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Abstract

Acentury after the development of quantum theory, the interpretation of a quantum state is still
discussed. If a physicist claims to have produced a systemwith a particular quantum state vector, does
this represent directly a physical property of the system, or is the state vectormerely a summary of the
physicist’s information about the system?Assume that a state vector corresponds to a probability
distribution over possible values of an unknownphysical or ‘ontic’ state. Then, a recent no-go theorem
shows that distinct state vectors with overlapping distributions lead to predictions different from
quantum theory.We report an experimental test of these predictions using trapped ions.Within
experimental error, the results confirmquantum theory.We analyse which kinds ofmodels are
ruled out.

1. Introduction

Does the quantum state correspond directly to physical reality, or does it instead represent an experimenter’s
knowledge or information? If it represents information, thenwhat is this information about?Many of the
controversies surrounding quantum theory are related to these basic questions. Reference [1] (following [2, 3])
provides a no-go theorem that shines light on these controversies. Under an assumption of realism, the theorem
considersmodels inwhich two distinct quantum state vectors sometimes describe the same underlying physical
reality. It is shown that if independently prepared systems have independent physical states, then any suchmodel
mustmake predictions different fromquantum theory.

In case this conclusion seems obvious—say, because different quantum states lead to different experimental
predictions via the Born rule—it is helpful to consider a classical example. Imagine a die shaken randomly in a
container that has internal components which prevent the die frombeing removed unless the value showing
upperside is even. Thefiltering action of the container ensures that the probability distribution peven onewould
assign to the upperside value of a die (out of [1, 2, 3, 4, 5, 6]) taken from it is p 0, 1 3, 0, 1 3, 0, 1 3even [ ]= .
Now imagine a similar container that contrives to ensure the value shown is prime, so the assigned probability
distribution is p 0, 1 3, 1 3, 0, 1 3, 0prime [ ]= . Suppose that an agent is given the die, so that he can observe

which face is uppermost, and his task is to determinewhich of the two preparation procedures was used.He is
not certain to succeed, because at least some of the time, the value of the die will be 2, and this is consistent with
either preparation procedure. Assuming equal a priori probabilities for the two procedures to be used, the
agent’s overall probability of guessing correctly is 5/6.

Now consider a quantum system that can be prepared in two different ways corresponding to non-
orthogonal quantum states. Here again, given the quantum system and asked to determinewhich preparation
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procedure was used, an agent cannot always succeed. As is well known, it is not possible to discriminate non-
orthogonal quantum states with certainty.

In the example of the die, the reasonwhy the agent cannot guess the preparationwith certainty is because the
same physical state (number 2 uppermost) is assigned non-zero probability by each of the two probability
distributions, peven and pprime. The impossibility of distinguishing non-orthogonal quantum states would

receive a natural explanation if something similar were true—that is if the two different quantum states
correspond to different distributions over some set of underlying physical states, and these distributions overlap,
so that some physical states are compatible with both preparations.

In order to derive a contradictionwith the predictions of quantum theory, [1] considers amore involved
experiment than the simple preparation andmeasurement of a single system. Instead, a number of systems are
prepared independently, before being brought together so that an entangledmeasurement can be performed.
This work reports an experimental implementation of the test from [1] using trapped ions. In the following, we
introduce the class ofmodels being considered inmore detail, describing briefly the original proposal of [1], and
we identify a natural subclass ofmodels that our experiment is able to rule out. The experimental setup is
described, alongwith the results and their interpretation. Finally, we include a discussion of experimental
loopholes.

