationship between OCV and SOC in the linear range. This

approximation is necessary for tractability; posing eq. (10) via the Nernst equation would result in a non-convex

function (as may be observed by inspection). The limitations of this approach are discussed further in section 3.7.

A corresponding constraint for low voltage during discharge could be implemented if required.
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2.4. MIQP model for idling to minimise fixed losses

The QP model introduced in Section 2.2 makes a simplifying assumption that both the coulombic losses and

balance of plant losses are directly proportional to power input/output, via the parameters ηC and lBOP . For this

reason the QP optimal schedule in fig. 3a includes periods of low power operation.

In reality neither of these losses behave in this manner. For pumping, the exact behaviour will depend on the

system specification: if a constant output pump is employed then the loss will be fixed and hence the efficiency will

improve as the power input/output increases. Even if a variable speed pump is employed to avoid unnecessary pump

loading there will be a minimum output. For this reason, the pump loss will become relatively large at low power

input/output as illustrated by Zeng et al. (2019).

The definition of coulombic losses is more involved, as both shunt currents and active species crossover contribute,

and the relative contribution of each will depend on the system. Shunt currents may be modelled using equivalent

circuit principles, but even then they will be dependent on cell voltage and electrolyte conductivity, which depends

on temperature. Empirically, different VRFB systems display different behaviour. In the experimental work of Lu

et al. (2016) and Yuan et al. (2016) the round-trip coulombic efficiency of a VRFB is asymptotic toward 100% as

the power input/output increases, implying that the absolute loss is practically constant. However, this trend was only

reported for a single cell system, so shunt currents are not included in the analysis. In Reed et al. (2016) the coulombic

efficiency of the VRFB stack is practically constant across the studied range of current densities, implying that the

absolute coulombic losses increase proportionally to the power input/output. This behaviour may be a consequence

of thermal effects, as the system displays an increase in electrolyte temperature with power input/output. This will in

principle result in an increased electrolyte conductivity and membrane permeability, both of which may contribute to

increased coulombic losses.

In the present work we will model both losses as fixed terms. The potential for developing the model further with

more detailed experimental data is discussed in Section section 3.7.

Simply adding a pump power term to eq. (8) and a fixed coulomic loss term to the expression for SOC given

in Equation (4) is not a valid solution, as these losses would be present even when the RFB is not performing a

service. For this reason it is necessary to add a binary variable to encode idle/active behaviour; we therefore define

the objective function by:

RMIQP =
τ

1× 106

∑

t∈Y

pt(A(ID,t(OCV50% −Va)− IC,t(OCV50% +Va)− (I2D,t + I2C,t)ASR)− δtPpump) (11)

where δt is the Boolean variable indicating idle (0) or active (1) state, and Ppump is the fixed pump power (kW),
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defined by:

Ppump =
QdP

ηpump

(12)

Where Q is the electrolyte flow rate (l s−1), dP the pressure drop across the stack (kPa) and ηpump the efficiency

of the pump. The SOC is then defined by:

SOCt = SOCt−1 +
A.τ

1000C
(IC,t − ID,t − δtIloss) ∀t ∈ Y (13)

where Iloss is the fixed coulombic loss (Am−2).

The charge and discharge current density variables are constrained to be 0 when the system is in the idle state by:

IC,t − Imaxδt <= 0

ID,t − Imaxδt <= 0

(14)

a "big M" type constraint, which supercedes the max current constraint posed in eq. (7).

2.5. RFB Specification

The RFB is modelled here as a single cell such that the sizing of the unit may be achieved without the complication

of discretisation according to individual electrode area. In our case study stack level phenomena such as shunt currents

are captured empirically within the coulombic efficiency data obtained from a stack level experiment. Moving to a

different system would require further data, or an offline calculation based on e.g. an equivalent circuit model.

