
This is a repository copy of Modelling concurrent objects running on the TSO and ARMv8
memory models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151638/

Version: Accepted Version

Article:

Winter, K., Smith, G. and Derrick, J. (2019) Modelling concurrent objects running on the
TSO and ARMv8 memory models. Science of Computer Programming. ISSN 0167-6423

https://doi.org/10.1016/j.scico.2019.102308

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/228166545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Modelling concurrent objects running on the TSO and

ARMv8 memory models

Kirsten Winter∗, Graeme Smith

School of Information Technology and Electrical Engineering, The University of Queensland

John Derrick

Department of Computing, University of Sheffield

Abstract

Hardware weak memory models, such as TSO and ARM, are used to increase
the performance of concurrent programs by allowing program instructions to be
executed on the hardware in a different order to that specified by the software.
This places a challenge on the verification of concurrent objects used in these
programs since the variations in the executions need to be considered.

Many approaches exist for verifying concurrent objects along with associated
tool support. In particular, we focus on a thread-local approach to checking
linearizability, the standard correctness condition for concurrent objects, using a
model checker. This approach, like most others, does not support weak memory
models. In order to reuse this existing approach, therefore, we show how to use
the semantics of a weak memory model to directly derive a transition system of
concurrent objects running under it.

We do this for both TSO and the latest version of ARM, ARMv8. Since there
is a straightforward implementation of TSO, we reflect this in our transition
system which includes a buffer of writes to memory mirroring the store buffer of
TSO. We illustrate linearizability checking using model checking on a transition
system generated by this approach.

The implementation of the significantly more complex ARMv8 architecture
is less obvious. We derive our transition system in this case from an exisiting
operational semantics that is consistent with the results of thousands of litmus
test run on ARM hardware.

Keywords: linearizability, weak memory models, TSO, ARMv8, model checking

c© 2019. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

∗Corresponding author
Email address: kirsten@itee.uq.edu.au (Kirsten Winter)

Preprint submitted to Science of Computer Programming September 27, 2019

1. Introduction

Hardware weak memory models are used on all modern computing platforms.
TSO (supported by Intel and AMD processors) [1, 2] is used in nearly all laptop
and desktop computers, ARM [3, 4] is used in most mobile devices, and IBM
POWER [5] on IBM servers and supercomputers. These memory models are
aimed at increasing the performance of programs running on them by limiting
software control of when accesses to the global memory occur. Instead such
accesses are placed under the hardware’s control, and may occur out-of-order
with respect to the order they occur in the program text.

Weak memory models such as those of the processors mentioned above,
guarantee that any instruction ordering they allow does not change a program’s
behaviour, provided the program is data-race free. However, many concurrent
objects, i.e., objects designed to be utilised by multiple threads [6], utilise non-
blocking algorithms which are inherently racy. This complicates the verification
of concurrent objects.

The standard notion of correctness for concurrent objects is linearizability
[7]. Over the years, a number of approaches have been developed for proving
linearizability along with associated tool support [8, 9, 10, 11, 12, 13, 14, 15].
In particular, Derrick et al. [13] provide a thread-local, step-local proof method
supported by the theorem prover KIV [16]. Being thread-local, correctness for
objects being accessed by an arbitrary (even infinite) number of threads follows
from results on the object being accessed by a single thread. Being step-local
means these results can be obtained by proofs on one step, i.e., one program
instruction, at a time. These features make the approach amenable to model
checking without restrictions on the number of threads or number of steps that
other model checking approaches need to make [17].

Like the other approaches cited above, Derrick et al.’s approach assumes that
the concurrent objects are running on a sequentially consistent architecture, i.e.,
one where instructions, e.g., loads to and stores from global memory, take effect
in the order they appear in the program. Hence, it cannot be directly applied
to objects on weak memory models.

In this article, we provide a means of using both the proof method of Der-
rick et al. and its model checking support on hardware weak memory models.
Specifically, we develop means of generating transition systems from the code of
concurrent objects capturing weak memory effects for both TSO and the latest
version of ARM, ARMv8 [3].1

We begin in Section 2 by introducing the concept of linearizability and our
running example, the Linux reader-writer mechanism seqlock [18]. We also de-
scribe in more detail the proof method of Derrick et al. In Section 3 we discuss
weak memory models using TSO as an example, and in Section 4 we describe
the general approach for generating a transition system. We provide a specific

1By ARMv8 we refer to the multi-copy atomic revision [3], not the original ARMv8 pro-
cessor which was non-multi-copy atomic [4].

2

approach for TSO in Section 5 and then in Section 6 apply it to seqlock and
summarise our model checking results using NuSMV [19]. In Section 7 we pro-
vide the approach for generating a transition system for a concurrent object on
ARMv8. Unlike TSO, the full details of an implementation of ARM’s archi-
tecture cannot easily be derived from the existing documentation. Hence, the
model is derived from an existing operational semantics [20, 21] that is con-
sistent with the results of thousands of litmus test run on ARM hardware. In
Section 8 we revisit the seqlock example under ARMv8 before concluding the
paper in Section 9.

Contributions. This paper is an extension of our earlier work [22]. That paper
presented models for TSO and XC (a theoretical weak memory model allowing
instruction reorderings similar to ARM) [2]. The latter was presented as a step-
ping stone to more complex memory models like ARM. To accurately model
ARMv8 in this paper, we take into account various complex features not sup-
ported in XC including speculative execution, control fences, address shifting,
load speculation and write elimination.

2. Linearizability

Concurrent objects are objects that are developed to be used in a multi-
threaded environment [6]. Generally, they allow more than one thread to access
them simultaneously. Consider, for example, the Linux reader-writer mechanism
seqlock , which allows reading of shared variables without locking the global
memory, thus supporting fast write access. A thread wishing to write to the
shared variables x1 and x2 acquires a software lock (by atomically setting a
variable lock to 0 when it is 1)2 and increments a counter c. It then proceeds
to write to the variables, and finally increments c again before releasing the lock
(by setting lock to 1). The lock ensures synchronisation between writers, and
the counter c ensures the consistency of values read by other threads. The two
increments of c ensure that it is odd when a thread is writing to the variables,
and even otherwise. Hence, when a thread wishes to read the shared variables,
it waits in a loop until c is even before reading them. Also, before returning it
checks that the value of c has not changed (i.e., another write has not begun).
If it has changed, the thread starts over.

An abstract specification of seqlock, in which the read and write operations
are regarded as atomic, is given in Figure 1. A typical implementation, in which
the statements of operations may be interleaved, is given in Figure 2. In the
implementation, a local variable c0 is used by the read operation to record the
(even) value of c before the operation begins updating local variables d1 and
d2.

Linearizability [7] is the standard correctness criterion for verifying concur-
rent objects such as seqlock. It is used to relate each history , i.e., allowed

2This can be implemented, for example, using a spin lock [23].

3

x1 = 0, x2 = 0;

write(d1,d2) {

atomic {

x1 = d1;

x2 = d2;

}

}

read() {

atomic {

d1 = x1;

d2 = x2;

}

return (d1,d2);

}

Figure 1: seqlock specification

x1 = 0, x2 = 0;

c = 0, lock = 1;

write(d1,d2) {

1 acquire;

2 c++;

3 x1 = d1;

4 x2 = d2;

5 c++;

6 release;

}

read() {

word c0;

do {

do {

7 c0 = c;

8 } while(c0%2!=0);

9 d1 = x1;

10 d2 = x2;

11 } while(c != c0);

12 return(d1,d2);

}

Figure 2: seqlock implementation (from [24])

sequence of operation invocations and returns, of a concurrent implementation
to a matching sequential history of a specification in which all operations are
regarded as atomic. It does this based on the understanding that each operation
in the implementation can be viewed as taking effect instantaneously at some
point between its invocation and return; a point known as the linearization
point. For example, in the implementation of seqlock the linearization point of
the write operation is the second store to c; after this the values written by the
operation can be read by other threads. The key consequence of the definition
of linearizability is that if two concrete operations overlap (due to concurrency),
then they may take effect in any order from an abstract perspective, but other-
wise they must take effect in the order in which they are invoked.

A formal definition of linearizability is given in [7] and a number of ap-
proaches have been developed for proving it along with associated tool support
[8, 9, 10, 11, 12, 13, 14, 15]. In particular, Derrick et al. [13] have developed
a simulation-based proof method for linearizability which is both thread-local ,
i.e., reasoning is performed on a single thread, and step-local , i.e., reasoning is
performed on one line of code at a time.