2.Differentmodels:ψ-ontic versusψ-epistemic

In order to describemore formally the kinds ofmodels that the experiment is concernedwith, suppose that a
quantum systemhas an objective physical state of some kind, denotedλ, where objectivemeans thatλ is
independent of the experimenter and of other physical systems.Wewill refer toλ as the ontic state [4]. If a
measurementM is performed on the system, the probability of getting the outcome a is determined byλ, and
can bewritten P aM ( ∣ )l . Given an ensemble of systems, each prepared in such away that quantum theory assigns
a quantum state ∣yñ, it is not necessarily the case thatλ is the same for eachmember of the ensemble, hence we
assume that a quantum state ∣yñcorresponds to a probability distribution ( )m ly . Quantumpredictions are

recovered if for anymeasurement, and any preparation:

Q P a d ,M a M,∣ ∣ ( ∣ ) ( )òy y l m l lá ñ = y

where QM a, is the positive operator corresponding to the outcome a ofmeasurementM. These assumptions are
similar to thosemade in derivations of Bell’s theorem, and are often referred to as ‘realism’. Bell’s theorem shows
that if, additionally, local causality is imposed on the ontic state, then predictions different fromquantum theory
are obtained.

Here, local causality is not imposed. Instead, wewish to investigate the possibility raised above, which is that
the distributions 0 ( )m l and 1( )m l overlap for distinct quantum states 0∣f ñand 1∣f ñ. It is a non-trivial question
whethermodels of this form actually exist which reproduce the predictions of quantum theory. The question has
been originally raised byHarrigan and Spekkens [2] and byHardy [3]. Harrigan and Spekkens refer to anymodel
inwhich the distributions 0 ( )m l and 1( )m l overlap for some distinct 0∣y ñand 1∣y ñasψ-epistemic. Amodel in
which 0 ( )m l and 1( )m l are disjoint for any distinct 0∣y ñand 1∣y ñ is calledψ-ontic. For a single qubit, aψ-
epistemicmodel was provided some time ago byKochen and Specker [5].More recently, explicitψ-epistemic
models for a single quantum systemof arbitrary dimension have been constructed [6, 7]. Other works, again by
considering a single systemof arbitrary dimension, have derived bounds on howmuch the distributions 0m and

1m can overlap for distinct quantum states [8–11].
Reference [1], on the other hand, shows that under an additionalmild assumption, preparation

independence,ψ-epistemicmodels are incompatible with quantum theory8. This work reports an experimental
test, based on the argument described in [1]. Although the result of [1] rules out an overlap between any pair of
distinct quantum states, our experiment, for reasons to be explained in the next section, tests a pair of states

,0 1∣ ∣f fñ ñ satisfying 1 20 1∣f fá ñ = . Before describing the experimental setup, we give a brief summary of the
theoretical argument of [1], as it applies to such a pair.

Suppose that two systems are independently prepared, each in one of the two states. Then the overall joint
state is a product: 0 0∣ ∣f fñ Ä ñ, 0 1∣ ∣f fñ Ä ñ, 1 0∣ ∣f fñ Ä ñor 1 1∣ ∣f fñ Ä ñ. The assumption of preparation
independence is that the joint distribution for the ontic states also has a product form: 0 1 0 2( ) ( )m l m l ,

0 1 1 2( ) ( )m l m l , 1 1 0 2( ) ( )m l m l , or 1 1 1 2( ) ( )m l m l respectively.
If 0m and 1m overlap then the above four distributions all overlap too. In the examplewith dice, this

corresponds to the fact that preparing two dice independently according to peven or pprime can always result in

both dice showing 2.When that occurs it is impossible to rule out any of the preparations (even, even), (even,

8
For a different approach, which gives related conclusions, but under different assumptions, see [23–25].
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prime), (prime, even), (prime, prime). The result of [1]hinges on the surprising fact that the analogous task is
always possible according to quantum theory. That is, the theory predicts a jointmeasurement with four
outcomes 00, 01, 10, 11 such that outcome 00 never occurs on the state 0 0∣ ∣f fñ Ä ñ, outcome 01 never occurs
on 0 1∣ ∣f fñ Ä ñand so on. Since amodel where 0 ( )m l and 1( )m l overlap could not reproduce such a
measurement, a contradiction is obtained.