As the power output of any hypothetical RFB may be increased at the cost of efficiency, it is necessary to specify

a rated efficiency when determining the stack area required for, say, a 1 kW system. This is formalised by:

ηDC = ηV,ratedηC(1− lBOP )
2 = ηrated (15)

Where ηV and ηC are the round trip voltaic and coulombic efficiencies respectively. It is assumed that the one-

way fractional balance of plant losses (lBOP ) are primarily due to electrolyte pumping, and that the pump runs on DC

power.

The stack area (m2) is calculated by:

A =
Prated

IratedOCV50%

√
ηV,rated(1− lBOP )

(16)
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where Prated is the system power rating (W) and Irated is the current density (Am−2) corresponding experiment-

ally to coulombic and voltaic efficiencies that satisfy Equation (15).

The coulombic capacity of the VRFB, required for the tracking of SOC in Equation (4), is calculated by:

C =
AIratedre:p√

ηC(SOCmax − SOCmin)
(17)

Where re:p is the specified energy to power ratio of the system. The presence of ηC ensures there is sufficient

chemical energy in the tank to cover coulombic losses upon discharge (square root after Darling et al. (2014)).

3. Case Study

3.1. The Application

Pure price arbitrage on the day ahead N2EX electrical market was chosen as a case study, as the availability of

future price information makes deterministic schedule optimisation relevant as described by Hu et al. (2010). Schedule

optimisation was performed on 24h periods, with τ of 1h. The indexed price pt was parametrised using data obtained

from the NordPool website Nord Pool (2017).

3.1.1. The RFB

Reed et al. (2016) studied various electrode flow architectures on a 1 kW VRFB system based on a 50 µm Nafion

NR212 membrane. In this case study, performance data were taken from the test of the highest performing stack

architecture (IDD2s) at an electrolyte flow rate of 400 mlmin−1 per cell. This setup was tested at three current-

densities: 160, 240 and 320 mAcm−2. At each test condition efficiency data were obtained as integrals over a cycle

between 15% and 85% SOC.

In the parametrisation of the VRFB for following case studies Prated was set at 1 kW, the energy to power capacity

ratio re:p was set at 4 and ηrated was set at 75%. lBOP was set at 0.02, based on a conservative interpretation of the

pumping power data reported for a very similar system by Kim et al. (2013). A coulombic efficiency (ηC) of 0.975

was derived as the average of the values reported by Reed et al. (2016) at the three current-densities tested, which only

varied between 0.974 and 0.976. For the chosen system the overall energy efficiency requirement in Equation (15) is

satisfied when the voltaic efficiency ηV,rated is 0.801, which corresponds (by linear interpolation) to a current-density

(Irated) of 219mAcm−2. OCV50% was taken from a linear best fit line of data in Kim et al. (2011), where the OCV

of a chloride electrolyte was reported at 20%, 50% and 80% SOC. Although a different electrolyte, based on a mixture

of sulphuric acid and hydrochloric acid, was used in Reed et al. (2016) the OCV data were not published.

Table 1 summarises the parameter values representing the VRFB in the determination of stack area and coulombic

rating.
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Table 1: Parameters describing VRFB in sizing process

Param Value Units Source

Prated 1 kW Arb.

re:p 4 -
Typical

ηrated 0.75 -

ηV,rated 0.801 -

Reed et al. (2016)

ηC 0.975 -

Irated 219 mAcm−2

A 0.36 m2

SOCmin 0.15 -

SOCmax 0.85 -

OCV50% 1.47 V Kim et al. (2011)

lBOP 0.02 - Kim et al. (2013)

3.2. Implementation

Each optimisation problem was posed using PYOMO within a Python loop for repeat solutions on 24h sets of

data. The gurobi solver (Gurobi Optimization inc., 2018) was called via the SolverFactory module. The script was

run on a virtual machine (Oracle, 2018) running Linux Mint, which was allocated 1024 MB RAM.

