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Abstract5

Patients who do not attend their appointments, or “no-shows”, cause the under-6

utilisation of the health centres’ resources and increase the average waiting time for7

accessing specialty health care services. Although this problem has been addressed in8

different appointment scheduling models, behavioural issues associated to the patient’s9

socio-demographic and economic characteristics and/or his or her diagnosis, have not10

been widely included in scheduling optimisation models. In this article, we propose an11

integer linear programming model thattakes into account such behavioural issues in or-12

der to reduce impact of no-shows in medical services. To achieve this goal, the objective13

function maximises the health centre’s expected revenue by using show-up probabilities14

estimated for each combination of patient and appointment slot. These behaviour-based15

probabilities are obtained using both the individual’s personal and clinical characteristics16

and his or her attendance history. In addition, the model takes into account the require-17

ments imposed by both the health centre’s management and the health authorities (e.g.18

distinguishing between first visits and follow-ups, among others). An extension of the19

model allows overbooking in some appointment slots. Experimental results show that20

the proposed model is capable of reducing the waiting list length by 13% and to attain21

an increase of about 5% in revenue when comparing to a basic model that assigns each22
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patient to the first available slot. It was also observed that when overbooking was allowed23

in one to three slots per day, the waiting list was reduced between 30% and 62%; and24

the revenue increased by 7% to 13%.25

Keywords: appointment scheduling; no-shows; overbooking; healthcare; behavioural26

OR27

1 Introduction28

Over the past decades, there has been a considerable increase on health care expenditures29

worldwide. For instance, in the United States, the percentage of the GDP spent on health has30

increased from the 12.51% in 2000 to the 16.84% in 2015 (World Bank, 2018). A not negligible31

part of this expense is caused by the patients, commonly referred to as no-shows, who do not32

show-up for their appointments. For example, Moore et al. (2001) concluded that “over the33

course of a year, total revenue shortfalls [due to no-shows] could range from 3% to 14% of34

total clinic income”; likewise, Berg et al. (2013) estimated daily losses of about 16.5% of the35

revenue for a no-show rate of about 18%. In overall, McKee (2014) estimates that no-shows36

cost the American healthcare industry around 150 billion dollars per year. No-shows have37

also an important negative effect on the efficiency of health systems, causing under-utilisation38

of resources, long waiting lists and decreased revenue. The volume of no-shows depends on39

elements as disparate as the region, the patient’s socio-demographic characteristics, clinical40

diagnosis and prior no-show history, as well as the specialty and the type of service provided,41

among others (Dantas et al., 2018). In their literature review, Kheirkhah et al. (2015) refer42

reported no-show rates ranging from 3 to 80 percent. Along the same line, Moore et al.43

(2001) observed that no-shows and cancellations represent about 32.2% of scheduled time at44

a family planning residence clinic.45

In order to reduce these figures, health centres utilise two alternative approaches. On46

one hand, the so-called active approaches include reminders and sanctions. The success of47

these methods is uncertain, with some research reports showing a drastic reduction in the48

percentage of no-shows after these measures are implemented (Molfenter, 2013), while others49

find no differences or, at most, a modest reduction (Hixon et al., 1999; Satiani et al., 2009).50
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This difference can be explained by the fact that the effectiveness of these methods may51

depend on the characteristics of the target population (Hashim et al., 2001). On the other52

hand, the so-called passive approaches aim at improving the current appointment system53

of the health centre by means of more sophisticated (and efficient) appointment assignment54

policies, instead of the most frequent practice of assigning the patient to the first available55

slot.56

Optimising patient appointment systems has been an active subject of research over the57

last few decades (Cayirli and Veral, 2003; Gupta and Denton, 2008; Ahmadi-Javid et al.,58

2017). The patient allocation systems that have been proposed in the scientific literature59

present several differences, which are mainly consequence of the specific characteristics of60

the health centre and the type of service provided. For example, some centres establish that61

patients must receive their appointment at the time when this is requested, while in other62

cases appointments are scheduled at the end of certain period (the patient is notified later63

on by physical or electronic means). These two approaches are usually named as online and64

offline, respectively (Zacharias and Pinedo, 2014). Although online systems are the most65

frequently used, the rapid development of electronic appointment systems has caused an66

increase in the relevance of offline systems (Ahmadi-Javid et al., 2017). Another difference is67

whether the scheduling system admits overbookings or not, although most of the proposed68

systems include overbooking in their models (LaGanga and Lawrence, 2007; Chakraborty69

et al., 2010; Kim and Giachetti, 2006). A more detailed description of the different types70

of appointment systems can be found in the recent review conducted (Ahmadi-Javid et al.,71