3. The noisy case

The argument presented above relies on certain probabilities being exactly zero, and this will never be
reproduced entirely in a real experiment. It is therefore important to consider what can be concluded if these
probabilities aremeasured and found to bemerely close to zerowithin experimental bounds.

To this end, note that the classical trace distance between two probability distributions, p(x) and q(x) is
given by

D p q p x q x,
1

2
.

x

( ) ∣ ( ) ( )∣å= -

D p q,( ) is 1 if the supports of the distributions p and q are disjoint, and it is 0 if p and q are identical. If the
distributions are defined on continuous sample spaces, then the sum is replaced by an integral. Reference [1]
shows that for any pair of distinct quantum states 0∣y ñand 1∣y ñ, the quantumpredictions, together with the
assumption of preparation independence, imply that D , 10 1( )m m = . It is also shown that if the appropriate
experiment is carried out, and experimental results obtained that are close to the quantumpredictions, then a
lower bound can be placed on D ,0 1( )m m . There is no single experiment that could rule out the entire class of
ψ-epistemicmodels. Instead, for anyfixed choice of 0∣y ñand 1∣y ñ, if the appropriatemeasurement is performed,
then themore closely the datamatch quantumpredictions, the closer D ,0 1( )m m is to 1, and the closer the two
distributions are to being disjoint.

The goal of our experiment is to achieve a sufficiently good lower bound on D ,0 1( )m m that a natural class of
models, whichwe refer to asmaximallyψ-epistemicmodels can be ruled out. For an explanation, consider the
operational interpretation of the classical trace distance. If a system such as an n-sided die is equally likely to have
been prepared according to one of two probability distributions p and q, then on learningwhich face is
uppermost, an agent’smaximal probability of guessing correctly which preparationwas used is

D p q1 , 2( ( ))+ . Similarly, given quantum states 0∣y ñand 1∣y ñ, with the preparation of each a priori equally
likely, if an optimalmeasurement for discriminating the two is performed, the probability of guessing correctly
is D1 , 2Q 0 1( (∣ ∣ ))y y+ ñ ñ , where the quantum trace distance for pure states is given by

D , 1 . 1Q 0 1 0 1

2

( ) ( )y y y y= -

Theorem.Anyψ-epistemicmodel that reproduces the quantum predictions for a single systemmust satisfy

D D, , , 2Q0 1 0 1( )( ) ( )m m y y

for all pairs of states 0∣y ñand 1∣y ñ.

Sketch proof:Consider ameasurement device, set up to perform this optimalmeasurement, with two
outputs, labelled ‘guess 0∣y ñ’ and ‘guess 1∣y ñ’. Given amodel inwhichmeasurement outcome probabilities are
determined by an ontic stateλ, this device is essentially in the same position as an agent, who is trying to
distinguish the two distributions 0 ( )m l and 1( )m l by observing the value ofλ. The device cannot do this with a
success probability any greater than D1 2 1 ,0 1( ( ))m m+ , yetmust succeedwith
probability D1 2 1 ,Q 0 1( (∣ ∣ )y y+ ñ ñ .

With this theorem inmind, amaximallyψ-epistemicmodel is defined as one inwhich equality holds in
equation (2) for all pairs of states [12]. The aimof the experiment is to rule outmaximallyψ-epistemicmodels.
This corresponds to a natural class ofmodels, since if equality in equation (2) is satisfied, the probability of
making an errorwhen attempting to discriminate non-orthogonal quantum states does not need to be explained
by any kind of quantum effect, but is in fact entirely due to the ordinary classical difficulty of distinguishing the
corresponding distributions9 0m and 1m . An example of such amodel is that of Kochen and Specker, which
reproduces the quantumpredictions exactly for a single qubit.