The proof method of Derrick et al. is based on the idea that if an imple-
mentation of an operation C is linearizable it simulates the behaviour of the
abstract specification of that operation, A. All intermediate states of C (be-
tween its lines of code) must be related to either the pre- or post-state of A

4

C3C1 C2 C4 C5

A

Abs

s0 s1 s2 s3 s4 s5

Figure 3: Simulation-based proof method for linearizability

via an abstraction relation Abs . In Figure 3, for example, the step C3 matches
the state change of A whereas all other steps of C match abstract skips on the
pre-state or the post-state of A. To enable step-local proofs, the states of C are
labelled with assertions si (stating the required conditions at that point of the
execution) that the program needs to maintain, i.e., when executed in a state
where si holds, step Ci+1 must lead to a state where si+1 holds.

In the following discussion of the method, we let AS be the state space of the
specification, and GS and LS be the state spaces comprising the global and local
variables of the implementation, respectively. Also, we let gs, gs ′ ∈ GS denote
the global variables before and after an operation, respectively, and similarly
ls, ls ′ ∈ LS the local variables before and after an operation, and as, as ′ ∈ AS
the abstract state before and after an operation.

The aforementioned assertions on the implementation state are collected into
an invariant Inv(gs, ls), i.e., for each line of code Inv(gs, ls) includes a conjunct
of the form pc = i ⇒ si , where pc ∈ LS is the program counter, and si is the
assertion that must hold at pc = i in order for the implemented operation to
simulate the abstract operation.

A function status(gs, ls) is defined to identify the linearization point. The re-
turn type of this function is STATUS == IDLE | IN 〈〈In〉〉 | OUT 〈〈Out〉〉, where
statuses IN and OUT are parameterised by an element of the sets In, denot-
ing all input values, and Out , denoting all output values, respectively. Before
invocation, status(gs, ls) is IDLE . After invocation but before the linearization
point it is equal to IN (in), where in ∈ In is the input to the abstract operation,
and after the linearization point it is equal to OUT (out), where out ∈ Out is
the output of the abstract operation. The types In and Out have a special value
⊥ denoting no input or output, respectively. As well as identifying the lineariza-
tion point, the status function is used to store the input of the invocation step
until it is needed at the linearization point, and to store the abstract output of
the linearization point until it is need at the return step.

Let σ and σ′ be status values, and λ be a list of parameters comprising gs,
gs ′, ls and ls ′, and possibly in or out . For a step C which is not the linearization
point, the proof obligation is of the following form.3

3The proof obligation is slightly different when the step is the final step of an operation,
needing to ensure the value returned by the step matches that stored in status(gs, ls).

5

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In; out : Out ·
Abs(as, gs) ∧ Inv(gs, ls) ∧ status(gs, ls) = σ ∧ C (λ) ⇒

status(gs ′, ls ′) = σ′ ∧ Abs(as, gs ′) ∧ Inv(gs ′, ls ′) (1)

That is, the step preserves the abstraction relation and invariant, but may
change the status, e.g., if the step is an invocation step it changes the status
from IDLE to IN (in).

The step corresponding to the linearization point must simulate the abstract
operation A. The proof obligation is of the following form.4

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In ·
Abs(as, gs) ∧ Inv(gs, ls) ∧ status(gs, ls) = σ ∧ C (λ) ⇒

(∃ as ′ : AS ; out : Out · A(in, as, as ′, out) ∧
status(gs ′, ls ′) = σ′ ∧ Abs(as ′, gs ′) ∧ Inv(gs ′, ls ′)) (2)

That is, as well as preserving the abstraction relation and invariant, and chang-
ing status (from either IDLE or IN (in) to either IDLE or OUT (out)), the step
ensures that the implementation state change and inputs match those of A.

To ensure threads do not interfere with each other’s behaviour, an additional
proof step checks that each step does not change global variables in such a way
that any of the required assertions for another thread can be broken.5 This step
is identical to the check of non-interference in the proof method of Owicki-Gries
[25].

This amounts to showing that a thread p (with local state ls) cannot invali-
date the invariant Inv(gs, lsq) or change the status status(gs, lsq) which another
thread q (with local state lsq) relies on. To do this we require a further invari-
ant D(ls, lsq) relating the local states of two threads. For seqlock, this invariant
includes a predicate that only one thread can be at lines 2 to 6 (due to the need
to acquire the lock). That is, D includes the conjunct pcq ∈ 2..6 ⇒ ¬ pc ∈ 2..6.

The proof obligation then requires we prove

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′, lsq : LS ; in : In; out : Out ·
Abs(as, gs) ∧ Inv(gs, ls) ∧ Inv(gs, lsq) ∧ D(ls, lsq) ∧ C (λ)

⇒ Inv(gs ′, lsq) ∧D(ls ′, lsq) ∧ status(gs ′, lsq) = status(gs, lsq) (3)

That is, the step preserves the invariant and status of the other thread q , as
well as the invariant D .

Additionally, we have a proof obligation related to initialisation. Let GSInit
and LSInit be the initial configurations of global variables and local variables
respectively, and ASInit the initial configuration of the abstract state. The
obligation ensures that the abstraction relation, invariant and D hold initially.

4The proof obligation is slightly different when the step is the final step of an operation,
needing to ensure that the value returned by the step is also one allowed by A(in, as, as′, out).

5Note that all threads execute the same code (that of the concurrent object) and have the
same program steps and assertions.

6

∀ gs : GSInit · ∃ as : ASInit · Abs(as, gs) ∧
(∀ ls : LSInit · Inv(gs, ls)) ∧ (∀ ls, lsq : LSInit ·D(ls, lsq)) (4)

Other than initialisation, each of these proof obligations is step-local, in-
volving a single line of code, and changes the state of one thread. Together
they have been shown to prove linearizability between the abstract and con-
crete specifications [13]. Hence the approach, carried out on a single thread,
proves linearizability for an arbitrary number of threads accessing the concur-
rent object.

The proof method is supported by the KIV theorem prover [13] and, being
thread-local and step-local, lends itself to automation using a model checker
[17]. Unlike other model checking approaches for linearizability, the results are
not restricted to a fixed number of threads, or particular sequences of operation
calls. However, the approach is not fully automatic. As with the approach of
Derrick et al. [13], the user must provide the invariants Inv and D . While the
derivation of the former can be partially automated (only the assertion that
holds in the idle state between operation calls needs to be provided) [26], the
latter is derived from the user’s understanding of how the code works.

3. Weak memory models

Existing proof methods for linearizability, such as Derrick et al.’s, are not
directly applicable to objects running on a weak memory model. We explain
this via the example of the well understood TSO architecture [1, 2].

In TSO, each core (hosting one or more threads) uses a store buffer , which
is a FIFO queue that holds pending stores (i.e., writes) to memory. When a
thread running on a core needs to store to a memory location, it enqueues the
store to the buffer and continues computation without waiting for the store to
be committed to memory. Pending stores do not become visible to threads on
other cores until the buffer is flushed, committing (some or all) pending stores
to memory. The value of a memory location loaded (i.e., read) by a thread is
the most recent in its core’s local buffer, and only comes from the memory if
the buffer is empty. This is referred to as bypassing in TSO. The use of local
buffers can cause unexpected behaviour, e.g., a load by one thread, occurring
after a store by another, may return an older value, behaving as if it occurred
before the store.

In general, flushes are controlled by the hardware, and from the program-
mer’s perspective occur nondeterministically. However, a programmer may ex-
plicitly include a fence instruction to force flushes to occur.

A typical situation is illustrated for seqlock in Figure 4 where the horizontal
lines represent the execution of an operation (from its invocation to its response)
and the vertical lines represent linearization points. The figure shows Thread 1
doing a write with values 1 and 2 followed by Thread 2 doing a read before
Thread 1’s writes are flushed by the “hardware thread”. The read will return
the initial values of x1 and x2, which we assume to be 0 in the figure.

7

Thread	1	

Thread	2	

write(1,2)	

read(0,0)	

HW	thread	
flush(lock)	 flush(c)	 flush(x1)	 .	.	.	

write(1,2)	 read(0,0)	

flush(lock)	

Figure 4: Linearizability fails on TSO

It has been argued that linearizability should succeed for this execution since
the write operation remains active (and hence may take effect) up to the time
of the flush of its final written value [24, 27, 28]. Hence, the write operation can
linearize after the read. This is illustrated in Figure 5 where the occurrence of
the write is extended to its final flush.

However, since the write and read do not overlap, the only matching specifi-
cation history is one where the read occurs after the write. This is not allowed
by the specification of seqlock and hence applying Derrick et al.’s proof method
directly to the specification and code in Figures 1 and 2, linearizability cannot
be proved. This is because the method assumes the code is running on a sequen-
tially consistent architecture. To use such existing methods we propose building
models of the concurrent objects which take the memory model into account,
i.e., allow the additional behaviour that can occur under these memory models.