2017).72

Notwithstanding there is evidence that the probability that a patient will show-up to an73

appointment is closely related to his or her socio-demographic characteristics and condition74

(Dantas et al., 2018), traditional appointment scheduling models for medical services are75

usually based on the availability of slots, practitioner’s timetables, and visit times, among76

other characteritics of the service provided. Only seldom, the proposed models take into77

consideration the probability that a patient will attend an appointment in a given time78

window. Moreover, those models tend to allocate probabilities based in generic data without79

3



taking into account characteristics and behavioural traits specific to each patient.80

This article constitutes an effort for bringing the field of behavioural operational re-81

search to the area of patient schedulling, by proposing an appointment planning method82

that takes into account each individual’s probabilities of no-show (estimated from their socio-83

demographic characteristics, diagnose and attendance history) for each specific combination84

of time-slot and patient. In doing so, our work seeks to fill a gap existing in the application of85

OR in healthcare (comprehensive reviews include those by Brailsford et al. (2009) and Hulshof86

et al. (2012)) through the development of behaviourally informed approaches (Hämäläinen87

et al., 2013), that aim at improving the provision of medical services by including associated88

patient’s behaviour in the modelling process.89

In this article, an integer linear programming (ILP) model is developed for optimising the90

offline assignment of medical appointments in a speciality service of a public health centre.91

The system aims at minimising the number of no-shows, and indirectly the waiting list length.92

This is attained by means of an objective function that maximising the expected revenue of93

the health centre. The model is designed as a single server system accounting for the fact94

that, in general, each practitioner has his own list of patients. Finally, as the health centre95

may be required by law to serve a fixed proportion of new patients every week, the model96

includes the possibility of reserving a percentage of slots for first-visits.97

Under certain conditions, in order to reduce the large number of practitioners’ idle periods98

caused by no-shows, a health centre may consider the possibility of introducing overbooking99

in some slots. This may also have a positive impact on the length of the waiting list (mainly in100

centres with large incidence of no-shows). For those cases, we propose a mixed integer linear101

programming (MILP) formulation that extends the initial model by allowing overbooking in102

a limited (pre-defined) number of slots.103

Before introducing the mathematical formulation of the system, in Section 2, we provide a104

brief description of some related approaches available in the literature. In section 3 we present105

the proposed mathematical model. In Section 4 we conduct a simulation experiment in order106

to test our model’s performance. We conclude this article in Section 5 with a discussion of107

the results and pointing out future lines of research.108
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2 Related literature109

As mentioned above, several models have been proposed for improving patients’ access to110

health care. The differences in these models are mainly consequence of the heterogeneity111

of the requirements imposed by the health centres (e.g. online or offline scheduling, single112

or multiple servers or if no-shows should be taken into account) and the goals pursued (e.g.113

maximise the revenue or reduce the length of the waiting list). In this section we focus114

our discussion on the analysis of those models most closely related to our work: first, we115

discuss the offline mathematical programming models (either ILP or MILP) proposed for116

single server systems; later, we present a review of some of the most relevant works that take117

into account the presence of no-shows from a probabilistic perspective.118

Conforti, Guerreiro and Guido developed various ILP models that maximise the number119

of patients –weighted by the severity of their illnesses- scheduled for starting a radiotherapy120

treatment (Conforti et al., 2008, 2011). Their models assign each patient to several time slots121

during a given number of weeks so that the treatment can be conducted without interruptions.122

This assignment is conducted taking into account the constraints generated by patients that123

have already started the treatment. Zhu et al. developed a similar model for scheduling the124

access to a Magnetic Resonance Imaging scanner (Zhu et al., 2012). Their model assigns125

the patients to the required time slots in a two-week schedule so the number of allocated126

patients, weighted by their priorities, is maximised. Their model takes into account patients’127

time availability. Wang and Fung developed a model aiming at maximising profit, measured128

as the revenue earned from the attended patients minus the cost incurred from patients’129

rejection (Wang and Fung, 2014). The revenue was dependent on the patients’ preferences130

for appointment time and practitioner. Additionally, a constraint was included for limiting131