9
The idea that the impossibility of reliably distinguishing non-orthogonal quantum states is entirely due to overlapping 0m and 1m has also

been considered in [12, 26, 27], but with alternative definitions of the distances between classical probability distributions.
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Since themaximallyψ-epistemic hypothesis pertains to every pair of states, it suffices to refute it for a single
pair of states. The reason for choosing 0∣f ñand 1∣f ñwith 1 20 1∣ ∣ ∣f fá ñ = is that this is the largest overlap for
which the argument of [1] requires just two systems. Probabilities inferred from the experimental data are
indeed close to zero in relevant cases. It is then possible to derive a lower bound on the trace distance D ,0 1( )m m .
Although the basic idea is to implement the experiment of [1], wewill in fact use a slightly different lower bound
to that derived in [1], which has been specially adapted to the present experimental context. This alternative
lower bound is expressed in equation (9) below, and is derived in the appendix. Using this, our experimental
results rule outmaximallyψ-epistemicmodels.

4. Experimental implementation and results

The experiments described herewere realizedwith a string of 40Ca+ ionswhich are confined in a linear Paul trap
[13]. A single ion represents a qubit which is encoded in the electronic levels S m 1 2 11 2 ( ) ∣= - = ñand
D m 1 2 05 2 ( ) ∣= - = ñ. Each experimental cycle consists of the initialization of the ions in their internal
electronic andmotional ground states followed by coherentmanipulation of the qubits and finally detection of
the quantum state. State initialization is realized by optical pumping into the S m 1 21 2 ( )= - state after
cooling the axial centre-of-massmode to themotional ground state. Themanipulation of the qubits is
implemented by coherently exciting the S D1 2 5 2« quadrupole transitionwith laser pulses at awavelength of
729 nm. Finally, the population of the qubit states ismeasured by exciting the S P1 2 1 2« transition and
detecting the fluorescence light, using electron shelving [14]. Our setup is capable of realizing collective qubit
rotations

U , exp i
2

sin cos 3
i

y
i

x
i( ) ( ) ( ) ( )( ) ( )

⎛

⎝
⎜ ⎡

⎣
⎤
⎦

⎞

⎠
⎟åq f

q
f s f s= - -

via a laser beam addressing the entire register, andMølmer–Sørenson entangling gate operations [15, 16]

MS , exp i
4

sin cos . 4
i

y
i

x
i

2

( )( ) ( ) ( ) ( )( ) ( )
⎛

⎝
⎜⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟⎟åq f

q
f s f s= - -

Additionally we are able to perform single-qubit rotations on the ith ion of the formU exp iz
i

z
i

2( )( )( ) ( )q s= - q

using an off-resonant laser beamwhich addresses individual ions.
Thefirst step of the protocol is the preparation of one of the input states ,0 0{∣ ∣f fñ Ä ñ ,0 1∣ ∣f fñ Ä ñ

,1 0∣ ∣f fñ Ä ñ 1 1∣ ∣ }f fñ Ä ñ with cos 1 sin 00 8 8( )∣ ∣ ( )∣f ñ = ñ + ñp p
and cos 1 sin 01 8 8( )∣ ∣ ( )∣f ñ = ñ - ñp p

. The input

states are generated by a global rotationU ,
4 2( )-p p , whichmaps 1 1∣ ∣ñ Ä ñ to 0 0∣ ∣f fñ Ä ñ, followed by single-

qubit rotationsUz
1,2 ( )( ) p on thefirst, second or both ions, whichmaps 0∣f ñ to 1∣f ñ. The corresponding sequences

are illustrated infigure 1(b).
The second part of the protocol is a jointmeasurement on the systemwith the property that each

measurement outcome should have probability zero for one of the four input states. Such ameasurement can, in
general, be realized by rotations Z 0 0 exp i 1 1∣ ∣ ( )∣ ∣b= ñá + ñáb followed by a conditional phase gate Ra, with
R 11 exp i 11∣ ( )∣añ = ña , Hadamard gatesH andfinally ameasurement in the computational basis, as shown in
figure 1(a).