The behaviours of our models can be compared directly using any existing
approach for linearizability. This is in contrast to earlier approaches such as [28].
In that work, one has to apply a transformation to each behaviour that encoded
the effects of the TSO architecture. Only then can standard linearizability be
used to check correctness [29]. We discuss how to construct our models for both
TSO and ARMv8 in the following sections.

4. Modelling concurrent objects

The order of statements in a program defines the program order. On a
sequentially consistent architecture, this defines the execution (or memory) or-
der. However, in a weak memory model the execution order is different from
the program order because statements can be reordered.

Thread	1	

Thread	2	

write(1,2)	

read(0,0)	

HW	thread	
flush(lock)	 flush(c)	 flush(x1)	 .	.	.	

write(1,2)	read(0,0)	

flush(lock)	

Figure 5: Linearizability succeeds on TSO

8

The method we describe generates a transition system that models the be-
haviour of a single thread on which any sequence of operations of a concurrent
object may be called. The order in the transition system is the execution order,
as opposed to the program order. The thread local nature of the proof obliga-
tions we need to verify means that this will be sufficient and enables an efficient
approach to model checking.

Although such a thread invokes operations one after another, under a weak
memory model instructions from successive operations may interleave. For ex-
ample, on TSO a write that is buffered during one operation may be flushed
during the following operation (and hence appear as if it occurred during the
execution of that following operation).

We derive the order in the transition system directly from the semantics of
the weak memory model under consideration. For example, for TSO we use
the semantics given in [2] and for ARMv8 a semantics given in [20, 21]. While
the semantics in [2] is based on an understanding of the TSO architecture (in
particular, the use of store buffers), that in [20, 21] is consistent with the litmus
tests run on ARM hardware.

In the programming model we consider, our statements are loads, stores,
branch statements and return statements. We also include invocations, as well
as architecture specific statements like fences and atomic read-modify-writes
(RMWs) (e.g., the compare-and-swap (CAS) instruction [2]).

Branch statements are often not treated as instructions but simply as control
flow directives [2, 1]. However, to model more complex weak memory models,
like ARMv8 (where speculative execution is supported), it seems beneficial to
treat branching as a statement (and hence as a separate transition) [20, 21].

Each program statement (labelled by a line number) is modelled as a state
transition in a standard fashion. Statements that modify a global variable are
split into two steps, one for loading the variable into a register (local to the
thread) and modifying it, and one for storing the result back into the global
variable (e.g., c++ is modelled as localc = c + 1; c = localc , where localc is a
register). Consequently, each assignment accesses at most one global variable.
This ensures we allow all possible interference between threads.

Additionally, modifications on a register are merged with a corresponding
statement affecting a global variable (e.g., localc = c; localc = localc + 1 is
modelled as localc = c+1). This simplifies our transition system in cases where
interference does not matter.

We also model invocations as separate transitions. Although instructions
from successive operations can be interleaved (on a single thread), the invocation
of the second operation cannot happen until the first has returned. We model
this explicitly in our transition systems.

Under a sequentially consistent architecture the transitions follow the pro-
gram order prescribed by the code, i.e., a control flow graph <P = (LP ,nextP)
over the set of instruction labels LP (i.e., line numbers) and a next-step relation
nextP : LP × Bool → LP , which maps each label to one or more successors.
Starting from 0, nextP will deliver the next line number to be executed. In the
case of a branch, the second argument determines which line number that is.

9

TSO Command 2

load store RMW fence

load X X X X

store B X X X

RMW X X X X
C
o
m
m
a
n
d
1

fence X X X X

Table 1: Order constraints for TSO architectures [2]

When a line number has only one successor this second argument equals true
and is omitted.

The root node of <P is 0 which models the idle state, and is the successor for
the labels of return statements. In line 0, every operation can be invoked. We
assume nextP (0) returns the appropriate line number for the invoked operation.
For clarity of presentation, we do not model this explicitly but it is included in
our model checker implementation.6

Under weak memory models the (observed) order of transitions is weaker
than <P . This weaker order can be described as a set of control flow graphs
where each is a restriction of <P to a subset of labels whose order must be
maintained on the memory model. Instructions corresponding to line numbers
in different graphs can be reordered with respect to each other.

In the following sections, we consider the TSO and ARMv8 memory models
based on the semantics in [2] and [20, 21], respectively. For each we provide a set
of rules for translating a given concurrent object into a transition system that
is consistent with the memory model and sufficient for verifying the program’s
correctness.

5. A model for TSO

In [2], Sorin et al. describe the effects of TSO as a reordering of statements
as summarised in Table 1. In the table, X denotes an enforced sequence of
commands and B denotes that commands can be reordered but bypassing is
required if the commands are to the same variable (see Section 3). From the
information in this table, we can provide an explicit model of a concurrent
object’s behaviour under TSO.

From the table we can see that stores may be reordered with subsequent
loads, but their results will be locally visible in program order. To capture this
in our model, each store command is captured by two separate steps: a local
store (l-store) which copies the value to be stored to a local register variable
and a global store (g-store) which stores the register value to the corresponding

6See http://staff.itee.uq.edu.au/kirsten/LinModels/SeqLock.html.

10

global variable. l-stores follow the program order while g-stores follow a separate
order but have to come after their corresponding l-stores. This enables us to
model bypassing as well as the delayed observation of store steps.

An RMW statement is atomic and hence needs to write to memory imme-
diately. Therefore, it necessarily includes a fence on TSO (since its write will
be placed at the end of the FIFO store buffer) which prevents reordering. We
assume that branch instructions (which are not included in the table) are not
reordered with respect to loads, fences and RMWs, nor with each other, and
that stores can be reordered after subsequent branches. This assumption is
consistent with other models of TSO, e.g., [30, 31].

To reflect the given reordering constraints we introduce two (control flow)
graphs ordering the labels of a program.

• a load order <L which orders steps with a local effect; it is identical to
<P , i.e., <L=<P

• a store order <S which orders steps with a global effect like g-stores, fences
and RMWs; it also includes branches, as the branching structure in the
load order need to be reflected in the store order, as well as invocations,
since they cannot be reordered after stores: <S= (LS ,nextS) where LS

includes all labels apart from those of loads.

5.1. Transition System Model

The order of transitions in a transition system can be enforced by a counter
whose values relate unambiguously to each of the steps (e.g., the line number
in the program). If the transition occurs the counter gets increased to the next
value in the order, thereby enabling the next transition in the prescribed order.

To follow this standard way of encoding transition systems we introduce
counters for the two orders: a load counter pcL which ranges over all labels
included in <L, and a sequence of store counters, pcS , in which each entry
ranges over all labels in <S . A sequence of store counters is required to represent
overlapping invocations of the operation being modelled (see Section 5.2). Each
transition is guarded by the counter(s) that enforces the order(s) which they
are part of.

We let vl be a local variable and vg be a global variable. We also let rg be
a sequence of locally stored values to vg in order of their occurrence, and for
each branch we have a flag bn indicating whether the branch condition at line
n evaluated to true of false. This flag bn is used to direct the flow in <S along
the branch followed by the instructions in <L. We also have a flag rn for an
RMW at line n. It is set to true when the RMW succeeds and false otherwise.

Initially, pcL = 0 and pcS = 〈 〉. The transitions for each statement type
take the following form.

5.2. Invocations and returns

When an operation is invoked it is possible that some g-stores of the previous
operation have not occurred yet. Hence, pcS is a sequence of store counters,

11

each representing the store step of one operation. If a g-store from a previous
occurrence of an operation corresponds to that operation’s linearization point
then, to apply the proof method of Derrick et al. described in Section 2, we
need to have access to the previous operation’s input and output values. Hence,
the inputs and outputs of operations are also modelled as sequences of values
(a value for each operation occurrence).

To invoke an operation we require that the invoking thread is idle, i.e.,
pcL = 0. We extend the sequence of pcS by another element and increase both
the load and the (newly added) store counter to the first line number in the
respective order graph for that operation. (Since there is only one successor
node, the second argument of the nextL function is true and is omitted here.)

We also extend the sequence of input values in with the operation’s inputs.
The inputs required for any step of the transition system are those last added
to in, denoted last(in). Note that g-stores (which may be from a previous
invocation) do not refer to inputs, only local registers (as detailed in Section 5.3).