3.3. QP treatment of Voltaic Losses

In the first case study, the performance of the QP formulation with functionalised voltaic losses (Section 2.2) was

assessed by comparison to the LP formulation described in Section 2.1. The LP objective function in Equation (3)

requires the assumption of a constant voltaic efficiency term η̄V . A value of 0.842 was applied, as this is the voltaic

efficiency at the mid-point of the permitted current-density range (160mAcm−2). Similarly, the QP formulation in

Equation (8) requires values for area specific resistance (ASR) and Faradaic potential (Va) in order to parametrise

voltaic losses in the objective function. These were derived by multiplying OCV50% by 1 − √
ηV to obtain an over-

potential δv at the three current-density points in the experimental data, assuming losses are symmetrical in charge

and discharge. ASR was obtained as the gradient of the linear regression on this plot, and Va as the intercept at zero

current-density.

Figure 1 shows the regression of δV against current density for the data taken from Reed et al. (2016), from which

a value of 0.54Ω cm2 was obtained for ASR and a value of 0.03V for Va.

The optimisation of the scheduling was performed for each day in 2017 using both the QP formulation and the LP

benchmark. Figure 3a shows the optimal hourly schedule determined by each method for the 14th of February, and

Figure 3b the corresponding SOC profiles. This date is chosen to illustrate the optimisation results because the price

profile is typical of a winter day as shown in Section 3.3 and the predicted QP schedule revenue is at the median of

the range for the year.
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Figure 1: Derivation of ASR (gradient) and Va (intercept) for IDD2s VRFB embodiment reported by Reed et al. (2016) at 400 mlmin
−1 per cell.

Figure 2: Composite of hourly N2EX day-ahead price data for December, January and February 2017

Both the LP and QP solutions involve charging the VRFB when the electrical price is low (e.g. hours 4 to 6) and

discharging it when the price is high (e.g. hours 19 to 21). The LP optimal profile involves discharging or charging the

system at high current-density in the four hours with the most extreme prices. The QP optimal schedule also targets

the most extreme periods, but spreads the charging/discharging out. This is the consequence of factoring variable

ohmic losses in the objective function, where high current-density is penalised by higher losses.

The practical economic implications of applying the QP approach in this case study are discussed in section 3.6.
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Figure 3: (a) Optimal VRFB schedules derived for the 14th February 2017 using LP and QP optimisation formulations (discharge plotted as

negative). (b) corresponding SOC values. Note that the N2EX day-ahead window runs from 23:00 to 23:00.

3.4. QP with Cell-Voltage constraint

In the LP and QP formulations given in Sections 2.1 and 2.2 it is assumed that the RFB may be charged at

maximum current-density at the maximum SOC. This was the charging strategy applied by Reed et al. (2016), where

the cell-voltage was allowed to reach 1.85V at the highest current-density, corresponding to an approximate SOC of

0.85. Overcharging may lead to oxygen evolution at the cathode and hydrogen evolution at the anode. This results in

reduced coulombic efficiency and, more importantly, the evolved gases can cause a range of problems as described by

Kear et al. (2012) and Wei et al. (2018). The particular cell-voltage at which gas evolution becomes problematic will

depend on the particular electrode and electrolyte chemistry of the system.

In this case study Vmax in Equation (9) was set at 1.65, just below the voltage at which Wei et al. (2017) reported

evolution of macroscopic bubbles of hydrogen and oxygen (1.70V). The parameters a and b representing the linear

relationship between OCV and SOC described in eq. (10) were set at 0.267 and 1.33 respectively Kim et al. (2011).

Figure 4a shows the optimal schedules with and without constraint for 5th February 2017, where the difference in

revenue was greatest (£0.18 kW−1 vs. £0.20 kW−1). Figure 4b shows the corresponding cell-voltage profiles.

In the unconstrained case the RFB charges at the maximum current-density of 320mAcm−2 in hour 20 in order

to capitalise on the unusually low electrical price, resulting in a cell-voltage of 1.71V. In the constrained case, the

current-density is restricted to 221mAcm−2 in the same period, and the RFB must charge more (and discharge less)

in other periods to satisfy Equation (6).