Our pulse sequence for themeasurement procedure is shown infigure 1(c). For the input states used here,
the appropriate valuesα andβ are equal to a p= and 0b = , which reduces the rotation Zb to the identity. Up

to local phases the remaining two operations are equivalent to a global rotationU ,
2( )pp followed by a

maximally entangling gate10MS , 0
2( )p .

In an ideal experiment, the pulses applied to the single ions used to select different input states would have no
effect on the neighbouring ion. This requirement is in fact only fulfilled to a certain degree of accuracy due to
residual light on the neighbouring ions (crosstalk). If, for example, the phase shift operationUz

2 ( )( ) p is applied

on the second qubit, a residual phase shiftUz
1 ( )( ) kp occurs on thefirst ion, withκ on the order of 1%.Hence,

instead of the ideal input state 0 1∣ ∣f fñ Ä ñ, we have
0 1∣ ∣f f¢ñ Ä ñ, where e cos 1 sin 0

0
i

8 8( ) ( )∣ ∣ ∣f¢ñ = ñ + ñkp p p
.

Due to the residual light in both directions, 1 1∣ ∣f fñ Ä ñbecomes
1 1

∣ ∣f f¢ñ Ä ¢ñwhere

e
1

i∣f¢ñ = kp cos 1 sin 0
8 8( ) ( )∣ ∣ñ - ñp p

.

10
The sequencewas optimizedwith respect to the number of pulses, since local phases before thefinalmeasurement in the computational

basis do notmatter.
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Overall then, in place of the original protocol’s preparations 0 0∣ ∣f fñ Ä ñ, 0 1∣ ∣f fñ Ä ñ, 1 0∣ ∣f fñ Ä ñ,

1 1∣ ∣f fñ Ä ñ, we instead have 0 0∣ ∣f fñ Ä ñ,
0 1∣ ∣f f¢ñ Ä ñ, 1 0

∣ ∣f fñ Ä ¢ñ, 1 1
∣ ∣f f¢ñ Ä ¢ñ. Since the laserfield can be

viewed as a product of independent coherent states acting on each ion, it is reasonable tomodel these as
independent preparations:

, , 500 1 2 0 1 0 2( ) ( ) ( ) ( )m l l m l m l=

, , 60 1 1 2 0 1 1 2( ) ( ) ( ) ( )m l l m l m l=¢ ¢

, , 710 1 2 1 1 0 2( ) ( ) ( ) ( )m l l m l m l=¢ ¢

, . 81 1 1 2 1 1 1 2( ) ( ) ( ) ( )m l l m l m l=¢ ¢ ¢ ¢

It is shown in the appendix that if thismodified state preparation is implemented, and the outcomes that
never occur in the ideal protocol happenwith average probability ò, then the relevant classical trace distances
satisfy

D D D, , , 1 2 . 90 1 0 0 1 1( ) ( ) ( ) ( )m m m m m m+ + -¢ ¢

Supposing that all three classical trace distances were equal to the corresponding quantum trace distances,
wewould obtain 1.83%  , and so an experiment with a smaller value rules outmaximallyψ-epistemic
models. For simplicity, we are treating the ions identically, whereas in fact the actions of the laser on each ionwill
be slightly different. In the appendix it is shown that this consideration does not significantly alter the lower
bound on ò.

Ideally, each outcomewould have probability zero for some input state. In fact these nonzero outcomes
occurwith small probabilities k . For each of the input states themeasurement was repeated up to 10000 times to
gain significant statistics. Figure 2 shows themeasured probabilities.Wefind , , ,1 2 3 4{ }    =
1.88%, 1.04%, 0.6%, 1.04%{ }, which yields amean value of 1.14 0.18 %( ) =  . This violates the bound of
equation (9) given by our trace distance hypothesis by over 4.5σ. Therefore the probability of this data to be
consistent with amaximallyψ-epistemicmodel is less than 10−4.