Invoke(op(val1, . . . , valn)) == pcL = 0 ∧
pc′L = nextL(0) ∧

pc′S = pcS a 〈nextS (0)〉 ∧

in = in a 〈(val1, . . . , valn)〉

A return step, n : return(val1, . . . , valn), of an operation adds the output
values to the sequence out . When there is no explicit return statement (as
in the write operation of seqlock), the final statement of each execution of the
operation is treated as a return statement updating out with ⊥, indicating no
output.

Return(n : return(val1, . . . , valn)) == pcL = n ∧
pc′L = 0 ∧

out ′ = out a 〈(val1 . . . valn)〉

5.3. Loads and stores

A load can occur when pcL has reached its line number, and upon occurrence
it sets pcL to the next line number in the load order. The value to be loaded
might be found either at the end of the corresponding register rg (if an l-store
for that variable has occurred but not the corresponding g-store) or in the global
memory, namely vg . Assume last(s) denotes the last element of a sequence s.
Then given a load n : vl = e(vg) (where e(vg) is an expression in terms of vg
modelling the merge of a load and possibly a modification to the loaded value),
we have the following transition.

Load(n : vl = e(vg)) == pcL = n ∧
pc′L = nextL(n) ∧
v ′

l = (if rg =〈 〉 then e(vg) else e(last(rg)))

An l-store can occur when pcL has reached the line number of a store. Upon
occurrence it sets pcL to the next line number in the load order and appends the

12

new value to the corresponding register variable rg . Given the line n : vg = val

we have

Store(n : vg = val) == pcL = n ∧
pc′L = nextL(pcL) ∧

r ′g = rg a 〈val〉

A g-store can occur when its label is at the head of the sequence pcS and if
the register rg is not empty, i.e., the corresponding l-store has occurred. When
a g-store occurs it removes the value at the head of the register rg and writes it
to global memory (i.e., updates vg). It also updates the head of pcS to nextS (n)
unless nextS (n) = 0 (i.e., the stores of the current operation are finished), in
which case the step removes the head of pcS (so that the first g-store of the next
operation can occur if there is any).

GStore(n : vg = val) == head(pcS) = n ∧ rg 6= 〈 〉 ∧
v ′

g = head(rg) ∧
r ′g = tail(rg) ∧
pc′S = (if nextS (n) 6= 0

then 〈nextS (n)〉a tail(pcS)
else tail(pcS))

5.4. Branches

A branch or loop instruction7 is captured by two transitions, one BranchT
for when the branch condition is true, and the other BranchF for when it is
false. One of these transition is enabled when pcL reaches n, the line number
of the branch instruction. It sets the corresponding flag bn and updates pcL to
the next statement to be executed. Note that for this transition the next label
depends on the evaluated condition.

BranchT (n : if(b)) == pcL = n ∧ b = true ∧
pc′L = nextL(n, true) ∧
b′n = true

BranchF (n : if(b)) == pcL = n ∧ b = false ∧
pc′L = nextL(n, false) ∧
b′n = false

Additionally transitions are required in the store order graph to ensure the
corresponding flow. Again there are two transitions. One of these must occur
later than the transition for the branch statement in the load order graph. It
is enabled when the head of pcS has reached the label of the branch and pcL

7We show the transitions for if statements here. Identical transitions exist for while state-
ments.

13

has a value greater than the label (and hence the branch condition has been
evaluated and the branch flag set).

SBranchT (n : if(b)) == head(pcS) = n ∧ n <L pcL ∧ bn = true ∧
pc′S = (if nextS (n, true) 6= 0

then 〈nextS (n, true)〉a tail(pcS)
else tail(pcS))

SBranchF (n : if(b)) == head(pcS) = n ∧ n <L pcL ∧ bn = false ∧
pc′S = (if nextS (n, false) 6= 0

then 〈nextS (n, false)〉a tail(pcS)
else tail(pcS))

5.5. Fences and RMWs

A fence at line n occurs when both pcL and pcS have reached n. The latter
enforces that all g-stores before the fence have occurred (and hence all registers
are empty). The transition updates pcL and pcS to their next values.

Fence(n : fence) == pcL = n ∧ head(pcS) = n ∧
pc′L = nextL(pcL) ∧
pc′S = (if nextS (n) 6= 0

then 〈nextS (n)〉a tail(pcS)
else tail(pcS))

An RMW combines a store with a fence.8 Like a fence it requires that both
pcL and pcS have reached its line number. It will set a variable va to a value
when a certain condition b holds, and not change it otherwise. Hence, like
branches, we model it with two transitions. In each a flag rn is set accordingly
which directs the next pointer.

RMWT (n : RMW(b, va, val)) == pcL = n ∧ head(pcS) = n ∧ b = true ∧
r ′n = true ∧
v ′

a = val ∧
pc′L = nextL(pcL) ∧
pc′S = (if nextS (n) 6= 0

then 〈nextS (n)〉a tail(pcS)
else tail(pcS))

RMWF (n : RMW(b, va, val)) == pcL = n ∧ head(pcS) = n ∧ b = false ∧
r ′n = false ∧
pc′L = nextL(pcL) ∧
pc′S = (if nextS (n) 6= 0

then 〈nextS (n)〉a tail(pcS)
else tail(pcS))

8We assume the fence occurs whether the modification takes place or not.

14

6. The seqlock example on TSO

As an example, we show how seqlock running on TSO is modelled. Consider
the write operation whose code is given again below.

write(d1,d2) {

1 acquire;

2 c++;

3 x1 = d1;

4 x2 = d2;

5 c++;

6 release;

}

Following our methodology, we first replace the statements c++ and acquire

with their equivalent sequences of atomic steps (release is already atomic; it
is a store of 1 to the lock variable). c++ becomes local c=c+1; c=local c.
We implement acquire as do {} while(RMW(lock=1,lock,0)=false), i.e., an
RMW to evaluate the loop condition followed by a branch to either the beginning
of the loop (if the condition is true) or to after the loop (if it is false).

Next we derive the orders <L and <S from the program text. <L is just
the program order which, in this example, can be represented by the regular
expression (0, (1, 12)∗, 2, 22, 3, 4, 5, 52, 6, 0) where 12, 22 and 52 are additional
lines due to the breaking the statements acquire and c++ into atomic steps. <S

is simply <L minus the line numbers of loads, i.e., (0, (1, 12)∗, 22, 3, 4, 52, 6, 0).
These orders are reflected in the pre and post values of pcL and pcS in the
transitions below.

We define a transition for each line of code following the rules of Section 5.
For example, Invoke(write(d1, d2)) gives rise to the following transition.

Invoke(write(d1, d2)) == pcL = 0 ∧ pc′L= 1 ∧ pc′S = pcS a 〈1〉 ∧

in ′ = in a 〈(d1, d2)〉

This models the invocation of the write operation. It appends the input values
d1 and d2 to the input sequences in1 and in2 respectively.

The transitions for the RMW modelling the acquire command requires that
both pcL and the head of pcS are 1 and updates both to their next positions in
their order, setting the lock to 0 if it is successful.

RMWT (1 : RMW(lock = 1, lock, 0)) ==
pcL = 1 ∧ head(pcS) = 1 ∧ lock = 1 ∧

r ′1 = true ∧ lock ′ = 0 ∧ pc′L = 12 ∧ pc′S = 〈12〉a tail(pcS)
RMWF (1 : RMW(lock = 1, lock, 0)) ==

pcL = 1 ∧ head(pcS) = 1 ∧ ¬ lock = 1 ∧

r ′1 = false ∧ pc′L = 12 ∧ pc′S = 〈12〉a tail(pcS)

The branch instruction is represented by the pairs of Branch and SBranch
transitions below.