Maximising Equation (8) subject to Equation (9) for the 2017 data resulted in £30.11 kW−1 compared to £30.22 kW−1
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Figure 4: (a) Optimal VRFB schedules derived for the 5th February 2017 by maximising Equation (8) with no cell-voltage constraint, and subject

to the cell voltage constraint given in Equation (9). (b) Corresponding cell-voltage profiles.

when the cell voltage was not constrained. The difference is small because high current-density is already discouraged

by the factoring of voltaic losses in the objective function.

The impact of the constraint would be more severe if the variations in price data were greater, or the maximum

voltage set at a lower value. The constraint would also become more relevant if the timestep τ were decreased, as

higher average intra-period SOC values would be returned in eq. (10).

The application of the linear constraint on cell-voltage increases the time to process the 2017 data as shown in

Table 3.

3.5. MIQP treatment of fixed losses and idling

Table 2 shows the parameters used to represent the fixed losses in the MIQP formulation. In the Reed et al.

(2016) study, for a given electrolyte flow rate the pressure drop decreases as the current density increases, due to the

reduction in electrolyte viscosity with increasing temperature. However, for the IDD2s flow design, the pressure drop

is only reported for the lowest current density set point, so the estimate is conservative. The flow rate is arrived at by

multiplying the 400 mlmin−1 per cell set point in Reed et al. (2016) by the 5 cells that would be required to arrive

at the specified stack area in Table 1, given the 0.078 m2 cell area. The fixed coulombic loss was estimated from the

round trip coulombic efficiency at 240 mAcm−2, assuming symmetrical losses.

The MIQP optimisation was performed over the 2017 day-ahead dataset. The optimal schedule for the represent-

ative winter day is compared to the QP and LP solutions in fig. 5a.

These results show that the introduced MIQP formulation allows fixed losses to be posed so that unrealistic low
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Figure 5: (a) Optimal VRFB schedules derived for the 14th February 2017 using the LP, QP and MIQP formulations (all at the 0.33 l s
−1 electrolyte

flow rate in (Reed et al., 2016)). (b) Corresponding SOC profiles.

power behaviour is avoided. The economic implications of this development are discussed in section 3.6.

3.6. Practical benefits of the introduced formulations.

As mentioned in section 3.3, a major limitation of LP schedule optimisation formulation is the failure to account

for the dependence of voltaic efficiency on current-density. In the above case study, we used the voltaic efficiency

at the middle of the permitted current-density range as a representative value. It is of course possible to set different

values for the efficiency, for example using the efficiency at maximum current density as a worst case scenario.

However, the optimal schedule obtained for a given day is the same whatever value is set. By inputting the LP optimal

schedules into the QP objective function it is therefore possible to estimate the revenue not accounted for using the

latter approach. We calculate this to be 19%, going from £25.58 kW−1 to £30.32 kW−1 across the 2017 data.

Unfortunately it is not possible to run the LP or QP solutions through the MIQP objective function, because the

change to the coulombic treatment from eq. (4) to eq. (13) means that the assumptions regarding the SOC would

be false. In any case, further experimental data is required to determine more rigorously the relationship between

coulombic leakage and current-density.

The MIQP formulation opens up the possibility of more detailed optimisation regarding balance of plant. Reed

et al. (2016) reported efficiency data for three different flow rates, alongside the stack pressure drop. The voltaic losses

decreased as flow rate increased. The MIQP formulation can be used to determine which flow rate is most appropriate

for our case chosen case study. The parameters associated with each set point are shown in table 2. A pump efficiency

of 0.6 was assumed in all cases.
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Q (l s−1) dP (kPa) ASR mΩcm−2 Va (V) Iloss (mAcm−2) Ppump (W)

0.033 34 5.4 0.03 2.9 1.9

0.067 55 5.2 0.02 3.0 6.1

0.100 90 5.0 0.02 3.6 15

Table 2: Efficiency parameters for MIQP representation of Reed et al. (2016) VRFB at different flow rates.