Figure 1.Diagram of (a) the basic protocol, with the pulses used in the (b) state preparation and (c)measurement stages.
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5.Discussion of assumptions and experimental loopholes

The result of [1] can be considered as a no-go theorem for interpretations of quantum theory, analogous to Bell’s
theorem. Each theorem states that a certain class of theoriesmustmake different predictions fromquantum
theory—locally causal theories in the case of Bell’s theorem andψ-epistemic theories in the case of [1].

What assumptions are needed? First, both Bell’s theorem and [1] assume that a systemhas an objective
physical stateλ, independently of other systems, and that probabilities formeasurement outcomes are
determined byλ. This assumption is often referred to as ‘realism’ in presentations as Bell’s theorem. The
response ofmany physicists to Bell’s theorem, and no doubt to the theoremof [1] too, is that this assumption
should be rejected. Indeed one possible attitude to no-go results such as Bell’s theorem, that of [1], and the
corresponding experimental tests such as that reported here, is that they provide evidence that ‘realism’ should
be rejected because the other possibilities are too unpalatable. However, this is not the place for an extended
discussion about realism. But it’s important to be aware of what is being given up: neither Bell’s theoremnor that
of [1]need to assume that observables have underlying definite values, or that familiar classical properties such as
position andmomentum arewell defined for all systems. No assumptions aremade about the ontic stateλ at all
except that it is objective and able to take on different values within some set. Nor does either result assume
determinism—measurement outcomes can depend only probabilistically onλ.

Second, the theoremof [1]needs to assume preparation independence. An ideal implementation of the
protocol of [1]would involve preparations of quantum systems that are independent by any reasonable scientific
judgement (say, one on Earth and one onMars, spacelike separated, using apparatusesmanufactured in separate
factories, each unaware of the other...). In this case, wewould not regard the assumption of preparation
independence as strong: it is a basic tenet of physical science that one can perform independent experiments, and
when this is done, the relevant systems are uncorrelated. An assumption needed by Bell’s theorem, that
experimenters can freely choosemeasurements, has a similar character. In each case,models can be constructed
that violate the assumption and evade the theorem [17], but they are highly contrived [6, 18, 19].

Real experiments, however, deviate from the ideal in variousways. In our experiment, the quantum systems
are ions in close proximity. The judgement that these are independent systems, derives from the fact that
quantum theory itself assigns a product pure state (i.e., the judgement does not come frommore general
background considerations, as in the ideal case). Furthermore, the decisionwhether to prepare one ion in the
state 0∣y ñor 1∣y ñhas ameasurable effect on the quantum state of the other ion, hence these cannot be regarded as
truly independent preparations and in that sense corresponds to a potential state preparation loophole.

This loophole is partially closed off by the use of the inequality (9) of themain text, which is designed to allow
for the fact that when one ion is rotated from the state 0∣y ñ to the state 1∣y ñ, a small crosstalk effect changes the

state of the other ion from 0∣y ñ to 1∣y¢ñ. The inequality (9) allows the corresponding distributions 0 ( )m l and

1( )m l to be different. But the derivation of inequality (9) does still assume that a preparation of a quantum state
which is (close to) a direct product, e.g., 0 1∣ ∣y yñ Ä ñ, corresponds to a distributionwhich is also (close to) a
product, e.g., 0 1 1 2( ) ( )m l m l . Given the crosstalk effect, amodel which violates this assumption is not as
farfetched as such amodel would be, were the preparations completely independent at the quantum level.
Future experimentsmay be able to achieve this.

Finally, the quantum states preparedwill not in fact have been completely pure. This will not affect the
bound on classical trace distances that we obtained, but it is not clear exactly what a natural hypothesis for these
classical trace distances would be.One certainly cannot ask that the classical trace distance is equal to the
quantum trace distance in the case ofmixed states, because sometimes even identicalmixed quantum states
cannot be represented by the same classical probability distribution [20]. This opens the possibility for a ‘mixed
states’ preparations loophole.