15

BranchT (12 : while(RMW(lock = 1, lock, 0) = 0)) ==
pcL = 12 ∧ r1 = true ∧ pc′L = 2 ∧ b′12 = true

BranchF (12 : while(RMW(lock = 1, lock, 0) = 0)) ==
pcL = 12 ∧ r1 = false ∧ pc′L = 1 ∧ b′12 = false

SBranchT (12 : while(RMW(lock = 1, lock, 0) = 0)) ==
head(pcS) = 12 ∧ 12 <L pcL ∧ b12 = true ∧

pc′S = 〈22〉a tail(pcS)
SBranchF (12 : while(RMW(lock = 1, lock, 0) = 0)) ==

head(pcS) = 12 ∧ 12 <L pcL ∧ b12 = false ∧

pc′S = 〈1〉a tail(pcS)

The first step of the c++ statements illustrates bypassing: it loads c’s value
from the global variable if the register rc is empty, otherwise it loads the last
value of the register. This value is incremented and stored into local variable
localc . For the statement at line 2, we have:

Load(2 : local c = c+ 1) ==
pcL = 2 ∧ pc′L = 22 ∧
local c′ = (if rc = 〈 〉 then c + 1 else last(rc) + 1)

The second step of c++ stores the value of local c to the register associated
with c. A g-store transition will later write the stored value to c. This transition
requires that the l-store to the register has occurred and so checks that the
register is not empty. For the c++ statement at line 2, we have:

Store(22 : c = local c) == pcL = 22 ∧ pc′L= 3 ∧ r ′c = rc a 〈localc〉
GStore(22 : c = local c) ==

head(pcS) = 22 ∧ rc 6= 〈 〉 ∧

c′= head(rc) ∧ r ′c = tail(rc) ∧ pc′S = 〈3〉a tail(pcS)

The stores to x1 and x2 at lines 3 and 4, respectively, do not involve bypass-
ing since they are storing values from local (input) variables. For the store at
line 3 we have:

Store(3 : x1 = d1) == pcL = 3 ∧ pc′L= 4 ∧ r ′x1 = rx1 a 〈last(in).1〉

where t .1 returns the first element of a tuple t .
The release statement is just a store of 1 to the lock variable. It sets pcL

to 0 as it is the last step in the write operation, and adds ⊥ to the sequence of
outputs out (to indicate no output).

Store(6 : lock = 1) ==

pcL = 6 ∧ pc′L = 0 ∧ r ′lock = rlock a 〈1〉 ∧ out ′ = out a 〈⊥〉

Since the read operation does not write to any global variable there are no
store steps that may be delayed. The steps of the read operation are either
loads with bypassing or branch instructions and are modelled similarly to those
of the write operation.

16

2

22

1

6

0

1

22

6

pcL

write(d1,d2)

r1¬r1 ¬r1 r1

read()

33

4 4

5

52 52

pcS

rc 6=<>

rx1 6=<>

rx2 6=<>

rc 6=<>

rlock 6=<>

8

9

7

b8

¬b8

10

11

12

b11

¬b11

Figure 6: A flow graph of the seqlock under
TSO

The control flow graph of the tran-
sition system is depicted in Figure 6.
From the idle state (0) the system
non-deterministically chooses which
operation to invoke (depicted by ⊓).
The write operation has a parallel
flow along the load counter and the
store counter. Since the read op-
eration has no store instructions, a
store counter is not required. The la-
bel of the RMW instruction (included
in the acquire instruction on line
1) is shared between load and store
counter. This is depicted by the con-
necting line between the correspond-
ing nodes. Where branch conditions
affect the flow the edges are labelled
accordingly. For simplicity we omit
the flow from the last label of the
counters back to the idle state.

As a proof of concept, we encoded
the transitions of the generated sys-
tem for model checking. We adopted
the approach of Smith [17] and chose
linearization points based on the ap-
proach of [32]. Instead of TLC (the

model checker used in [17]), we used the symbolic model checker NuSMV [19]
as the tool handles the large assertions required for models on weak memory
more efficiently. We restricted c<4 and register sequences to length 2, which is
sufficient for this example. Since only one step is performed and the check on the
post-state is a simple invariant check, the model checking is very fast: for each
of the checks (1) to (3) described in Section 2, the model checking returns within
a few seconds on seqlock modelled in TSO. If a violation is encountered a two-
state counterexample is generated which is easily analysed by the user providing
the scenario that led to the violation. Check (4) of Section 2, the initialisation
check, is also performed within a few seconds. The models are available at
http://staff.itee.uq.edu.au/kirsten/LinModels/SeqLock.html.

On TSO, seqlock linearizes with respect to the specification in Figure 1 from
which we deduce that it operates correctly.9

9Note that correctness in this case is in the context of an operation-race free client; see
[32] for details.

17

7. A model for ARMv8

ARMv8 [3] is the latest version of the ARM multicore processor [4]. Un-
like previous versions, it is multi-copy atomic, greatly simplifying the allowed
behaviour of programs running on it. ARM is a significantly weaker memory
model than TSO, allowing more reorderings, e.g., in TSO orders of writes on
a single thread are always maintained, whereas on ARM they are only main-
tained when to the same variable or another dependency exists between them
(as detailed in Section 7.5).

ARM also allows speculative execution to affect program behaviour. Specu-
lative execution is when instructions in a branch are executed before the branch
condition is evaluated. This is to optimise performance when evaluating the
guard condition takes time. If the wrong branch is chosen, the results are dis-
carded.

Additionally ARM supports more types of fences. As well as full fences, as
in TSO, there are store fences and control fences. The latter can be used by the
programmer to prevent speculative execution if needed.

A number of formal models of ARM exist, both of previous versions [33, 4, 20]
and of the latest version, ARMv8 [3, 21]. We adopt the operational semantics
of ARMv8 provided by Colvin and Smith [21]. This semantics clearly identi-
fies allowable reorderings of instructions including reorderings with branch in-
structions which result in speculative execution, and has been validated against
approximately 10,000 existing litmus tests run on ARM hardware.

7.1. Transition System Model

To construct the transition system of a concurrent object under ARMv8, we
need to first parse the object’s code recording dependencies between lines of code
which prevent reorderings of instructions where necessary. These dependencies
are detailed in the following sections. They are used to generate a load and store
order, enforced by pcLa and pcSa respectively, for each global variable a since the
order between loads and stores is only maintained for the same address. In
addition, for dependencies on control fences, branches10 and address shifting
(see Section 7.8) which are not captured by these orders, we introduce flags.
If such a dependency requires a line m to occur before a line n which appears
later in the program order than m, we have a flag that is set by m and which
guards the occurrence of n.

For each order we have a sequence of program counters, one for each over-
lapping operation (for further details see Section 7.3). That is, for address a
we have a sequence of program counters for loads, pcLa : seqLL(a), and a se-
quence of program counters for stores, pcSa : seqLS (a). The set of labels LL(a)
includes all line numbers of loads and stores associated with a, branches whose
conditions refer to a, and all full fences and RMWs. LS (a) denotes the set of

10Branches that do not refer to global variables do not appear in any load or store order.

18

labels of stores associated with a, store fences, and all full fences and RMWs
(to prevent reordering of store fences with these instructions).

Since speculative execution is possible, we need to check transitions corre-
sponding to all branches. To enable this, we set all branch conditions for an
operation nondeterministically on invocation. This ensures all variables follow
the same flow of control.

In the following we denote with va the global variable at address a, vl a local
variable, bn the flag which indicates which branch the code is to follow after the
branch instruction at line n, and fn,m the flag that is set by line n which guards
the occurrence of line m. We refer to the program order with <P and denote
the load order for every global address a with <L

a= 〈LL(a),nextL(a)〉 and its
store order as <S

a= 〈LS (a),nextS (a)〉.
Initially, pcLa = pcSa = 〈 〉 for all a and all flags are false. The transitions are

defined in the following sections.

7.2. Dependencies

The semantics of ARMv8 in [20, 21] prescribes when two instructions cannot
be reordered under the ARM semantics. These specified constraints impose de-
pendencies between instructions which need to be checked in the corresponding
transitions.

Each load and store order of an address enforces naturally the prescribed
order of instructions (referring to the same address) by means of the next pointer
which traverses through these orders.

For dependent instructions which do not occur in such an order, we use
two mechanisms. When the label of the earlier instruction appears in the load
counter of a different address a, we check that a’s load counter has passed
the line m at which the instruction occurs. We denote the set of pairs of all
such addresses a and lines m as before(n), indicating that the corresponding
instructions must occur before line n.

When the earlier instruction’s label is not part of any load counter (e.g., when
it is a control fence, a branch without a direct reference to a global variable,
or when it involves address shifting), we check that a flag associated with the
instruction has been set. We denote the set of all labels of instructions which
set such flags for the instruction at n as flags(n). The flag fm,n ensures that
the earlier instruction at m occurs before the instruction at n, and thus their
reordering is prohibited.

The required check on both ordering-enforcing mechanisms is encoded in
ready(n) which also resets the flags back to false.

ready(n) == (∀(a,m) : before(n) ·m <P head pcLa) ∧
(∀m : flags(n) · fm,n = true ∧ f ′m,n = false)

This check is used in the transitions described below.

19

7.3. Overlapping of operations

Since the ARMv8 memory model is significantly weaker than the TSO mem-
ory model, more overlapping between consecutively invoked operations may oc-
cur. Overlapping operations can occur when an operation call returns before all
instructions of that operation are completed. A second operation can then be
invoked and may execute its (independent) instructions. For example, opera-
tion write of seqlock might return (i.e., release the lock) before variable x2 has
been updated, as the instructions are independent of each other and reordering
is permitted.