the degree of discrepancy between the time allocated and the patient’s preferences. More132

recently, Wiesche, Schacht and Werner proposed a MILP model that seeks to minimise the133

number of assigned appointments, penalising the number of patient shifted from morning to134

afternoon sessions (Wiesche et al., 2017). This allowed the authors, in one hand, to increase135

the time availability for attending walk-ins, and to balance the physicians’ workload, on the136

other.137
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However, the models discussed above do not consider the existence of no-shows. In this138

regard, Savelbersbergh and Smilowitcz developed an ILP model whose objective function139

aimed at maximising the health condition of the population in a mobile asthma management140

program (Savelsbergh and Smilowitz, 2016). The health condition was measured by the141

likelihood that a patient’s disease was controlled, which was strongly related to the probability142

that the patient showed-up to his appointment. The authors defined no-show probabilities143

for six different categories of patients depending on their preferences (strong or weak) for144

three different time windows (AM, noon, or PM) and 8 time slots in each time window. To145

our knowledge, this is the only offline ILP model that, although implicitly, takes into account146

the existence of no-shows.147

Regarding the works that include no-show information from a probabilistic point of view,148

we find that most of them are developed from an on-line perspective and formulated as149

Stochastic Programming or Markov Decision Problems (Ahmadi-Javid et al., 2017). For ex-150

ample, Muthuraman and Lawley developed a stochastic overbooking model that considered151

each patient’s no-show probability (Muthuraman and Lawley, 2008). The objective function152

aimed at maximising the revenue penalised by an overbooking cost, represented by the pa-153

tient’s waiting time and staff’s overtime. This model was later tested by Daggy et al. on154

real data where the no-show probabilities were estimated applying a logistic regression to a155

dataset obtained from a Veterans Affairs medical centre (Daggy et al., 2010). In a different156

work, Glowacka, Henry and May estimated the probabilities that a patient will show-up to157

his or her appointment by means of an association rule mining technique (Glowacka et al.,158

2009). They used these probabilities to derive three manageable sets of rules for patient159

scheduling. Recently, Samorani and Laganga have proposed an online scheduling model that160

admits overbooking, and whose objective function aims at maximising the revenue penalised161

by the patients’ waiting time and overtime cost. Instead of a probabilistic classifier, they use162

a binary one to maintain their problem computational tractable (Samorani and LaGanga,163

2015).164

The model proposed in this article extends the available literature in appointment schedul-165

ing for health centres in the following directions. First, unlike most of the mathematical166
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programming-based research, our model takes into consideration the likelihood that a pa-167

tient will not show-up to his or her appointment. Secondly, our formulation adopts an off-line168

approach that uses differentiated show-up profiles for each patient. These show-up profiles,169

that provide a specific show-up probability for each available slot, are obtained using socio-170

demographic and clinical characteristics of the patient. This is an important difference with171

respect to other available probabilistic work, which uses predominantly on-line approaches172

and/or where the no-show probabilities are either categorised (Savelsbergh and Smilowitz,173

2016) or binarised (Samorani and LaGanga, 2015). A third characteristic is that, unlike other174

works that consider first visits and follow-ups as homogeneous groups or, plainly, ignore the175

first visit group (Daggy et al., 2010), our formulation distinguishes among them, allowing176

the model, apart from satisfying a legal requirement, to exploit the different characteristics177

of these groups. Finally, our model allocates priorities to the patients depending on the time178

they have been in the waiting list.179

3 The Probabilistic Patient Scheduling Problem180

In this section, we introduce a probabilistic scheduling model for reducing no-shows in spe-181

cialty health centres that takes into consideration patient-specific probabilities of showing182

at each given day/time slot. The objective is maximising the centre’s expected revenue by183

means of a reduction in the number of no-shows. The model distinguishes between two types184

of patients (first visits and follow-ups) and, by using a priority value associated to each pa-185

tient, takes into account the time that the patient has remained in the waiting list. It also186

takes into account a Spanish legal constraint regarding the proportion of first visits that must187

be scheduled every week.188

The following notation will be used in the mathematical formulation of the model.189

Sets190

I, days of the week;191

J , time slots available in any given day;192

K, set of patients to be scheduled for appointment during the reference week.193
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Parameters194

q, proportion of the number of available slots that must be allocated to first visits;195

dk, binary parameter indicating if patient k ∈ K has high (dk = 0) or low (dk = 1) priority196

during the reference week;197

Zk, binary parameter indicating if patient k ∈ K is a first visit (Zk = 1) or a follow-up198