Figure 2.Experimentalmeasured probabilities for each input state i j, 0, 1i j∣ ∣ (( ) { })f fñ Ä ñ Î (red lines) versus quantumpredictions

(purple bars). Ideally, for each input state one probability k is expected to be zero. The experimentalmeasured probabilities
, , , 1.88 0.5%, 1.04 0.10%, 0.6 0.08%, 1.04 0.50%1 2 3 4{ } { }    =     are close to zero and therefore we rule out the

ψ-epistemicmodel by over 4.5σ. The uncertainty of eachmeasurement outcome is of statistical nature and based on projection noise.
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6. Conclusions

The aimof this work has been to investigate experimentally the fundamental question of the interpretation of
the quantum state vector. This was done by implementing, with trapped ions, a protocol described theoretically
in [1]. The idea of [1] is that if two distinct quantum states can sometimes represent the same underlying physical
state of a system, then different predictions are obtained from those of quantum theory.While a real experiment
cannot rule out the entire class ofψ-epistemicmodels, it is possible to obtain a lower bound on the trace distance
between the probability distributions 0m and 1m corresponding to distinct quantum states.We have suggested
that a natural threshold is defined by quantum state discrimination. Given our assumptions, the experiment
reported here rules outmaximallyψ-epistemicmodels, i.e.,models inwhich errors in quantum state
discrimination are explained entirely in terms of overlapping classical probability distributions.

Note

Since this workwas completed, related experimental tests have been reported, using coherent states in
opticalfibres [21], and single photons [22].
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Appendix

Theorem. Let , , ,0 0 1 1∣ ∣ ∣ ∣y y y yñ ¢ñ ñ ¢ñbe qubit states. Suppose 2 qubits are independently prepared in one of the four
states

, , , 100 0 0 1 1 0 1 1 ( )y y y y y y y yÄ ¢ Ä Ä ¢ ¢ Ä ¢

and ameasurement is performedwhere outcome k has probability k on the kth quantum state. Let
i k

1

4 1

4 å= =
.

Amodel that reproduces these results must satisfy

D D D, , , 1 2 . 110 1 0 0 1 1( ) ( ) ( ) ( )m m m m m m+ + -¢ ¢

Toprove this we define the k-overlap of probability distributions ,..., k1m m , as in [1], by

, , min d . 12k i i1( ) ( ) ( )òw m m m l l¼ =
L

Wewill need the following link between four-overlaps and two-overlaps:

Lemma.

, , ,

, , , 2. 13

A B C D

A B B C C D

( )

( ) ( ) ( ) ( )
w m m m m

w m m w m m w m m+ + -

Proof. First notice that for real numbers a b c, ,

a b c a b b c f a b cmin , , min , min , , , , 14( ) ( ) ( ) ( ) ( )= + -

where

f a b c

b c a b c

b b a c

a b c a b

, ,

min , ,

,

min , , .

15( )

( )

( )

( )

⎧

⎨
⎪

⎩⎪





=
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Since f a b c, ,( )bwe have

a b c a b b c bmin , , min , min , . 16( ) ( ) ( ) ( ) + -

By two applications of the abovewe obtain that for real numbers a b c d, , ,

a b c d a b c d

a b b c d b

a b b c d b

a b b c c d b c

min , , , min , , min ,

min , min , min ,

min , min , ,

min , min , min , . 17

( ) ( ( ))

( ) ( ( ))

( ) ( )

( ) ( ) ( ) ( )





=
+ -

= + -
+ + - -

Let a b c d, , ,A B C D( ) ( ) ( ) ( )m l m l m l m l= = = = , integrate each sidewith respect to l, and recall that
andB Cm m are normalized to obtain the result. ,

Proof of theorem. Since the systems are prepared independently, the resulting physical states are distributed
according to