When two different operations (e.g., operations write() and read()) over-
lap our model easily handles the reordering of instructions making use of the
sequences of counters. When we have overlapping instances of the same oper-
ation, we need to create a separate name space for each instance (as happens
on the processor level). This can be achieved by duplicating an operation and
giving the instructions of the copy fresh labels (that differ from the original
labels) as well as using fresh names for local variables and input variables (as
introduced in the next subsection).

7.4. Invocations and returns

Since we do not have a counter following program order such as pcL in TSO,
we use an additional order <ret and program counter, pcret , to keep track of the
instructions which must occur before an operation returns.

The invocation of an operation op is enabled when pcret = 0 (i.e., any prior
operation has returned). It updates pcret to the first line number for ret in the
invoked operation. Similarly, it updates pca for each a. It nondeterministically
chooses which branches (occurring at line numbers m1, ...,mk) to take in the
operation. Input values are stored in a variable inop .

Invoke(op(val1, . . . , valn)) == pcret = 0 ∧ pc′ret = nextret(0) ∧

(∀ a : Addr · pcLa
′

= pcLa
a 〈nextLa (0)〉 ∧

pcSa
′

= pcSa
a 〈nextSa (0)〉) ∧

(∀ i : 1..k · b′mi
∈ {true, false}) ∧

inop
′ = (val1, . . . , valn)

A return statement at line n is treated like an assignment of the return
value to a local variable. Under ARM, such an assignment can only occur after
any fences and RMWs in the operation. It may also require other instructions
appearing earlier in the program text to have occurred (see rules in Sections 7.5
and 7.6). These dependencies are covered through predicate ready(). The return
of an operation op at line n is enabled when ready(n) holds and pcret = n. It
sets pcret back to 0 and updates a variables outop with the outputs.

Return(n : return(val1, . . . , valn)) == ready(n) ∧
pcret = n ∧ pc′ret = 0 ∧
outop

′ = (val1, . . . , valn)

20

When there is no explicit return statement (as in the write operation of seqlock),
the final statement of the operation sets pcret to 0 and updates outop to ⊥,
indicating no output.

7.5. Loads and stores

In ARM, reordering of loads and stores are governed by four constraints
formalised in [20, 21]. These constraints ensure that the sequential semantics
of the thread on which the reordering occurs is unchanged. In fact, they are
common to all contemporary weak memory models. An assignment v := e can
be reordered with an assignment u := f if

1. v and u are distinct variables,

2. v is not free in f ,

3. u is not free in e, and

4. e and f do not reference any common global variables.

In practice, case 2 may be circumvented by forwarding . This refers to taking
into account the effect of the assignment moved later on the expression of the
other assignment. For example, the code x = e; y = x where e does not
reference global variables can be reordered to y = e; x = e. To allow this in our
model, when a variable x is assigned a value e not involving global variables,
we change each subsequent reference to x in any expression with the value e.

To construct the transitions corresponding to a load or store occurring at
line n, we first parse the program text to perform these forwarding replace-
ments. Any dependencies that are not captured by the load and store orders
are captured by ready(n).

The transition for a load instruction from an address a at line n is enabled
when ready(n) holds and the first load counter in pcLa is n. It updates the
counter to the next value in <L

a or removes it when the counter returns to 0.

Load(n : vl = e(va)) == ready(n) ∧
head pcLa = n ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa) ∧
v ′

l = e(va)

A store to address a at line n is enabled when ready(n) holds and both the
store counter pcSa and the load counter pcLa equal n (including loads into the
store counter ensures that a store to a does not get reordered with an earlier
load to a). The counters are updated to their next labels.

21

Store(n : va = val) == ready(n) ∧
head pcSa = n ∧ head pcLa = n ∧

pcSa
′

= (if nextSa (n) 6= 0

then 〈nextSa (n)〉
a tail pcSa

else tail pcSa) ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa) ∧
v ′

a = val

7.6. Branches

The constraints on reordering branch instructions with other instructions in
ARM are governed by the following rules formalised in [20, 21].

1. A load or store v := e preceding a branch instruction with branching
condition b can be reordered with the branch instruction if, and only if, v
does not appear in b, and no global variables in e appear in b.

2. A load v := e following a branch instruction with branching condition
b can be reordered with the branch instruction if, and only if, no global
variables in e appear in b.

3. A store v := e following a branch instruction can never be reordered with
it.

4. A branch instruction with branching condition b1 can be reordered with
another branch instruction with branching condition b2 if, and only if, b1
and b2 do not have any global variables in common.

Case 1 captures branches being evaluated early. There are two situations to
consider. Firstly, if a branch condition refers to an address a then the branch
cannot be reordered before any load or store to a. This is captured by including
the branch in the load order for a. In the rule below, we let the set of all
addresses referred to by branch condition b be denoted by addr(b).

Secondly, if a branch condition does not refer to address a but refers to a
local variable which loads from address a then the branch cannot be reordered
before this load. This is captured by ensuring the load order of a has passed the
line m on which the load occurs. In the rule below, this constraint is captured
in ready(n).

Case 2 corresponds to speculative execution. If the load is from an address
a referred to in the branch condition then it should not be reordered before the
branch. This is captured by including the branch in the load order for a.

Case 3 prevents speculative execution of stores. This is necessary since if it
is later determined that the branch should not be executed, it is necessary to
discard all results. This cannot be done with stores which other threads may
have seen. To capture this constraint, the branch sets flags for the next store
in each load order. (We deal with the case where there is no next store in the
load order after the rule below.) Note that only the label to the next store per

22

address needs to have a flag as subsequent stores are restricted through the load
and store orders. In the rule below, we denote the set of labels of such stores as
after(n), indicating that they must occur after line n.

Case 4 concerns reordering of two branch instructions. This follows naturally
as both branch labels would be included in the load orders of common addresses.

Branch(n : if(b)) == ready(n) ∧
(∀ a : addr(b) · head pcLa = n ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa)) ∧
(∀m : after(n) · f ′n,m = true)

If there is no store instruction to an address a after a branch then the branch
should still guard the occurrence of any stores to that address in any operation
call that follows. To cover this case we add a “dummy” label to the end of the
load order of that address. This label will be in the set after(n) of the rule
above.

The “skip” transition at that label is enabled when all the flags for it have
been set. It resets the flags to false and allows the load counter for a to move
on to the next operation. As previously, we denote the set of all labels of
instructions which set such flags as flags(n).

Skip(n : skip(a)) == head pcLa = n ∧
(∀m : flags(n) · fm,n = true ∧ f ′m,n = false) ∧

pcLa
′

= tail pcLa

7.7. Fences and RMWs

A full fence (DMB or DSB in ARM) at line n is enabled when all previous
instructions have occurred, i.e., when all program counters have reached line n.
All program counters are updated to their next value.

Fence(n : fence) == (∀ a : Addr · head pcLa = n ∧ head pcSa = n ∧

pcSa
′

= (if nextSa (n) 6= 0

then 〈nextSa (n)〉
a tail pcSa

else tail pcSa) ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa))

An RMW at line n has a full fence and hence is enabled when all previous
instructions have occurred. As in TSO, there is a transition for each evaluation
of the RMW’s condition b which updates a flag rn which directs the flow to the
succeeding instructions (through next). If condition b is true variable va gets
updated.

23

RMWT (n : RMW(b, va, val)) == (∀ a : Addr · head pcLa = n ∧ head pcSa = n ∧
b = true ∧
r ′n = true ∧
v ′

a = val ∧

pcSa
′

= (if nextSa (n) 6= 0

then 〈nextSa (n)〉
a tail pcSa

else tail pcSa) ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa))

RMWF (n : RMW(b, va, val)) == (∀ a : Addr · head pcLa = n ∧ head pcSa = n ∧
b = false ∧
r ′n = false ∧

pcSa
′

= (if nextSa (n) 6= 0

then 〈nextSa (n)〉
a tail pcSa

else tail pcSa) ∧

pcLa
′

= (if nextLa (n) 6= 0

then 〈nextLa (n)〉
a tail pcLa

else tail pcLa))

A store fence (DMB.ST or DSB.ST in ARM) at line n is enabled when all
previous stores have occurred. Since store fences are contained in the store
orders of all variables, the occurrence of a store fence is enabled only when all
previous stores have occurred. It also acts as a guard on all succeeding stores.
Upon occurrence of the store fence the store counters for all addresses get set
to their next value.

StoreFence(n : fence.st) == (∀ a : Addr · head pcSa = n ∧

pcSa
′

= (if nextSa (n) 6= 0

then 〈nextSa (n)〉
a tail pcSa

else tail pcSa)))

The final type of fence is a control fence (ISB in ARM). A control fence can
be placed between a branch instruction and following loads to prevent the loads
being speculatively executed. That is, a branch before a control fence cannot
be reordered with it, and a load after a control fence cannot be reordered with
it.