The optimal schedules for each flow rate on 14th February 2017 are shown in fig. 6a. There is little change to

the schedule on going from 0.33 l s−1 to 0.67 l s−1 but the sharp increase in pressure drop to the 1.00 l s−1 set-point

makes the low power charging seen at lower flow rates in hour 1 sub-optimal.
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Figure 6: MIQP optimal VRFB schedules derived for the 14th February 2017 under the different electrolyte flowrates reported by Reed et al. (2016).

The schedule optimisation was repeated for each day in 2017 for the increased flow rate cases. Increasing the

flow rate from 0.33 to l s−1 to 0.67 l s−1 increased the predicted revenue slightly from £32.57 kW−1 to £33.56 kW−1

but going to 1.00 l s−1 reduced it to £32.17 kW−1. In reality, the small benefit of the increased flow rate may be

outweighed by the cost of the additional pump capacity.

The solution time for each of the formulations that have been introduced in this article are shown in Table 3

alongside the LP benchmark. While the treatment of variable voltaic losses using the QP formulation results in

a minimal increase to the solve time, the addition of a cell voltage constraint does slow the process. The MIQP

functionality for active/idle behaviour further slows the optimisation, but solving for each 24h scenario still takes less

than 1 s.

3.7. Analysis of Assumptions

There are a number of assumptions remaining in our treatment of the RFB in schedule optimisation:

1. In eq. (8) the faradaic over-potential is modelled as a scalar, which is obtained by extrapolating the linear section
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Formulation Unconstrained Voltage Dynamic Upper Voltage Constraint

LP 129 n/a

QP 132 176

MIQP 170 239

Table 3: Solution times (s) to optimise RFB schedule against 2017 day-ahead price data 24h hour at a time. Average of two runs including Python

script time.

of the polarisation curve to zero current density (as shown in fig. 1). This ignores the logarithmic relationship

between over-potential and current, defined by the Butler-Volmer equation. It would be possible to provide

a better approximation of the over-potential via a piecewise linearisation of the logarithmic function, but this

would slow the computation time. As low current operation (where the approximation is poorest) is already

discouraged by parasitic losses, it is not expected that improving the kinetic model would have a meaningful

impact on either the optimum schedule or the revenue.

2. It is assumed that both coulombic efficiency and the voltaic loss parameters are invariant with SOC and sym-

metrical, i.e. the same for charge and discharge. Regarding the first assumption, experimental work by Nguyen

et al. (2014) showed that the voltaic discharge efficiency is lower at 70% SOC than at 35% SOC, but that the

difference decreases as power increases, although data are only reported up to 1.8 kW for a 5 kW system. Re-

garding the latter, the same authors provide experimental evidence that the voltaic efficiency of the particular

VRFB is higher for charge than discharge. The latter issue could be dealt with easily in the present formulation,

if experimental data were made available, by applying separate ASR, Va and ηC terms for charge and discharge.

The former issue would be more difficult to deal with, as making ASR of Va a function of SOC would result

in a non-convex objective function and doing so for ηC would yield a non-convex constraint. A first step would

be to perform a sensitivity study based on relevant system data.

3. In the introduced formulation a fixed OCV is assumed in the objective function, based on the value at 50%

SOC. Although in reality OCV is a function of SOC, defining it as such would result in a non-convex objective

function, which may require a search approach as in Nguyen et al. (2015). It is assumed that operation at low

SOC and high SOC will balance out, as the system must return to the same SOC at the end of each day. For the

case study in Section 3.3, adjusting the revenue calculation to account for the actual OCV that would occur in

each sub-period results in a very small increase to 2017 revenue, from £28.07 kW−1 to £28.28 kW−1.

4. It is assumed for the purposes of this demonstration that pumping and coulombic losses are fixed terms. In

reality this is not the case, and the degree with which our simplified formulation fits the reality will depend on

the specifics of the system. In the case of the Reed et al. (2016) system, the absolute coulombic loss increases

with current density, but it would be necessary to test the system at lower current densities to better understand

18



the empirical behaviour, and whether a linear or quadratic function should be added to eq. (13).