, , 18A 1 2 0 1 0 2( ) ( ) ( ) ( )m l l m l m l= ´

, , 19B 1 2 0 1 1 2( ) ( ) ( ) ( )m l l m l m l= ´¢

, , 20C 1 2 1 1 0 2( ) ( ) ( ) ( )m l l m l m l= ´ ¢

, . 21D 1 2 1 1 1 2( ) ( ) ( ) ( )m l l m l m l= ´¢ ¢

Hence

min ,

min , , ,

min , , , . 22

k A B C D k, , , 1 2

0 1 0 1 1 1 1 1

0 2 0 2 1 2 1 2

{ }
{ }

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

{ }



m l l

m l m l m l m l

m l m l m l m l´

Î

¢ ¢

¢ ¢

Integrating both sides

, , , , 23k 0 0 1 1

2

( ) ( )( ){ } ( )w m w m m m m¢ ¢

which square roots to

, , , . 24k 0 0 1 1( ) ( ){ } ( )w m w m m m m¢ ¢

Applying the lemma (notice that we can freely re-order the arguments of w)we obtain

, , , 2. 25k 0 1 0 0 1 1( ) ( ) ( ) ( ){ } ( )w m w m m w m m w m m+ + -¢ ¢

Recalling that the classical trace distance D , 1 ,0 1 0 1( ) ( )m m w m m= - this becomes

D D D1 , , , . 26k 0 1 0 0 1 1( ) ( ) ( ) ( ){ } ( )w m m m m m m m- - -¢ ¢

Meanwhile, from the observed probabilities we have that

d . 27M k k k,n ( ) ( ) ( )ò x l m l l =
L

  

Since mini i k( ) ( )m l m l
 

, and both andM k k, ( ) ( )x l m l
 

are non-negative

min d . 28M k i i k,n ( ) ( ) ( )ò x l m l l
L

  

Finally, sumover k and use the normalization
k M k, ( )å x l =


1 to obtain

4 . 29k( ){ } ( )w m

Square rooting each side gives

2 . 30k( ){ } ( )w m

Combining this with (26) gives the desired result. ,
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Non-identical qubits

In the above it is assumed that the four quantum states , , and0 0 1 1∣ ∣ ∣ ∣y y y yñ ¢ñ ñ ¢ñare the same for Alice and
Bob, and the same underlyingmodel of physical states l Î L is applied to both qubits. In reality the conditions
of the qubitsmight not be identical, and sowe should consider quantum states

, , , . 310 0 0 1 1 0 1 1
( )y f y f y f y fÄ ¢ Ä Ä ¢ ¢ Ä ¢

Corresponding to probability distributions over a bL ´ L

, , 32A
a b

1 2 0 1 0 2( ) ( ) ( ) ( )m l l m l m l= ´

, , 33B
a b

1 2 0 1 1 2( ) ( ) ( ) ( )m l l m l m l= ´¢

, , 34C
a b

1 2 1 1 0 2( ) ( ) ( ) ( )m l l m l m l= ´ ¢

, . 35D
a b

1 2 1 1 1 2( ) ( ) ( ) ( )m l l m l m l= ´¢ ¢

Hence in place of equation (23)we obtain

, , , , , , . 36k
a a a a b b b b
0 0 1 1 0 0 1 1( ) ( ) ( ){ } ( )w m w m m m m w m m m m´¢ ¢ ¢ ¢

Applying the lemma and converting two-overlaps to classical trace distances then gives

D D D

D D D

1 , , ,

1 , , , . 37

k
a a a a a a

b b b b b b

0 1 0 0 1 1

0 1 0 0 1 1

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

{ }

( )

w m m m m m m m

m m m m m m

- - -

´ - - -

¢ ¢

¢ ¢

Combining this with (29) gives

D D D

D D D

1 , , ,

1 , , , 4 . 38

a a a a a a

b b b b b b

0 1 0 0 1 1

0 1 0 0 1 1

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

m m m m m m

m m m m m m

- - -

´ - - -

¢ ¢

¢ ¢

If we suppose that, for both systems, the classical trace distance equals the quantum trace distance, and that (to
good approximation) the quantum trace distances between the relevant states are as before, we obtain exactly the
same bound on ò.
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