The dependencies with earlier branches can be captured by ready(n), using
flags if the branches do not appear in any load order. The dependencies with
later loads can be captured by setting flags. Note that only the next load per
address (after the control fence) is required to have a flag set. (When there
is no such next load we use a “dummy” label and a “skip” transition as in

24

Section 7.6.) In the rule below, we denote the set of labels of such loads as
after(n).

ControlFence(n : cfence) == ready(n) ∧
(∀m : after(n) · f ′m,n = true)

7.8. Address shifting

The address a an instruction loads from, or stores to, in ARM may be shifted
by a number of bytes. We denote this by shift(a, e) where e is an expression
evaluating to the number of bytes. This creates an additional constraint on
reordering loads and stores not already covered in Section 7.5. Stores occurring
after the instruction using address shifting should not be reordered with it [4].
This is in case the shift amount results in an invalid address causing an exception
to be thrown. In such cases, the stores should not be visible to other threads.
This is captured by allowing the load or store to set flags for the next store
in each load order, or by adding a “dummy” label and “skip” operation when
there is no such load. The details are as for branches in Section 7.6.

7.9. Load speculation

A further aspect of address shifting is that in some circumstances a load
r2 = a (at line n) may be reordered before a load r1 = shift(a, e) (at an earlier
line m), even though both loads refer to a. This reordering is allowed whenever
the load into r2 does not load a value of a that was written before the value
read by the load into r1. This optimisation has no observable effect (since stores
following the load to r2 cannot be reordered before the load to r1 as described
above). Hence, we do not need to support this in our model.

7.10. Write elimination

An additional aspect of ARM processors is that when there are consecutive
stores to a variable x on a thread, the first write can effectively be eliminated:
globally it is always a valid behaviour that another thread did not see the effect
of the first write because the second could have occurred immediately after it.

For example, given a program such as

1 : y = 0
...
m : x = y
...
n : x = 0

If the write at line n can be reordered before all instructions at lines m+1...n−1
then the write at line m can be eliminated. Hence, the write at line n may be
reordered even earlier including before the write to y at line 1 which would not
otherwise have been possible due to the dependency between lines 1 and m.

25

write(d1,d2) {

do {}

1 while (RMW(lock=1,lock,0)=false);

2 local_c = c+1;

22 c = local_c;

23 fence.st;

3 x1 = d1;

4 x2 = d2;

5 local_c = c+1;

52 c = local_c;

6 lock = 1;

}

read() {

word c0;

do {

do {

7 c0 = c;

8 } while(c0%2!=0);

82 cfence;

9 d1 = x1;

10 d2 = x2;

102 fence

11 } while(c != c0);

12 return(d1,d2);

}

Figure 7: Modified seqlock implementation

To capture this we create a second transition system which is identical to
the first except that it leaves m out of the program counters for x . That is, if
m = nextLx (k) and n = nextLx (m) we alter nextLx pointwise so that n = nextLx (k)
and otherwise nextLx is unchanged. The same changes are imposed on the next
function of the store order, nextSx . Both transition systems are checked to ensure
both possible behaviours (i.e., when the write is eliminated or not) are covered.

8. The seqlock example on ARMv8

The example implementation from Figure 2 is modified for illustration pur-
poses in Figure 7. Some instructions are replaced following the implementation
outlined in Section 6, and a fence, control fence (cfence), and a store fence
(fence.st) are added to the code.11 The program order for the modified code
is as follows, where 0 denotes the idle state.

<write= 〈0, 1, 2, 22, 23, 3, 4, 5, 52, 6, 0〉 <read= 〈0, 7, 8, 82, 9, 10, 102, 11, 12, 0〉

The counters for write are given as follows where the label of the RMW is
added to all load counters

pcLlock = 〈0, 1, 6, 0〉 pcLc = 〈0, 1, 2, 22, 5, 52, 0〉 pcLx1 = 〈0, 1, 3, 0〉
pcLx2 = 〈0, 1, 4, 0〉

and the label of the the RMW and the store fence 23 is added to all store
counters

pcSlock = 〈0, 1, 23, 6, 0〉 pcSc = 〈0, 1, 22, 23, 52, 0〉 pcSx1 = 〈0, 1, 23, 3, 0〉
pcSx2 = 〈0, 1, 23, 4, 0〉.

26

2

102

22

23

1

45

52

6 3

7

8

82

9 10

11
12

0

22

52

1

23

6

1 1

23

1 1

3

1 1

23

4

102 102 102

pclock

pcc

pcx1 pcx2

pcc pcx1 pcx2 pcret

write(d1,d2) read()

r1

¬r1

b8

¬b8

b11

¬r1 ¬r1 ¬r1 ¬r1 ¬r1 ¬r1 ¬r1

r1 r1 r1 r1 r1 r1
¬b8

¬b11

¬b11

Figure 8: A concurrent flow graph of the modified seqlock implementation

The counters for read can be given similarly.
The control flow graph (on a single thread) of the modified seqLock example

is depicted in Figure 8. The flow graph includes concurrent flows along the dif-
ferent address counters, as well as conditional flow where two outgoing edges are
labelled with guards (e.g., r1 and ¬r1). From the idle state 0 a choice is made
(depicted by the ⊓ symbol) of whether to call a write or a read operation. The
arrows indicate the flows along the program counters for each address (modelled
by the next functions that direct the load and store counters), or depict cross
dependencies between program counters, (e.g. the branch instruction at line 8
is guarded by the load instruction at line 7, and the control fence at line 82
guards the two load instructions at line 9 and 10).12 Labels that are present
in two counters are linked in the graph as both counters are checked before
proceeding with the flow. (For readability we omit the edges pointing from the
last instruction of each counter back to the idle state 0, and depict the outgoing
edges on node 102 only once. Where there are no store instructions the store
counters are omitted, e.g., for read.)

8.1. Model checking

The rules in Section 7 allows us to construct a transition system for a con-
current object running on ARMv8 which can then be used to verify that the
object is linearizable with respect to its specification. Note that speculatively
executing branches does not lead to erroneous model checking results. In par-
ticular, it does not lead to a proof obligation failing when it should not. To see

11Note that these additions are merely to demonstrate how various language features are
handled.

12The latter appear blue in the electronic version of this paper.

27

Thread	1	

Thread	2	

write(1,1)	

read(1,0)	

HW	thread	
flush(lock)	 flush(c)	

.	.	.	flush(x1)	

Figure 9: Linearizability fails on XC

why this is the case, consider the following program.

if(y > 0) then x = 1 else x = 0

Assume we have an invariant y > 0 ⇔ x > 0. In the case when y = 0
but the then branch is speculatively executed this invariant will not hold. This
does not cause a problem for our proof method since the assertion before the if

statement (see Section 2) will include y = 0 and the assertion at the start of the
then branch will include both y = 0 and y > 0. Since this assertion evaluates to
false, proof obligations (1) to (3) of Section 2 are trivially satisfied for the step
x=1.

A NuSMV encoding of the seqlock implementation of Figure 2 using a subset
of the ARMv8 rules (those needed for the similar weak memory model XC [2])
shows that it fails to linearize due to the liberal reordering allowing x1 and x2

to be set before c becomes odd, and after it becomes even. A counterexample
generated by NuSMV relates to the scenario visualised in Figure 9. The write
by Thread1 to x1 has been flushed before its write to c allowing Thread2 to
read the new value of x1 together with the old value of x2 (assumed to be 0).

To avoid this and similar counter-examples, fences are required before lines 3
and 5. Also, to ensure another thread does not start a write while c is odd, a
fence is also required after line 5 (so that release cannot happen before the
final increment of c). Finally, fences are required before line 9 and after line 10
in the read operation, to ensure values are read into d1 and d2 only when c0 is
even, and the final reads occur before c changes value. The models are available
at http://staff.itee.uq.edu.au/kirsten/LinModels/SeqLock.html.

9. Conclusions

This paper has presented approaches for generating transition systems for
concurrent objects running on the TSO and ARMv8 weak memory models.
Modelling the behaviour of programs under hardware weak memory models has
also been investigated by others, e.g., [34, 31, 35, 36, 30, 37, 38].

While some of this other work presents very similar transition systems (in
particular the two control flow graphs and the split of stores into two steps is
similar in [30, 31]), none of the approaches uses the notion of linearizability
to verify correctness. Linearizability, however, has the advantage over other
correctness conditions that it has a proof method that is not only thread-local
but also step-local. Although the user of such a method has to provide assertions

28

(see Section 2) that enable the step-local proof, it provides the benefit of having
a proof for an arbitrary number of threads and arbitrary sequences of operation
calls.