5. The RFB is not thermally constrained. The VRFB based on a sulphate electrolyte is liable to precipitation of

V2O5 from the catholyte as temperature increases (Rahman and Skyllas-Kazacos, 2009; Vijayakumar et al.,

2011). Although the chloride and mixed acid electrolytes developed at PNNL are more stable (Li et al., 2011;

Kim et al., 2011), temperature remains an important consideration. The framework introduced here could be

expanded to capture the thermal performance of the system. A thermal constraint could be put in place using a

similar construct to the one describing SOC, where voltaic losses add heat to the electrolyte and active or passive

cooling removes it. This would allow cost benefit analyses of active cooling versus restrictions on operation in

different environmental conditions.

6. In the case study the RFB is overly constrained in terms of SOC, being limited to the range in which the OCV

depends linearly upon it (0.15 to 0.85 based on the Reed et al. (2016) system). Frequent access to full depth

of discharge with no performance degradation is an often highlighted benefit of VRFB systems. However, it is

more difficult to avoid mass transfer limitations at extreme SOC, as the unreacted species become diluted. Hence

either higher pumping power must be supplied, power input/output restricted or voltaic efficiency compromised.

A fuller study of this issue could be carried out by applying piece-wise treatment of voltaic efficiency and the

cell voltage constraint.

4. Conclusion

A novel framework for RFB schedule optimisation has been introduced in which the voltaic and coulombic com-

ponents of the power output/input are separated, with the problem variablised in terms of current-density. A day ahead

energy management case study is used to demonstrate the increased fidelity that is achievable using the framework.

The framework is first used to describe ohmic losses as a quadratic function of current-density in the objective

function, while maintaining a convex solution space and all linear constraints. The importance of inclusion of variable

ohmic losses in the arbitrage case study is demonstrated. The optimal deterministic schedule computed using the

introduced formulation (QP) would result in a 19% greater revenue across 2017 when compared to a basic LP approach

that assumes a constant representative voltaic efficiency. This represents considerable value that the LP approach fails

to recognise because of the constant efficiency assumption.

The fidelity of the RFB representation is further increased by placing a novel linear constraint on cell-voltage as a

function of SOC and over-potential. This constraint restricts the current-density at which the battery may be charged

when the SOC is high, which is an important consideration for safety and battery lifetime. In the present case study,

the impact of the chosen maximum voltage is low, as the previous factoring of voltaic losses already discourages high

power input. However, in other applications this constraint will become more important. Although the present work
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has focused on RFB systems, the easy application of cell-voltage constraint would be useful for Li-ion scheduling,

where low and high cell-voltages increase cell degradation, and the latter also poses a safety concern.

Finally, a MIQP model that captures active/idle behaviour has been introduced for the first time, allowing a more

realistic representation of losses that do not scale proportionally with current-density. The usefulness of this approach

in electrolyte flow rate optimisation has been demonstrated here, but there are other interesting applications. Inverter

sizing is one of these: installing a larger inverter allows a greater maximum power output, but will incur a greater

fixed loss. Similarly, installing climate control for more extreme locations will allow more intensive operation without

breaching thermal constraints, but again there will be a parasitic loss. These problems are applicable to both VRFB

and Li-ion systems.

It is intended that the novel framework be used for TEA and optimisation of various RFB chemistries at a system

level (i.e. up to the AC-DC boundary), for example in the optimal specification of pump rating, or climate control

system for a particular application. RFB systems have previously been the subject of technical optimisation, for

example the study of the trade-offs between electrolyte concentration and ASR (Cho et al., 2013), or shunt currents and

pumping losses (Viswanathan et al., 2014). In these works, a simple metric such as levelised cost of electrical energy

under a simple duty cycle is used as the objective to minimise. The framework introduced here allows optimisation in

terms of revenue under optimal scheduling for any application where a price signal exists.
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