(Zk = 0);199

Pi,j,k, probability that patient k ∈ K will show-up to an appointment in slot {i, j}, for all200

i ∈ I and j ∈ J ;201

wz, revenue obtained either from a first visit (z = 1), or a follow-up (z = 0).202

Variables203

Xi,j,k, binary variable taking value 1 if patient k ∈ K is assigned to slot {i, j}, for all i ∈ I204

and j ∈ J .205

XT
k , binary variable taking value 0 if patient k ∈ K is assigned a slot in the current week206

and 1 if the patient is referred back to the waiting list.207

With this notation, and taking into account that the operator ⌈·⌉ rounds a real number208

to its upper integer value, the model is formulated as follows:209

max
∑

i∈I

∑

j∈J

∑

k∈K

Xi,j,kPi,j,k(Zkw1 + (1− Zk)w0) (1)

s.t.
∑

k∈K

Xi,j,k ≤ 1, ∀i ∈ I, j ∈ J (2)

∑

i∈I

∑

j∈J

Xi,j,k +XT
k = 1, ∀k ∈ K (3)

∑

i∈I

∑

j∈J

∑

k∈K

Xi,j,kZk ≥ min
{

∑

k∈K

Zk, ⌈q|I||J |⌉
}

, (4)
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∑

i∈I

∑

j∈J

∑

k∈K

Xi,j,k(1− dk) ≥ min
{

∑

k∈K

(1− dk), (5)

|I||J | −min
{

∑

k∈K

Zk, ⌈q|I||J |⌉
}

}

,

Xi,j,k, X
T
k ∈ {0, 1}, ∀i ∈ I, j ∈ J , k ∈ K. (6)

The objective function maximises the cllinic’s expected revenue. Notice that when w0 =210

w1 = w the objective function maximises the expected showing-up rate; otherwise, the211

objective maximises the expected weighted showing-up rate. Constraints (2) guarantee that212

only one patient is assigned to each slot. Constraints (3) make sure that if a patient is not213

allocated in the current week, he or she is returned to the waiting list. As we are working214

with binary variables, constraints (3) also ensure that each patient is not allocated in more215

than one slot. Constraint (4) forces to reserve a number of slots for the first time visits.216

Constraint (5) guarantees that low priority patients will not be allocated to a slot as long as217

there are high priority patients unallocated.218

Model with overbooking219

As mentioned in the Introduction, there may be cases in which performing overbooking is220

considered convenient. For these situations, the baseline model is extended for allowing the221

possibility of assigning two patients to the same slot, provided that the sum of their showing-222

up probabilities is less than certain predetermined value. This is attained by introducing an223

overbooking penalty in the objective function and a number of associated constraints. The224

following additional notation is used in the extended model:225

Parameters226

Cov, positive parameter representing the overbooking penalty;227

M, constant satisfying M > max {w0, w1};228

Gi,j , binary parameter taking value 1 if overbooking is allowed in slot {i, j}, for all i ∈ I229

and j ∈ J ;230
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πi,j , parameter imposing a bound on the sum of the showing-up probabilities for any pair of231

patients simultaneously booked in slot {i, j},for all i ∈ I and j ∈ J 1.232

Variables233

Yi,j , binary variable taking value 1 if overbooking has been used in slot {i, j}, for all i ∈ I234

and j ∈ J ;235

Oi,j , binary variable taking value 1 if at least one patient has been booked in slot {i, j}, for236

all i ∈ I and j ∈ J .237

The model with overbooking is then given by:

max
∑

i∈I

∑

j∈J

∑

k∈K

Xi,j,kPi,j,k(Zkw1 + (1− Zk)w0)−CovYi,j +MOi,j (7)

s.t. Constraints (3)-(5), and

Yi,j ≤ Gi,j , ∀i ∈ I, j ∈ J (8)
∑

k∈K

Xi,j,k ≤ 1 + Yi,j , ∀i ∈ I, j ∈ J (9)

∑

k∈K

Xi,j,kPi,j,k ≤ πi,j , ∀i ∈ I, j ∈ J (10)

Oi,j ≤
∑

k∈K

Xi,j,k, ∀i ∈ I, j ∈ J (11)