Although the focus of this paper was on generating transition systems, as a
proof of concept we also related our experience with using a generated transi-
tion system with the NuSMV model checker. This required manually providing
the assertions which hold after each program step: a non-trivial task on a weak
memory model. These assertions can be generated for concurrent objects run-
ning on sequentially consistent architectures [26] and it is future work to extend
this approach to objects under weak memory models. In [38] the assertion-based
Owicki-Gries proof system is extended to achieve soundness of the calculus for
weak memory models. A similar approach will drive our further investigation.

Acknowledgement This work was supported by Australian Research Council
Discovery Grant DP160102457, and by the UK EPSRC grant EP/R032351/1.

References

[1] P. Sewell, S. Sarkar, S. Owens, F. Nardelli, M. Myreen, x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors, Commun. ACM
53 (7) (2010) 89–97.

[2] D. Sorin, M. Hill, D. Wood, A Primer on Memory Consistency and Cache
Coherence, Synthesis Lectures on Computer Architecture, Morgan & Clay-
pool Publishers, 2011.

[3] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, P. Sewell, Simplifying
ARM concurrency : multicopy-atomic axiomatic and operational models
for ARMv8, in: POPL 2018, ACM, 2018, pp. 19:1–19:29.

[4] S. Flur, K. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,
P. Sewell, Modelling the ARMv8 architecture, operationally: Concurrency
and ISA, in: POPL 2016, ACM, 2016, pp. 608–621.

[5] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, D. Williams, Understanding
POWER multiprocessors, SIGPLAN Not. 46 (6) (2011) 175–186.

[6] M. Moir, N. Shavit, Concurrent data structures, Handbook of Data Struc-
tures and Applications (2004) 47:1–47:30.

[7] M. Herlihy, J. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Prog. Lang. Syst. 12 (3) (1990) 463–492.

[8] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, E. Yahav, Comparison under
abstraction for verifying linearizability, in: CAV 2007, Vol. 4590 of LNCS,
Springer, 2007, pp. 477–490.

[9] C. Calcagno, M. Parkinson, V. Vafeiadis, Modular safety checking for fine-
grained concurrency, in: SAS 2007, Vol. 4634 of LNCS, Springer, 2007, pp.
233–238.

29

[10] V. Vafeiadis, Modular fine-grained concurrency verification, Ph.D. thesis,
University of Cambridge (2007).

[11] S. Doherty, L. Groves, V. Luchangco, M. Moir, Formal verification of a
practical lock-free queue algorithm, in: FORTE 2004, Vol. 3235 of LNCS,
Springer, 2004, pp. 97–114.

[12] J. Derrick, G. Schellhorn, H. Wehrheim, Proving linearizability via non-
atomic refinement, in: IFM 2007, Vol. 4591 of LNCS, Springer, 2007, pp.
195–214.

[13] J. Derrick, G. Schellhorn, H. Wehrheim, Mechanically verified proof obli-
gations for linearizability, ACM Trans. Program. Lang. Syst. 33 (1) (2011)
4:1–4:43.

[14] J. Derrick, G. Schellhorn, H. Wehrheim, Verifying linearisabilty with po-
tential linearisation points, in: FM 2011, Vol. 6664 of LNCS, Springer,
2011, pp. 323–337.

[15] G. Schellhorn, H. Wehrheim, J. Derrick, A sound and complete proof tech-
nique for linearizability of concurrent data structures, ACM Trans. on Com-
putational Logic 15 (4) (2014) 31:1–31:37.

[16] W. Reif, G. Schellhorn, K. Stenzel, M. Balser, Structured specifications
and interactive proofs with KIV, in: Automated Deduction—A Basis for
Applications, Vol. II, Kluwer, 1998, Ch. 1: Interactive Theorem Proving,
pp. 13 – 39.

[17] G. Smith, Model checking simulation rules for linearizability, in: SEFM
2016, Vol. 9763 of LNCS, Springer, 2016, pp. 188–203.

[18] D. Bovet, M. Cesati, Understanding the Linux Kernel, 3rd Edition,
O’Reilly, 2005.

[19] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, NuSMV Version 2: An OpenSource
Tool for Symbolic Model Checking, in: E. Brinksma, K. G. Larsen (Eds.),
CAV 2002, Vol. 2404 of LNCS, Springer, 2002, pp. 359–364.

[20] R. Colvin, G. Smith, A wide-spectrum language for verification of programs
on weak memory models, in: K. Havelund, J. Peleska, B. Roscoe, E. de Vink
(Eds.), FM 2018, Vol. 10951 of LNCS, Springer, 2018, pp. 240–257.

[21] R. Colvin, G. Smith, A high-level operational semantics for hardware weak
memory models, CoRR abs/1812.00996.

[22] K. Winter, G. Smith, J. Derrick, Observational models for linearizability
checking on weak memory models, in: 12th International Symposium on
Theoretical Aspects of Software Engineering (TASE 2018), IEEE Computer
Society Press, 2018, pp. 100–107.

30

[23] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann, 2008.

[24] S. Burckhardt, A. Gotsman, M. Musuvathi, H. Yang, Concurrent library
correctness on the TSO memory model, in: ESOP 2012, Vol. 7211 of LNCS,
Springer, 2012, pp. 87–107.

[25] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs I,
Acta Informatica 6 (4) (1976) 319–340.

[26] G. Smith, J. Derrick, Invariant generation for linearizability proofs, in:
SAC 2016, ACM, 2016, pp. 1694–1699.

[27] O. Travkin, A. Mütze, H. Wehrheim, SPIN as a linearizability checker
under weak memory models, in: HVC 2013, Vol. 8244 of LNCS, Springer,
2013, pp. 311–326.

[28] J. Derrick, G. Smith, B. Dongol, Verifying linearizability on TSO architec-
tures, in: iFM 2014, Vol. 8739 of LNCS, Springer, 2014, pp. 341–356.

[29] J. Derrick, G. Smith, A framework for correctness criteria on weak memory
models, in: FM 2015, Vol. 9109 of LNCS, Springer, 2015, pp. 178–194.

[30] O. Travkin, H. Wehrheim, Verification of concurrent programs on weak
memory models, in: ICTAC 2016, Springer, 2016, pp. 3–24.

[31] T. Abe, T. Maeda, Concurrent program logic for relaxed memory consis-
tency models with dependencies across loop iterations, Journal of Informa-
tion Processing 25 (2017) 244–255.

[32] S. Doherty, J. Derrick, Linearizability and causality, in: Software Engineer-
ing and Formal Methods - 14th International Conference, (SEFM 2016),
Vol. 9763 of LNCS, Springer, 2016, pp. 45–60.

[33] J. Alglave, L. Maranget, M. Tautschnig, Herding cats: Modelling, simu-
lation, testing, and data mining for weak memory, ACM Trans. Program.
Lang. Syst. 36 (2) (2014) 7:1–7:74.

[34] V. Still, J. Barnat, Model checking of C++ programs under the x86-tso
memory model, in: J. Sun, M. Sun (Eds.), ICFEM 2018, Vol. 11232 of
Lecture Notes in Computer Science, Springer, 2018, pp. 124–140.

[35] P. Abdulla, M. Atig, A. Bouajjani, T. Ngo, Context-bounded analysis for
POWER, in: TACAS 2017, Vol. 10206 of LNCS, Springer, 2017, pp. 56–74.

[36] T. Abe, T. Maeda, A general model checking framework for various memory
consistency models, International Journal on Software Tools for Technology
Transfer 19 (5) (2017) 623–647.

31

[37] P. Abdulla, M. Atig, A. Bouajjani, T. Ngo, A load-buffer semantics for
total store ordering, Logical Methods in Computer Science 14 (1:9) (2018)
1–46.

[38] O. Lahav, V. Vafeiadis, Owicki-Gries reasoning for weak memory models,
in: ICALP 2015, Springer, 2015, pp. 311–323.

32

	Introduction
	Linearizability
	Weak memory models
	Modelling concurrent objects
	A model for TSO
	Transition System Model
	Invocations and returns
	Loads and stores
	Branches
	Fences and RMWs

	The seqlock example on TSO
	A model for ARMv8
	Transition System Model
	Dependencies
	Overlapping of operations
	Invocations and returns
	Loads and stores
	Branches
	Fences and RMWs
	Address shifting
	Load speculation
	Write elimination

	The seqlock example on ARMv8
	Model checking

	Conclusions