Xi,j,k, X
T
k , Yi,j , Oi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J , k ∈ K (12)

The CovYi,j term in the extended objective function, equation (7), represents a penalty238

incurred when overbooking is used in slot {i, j}. Please notice that this term attains the239

largest possible reduction in the practitioners’ idle times by allocating the same slot (if240

overbooking is admissible) to the pair of patients with highest sum of show-up probabilities.241

This is guaranteed by the fact that the larger the weighted sum of show-up probabilities,242

the larger the profit after discounting the overbooking cost for any given slot. Notice also243

that if Cov < {w0, w1} ×mini,j,k {Pi,j,k}, the model will always use overbooking when |K| >244

1Notice that the probability of both patients showing-up is given by Pi,j,k ·Pi,j,k′ , which attains a maximum

at Pi,j,k = Pi,j,k′ =
πij

2
for any given value of πij .
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|I||J |, i.e. whenever the number of patients in the waiting list is larger than the number of245

available slots. Likewise, if Cov > max {w0, w1} ×maxi,j,k {Pi,j,k}, the model will never use246

overbooking.247

Regarding the associated constraints, equations (8) define the slots where overbooking248

is allowed. Equations (9) limit the number of overbooked patients in a given slot to two,249

provided that overbooking is allowed. Finally, in order to control for the maximal probability250

of overcrowding (the case where two overbooked patients show-up for the same appointment),251

the sum of showing-up probabilities in an overbooked slot is bounded by parameter πij in252

constraints (10).253

Term MOij in equation (7), together with constraints (11) and the fact that by definition254

M > max {w0, w1}, ensures that the model does not consider overbooking unless all slots are255

used.256

Additionally, our model presents the following two properties, which will be used in the257

computational implementation of the model for speeding up the execution:258

Proposition 3.1. In the model with overbooking, the Oi,j variables always take integer values259

when they are relaxed to 0 ≤ Oi,j ≤ 1 for all i ∈ I, j ∈ J .260

Proof. Let Oij be a continuous variable defined in the interval [0, 1] for all i ∈ I, j ∈ J . If261

∑

k∈K Xi,j,k = 0, from constraint (11) it immediately follows that Oij = 0. Alternatively, if262

∑

k∈K Xi,j,k > 0 and given that the Xijk are binary variables, then Oij can take any value263

in the interval [0, 1]. However, given that MOij appears with positive sign in the objective264

function of the maximisation problem, it follows that Oij = 1.265

Proposition 3.2. In the model with overbooking, the Yi,j variables always take integer values266

when they are relaxed to 0 ≤ Yi,j ≤ 1 for all i ∈ I, j ∈ J .267

Proof. Let Yi,j be a continuous variable defined in the interval [0, 1] for all i ∈ I, j ∈ J . We268

consider two possible scenarios:269

1. |K| ≤ |I||J |: From the objective function if follows directly that Yij = 0 for all i ∈270

I, j ∈ J . Double booking any slot, when a number of slots remains unallocated, will271

imply unnecessarily incurring a penalty of Cov.272

11



2. |K| > |I||J |: Consider any given slot {i, j}. If overbooking is not allowed, Gi,j = 0,273

constraints (8) guarantee that Yij = 0.274

Assume now that overbooking is allowed and conducted at some slot {i, j}, i.e. Gij = 1275

and
∑

k∈K Xi,j,k = 2. Let Yi,j = δ with 0 < δ < 1, satisfying constraints (8). From276

constraints (9) it follows that
∑

k∈K Xi,j,k ≤ 1 + δ, and given that Xi,j,k ∈ {0, 1} we277

conclude that
∑

k∈K Xi,j,k ≤ 1, which is a contradiction. Therefore, if slot {i, j} is278

overbooked, then necessarily Yij = 1.279

Finally, assume that overbooking is allowed but not conducted at some slot {i, j}, i.e.280

Gij = 1 and
∑

k∈K Xi,j,k = 1. Let Yi,j = δ with 0 < δ < 1, satisfying constraints (8). As281

before, constraints (9) imply that
∑

k∈K Xi,j,k ≤ 1+ δ, and given that Xi,j,k ∈ {0, 1} it282

still holds that
∑

k∈K Xi,j,k ≤ 1. Now, given that CovYij appears with negative sign in283

the objective function of the maximisation problem, it follows that Yij = 0. Therefore,284

if slot {i, j} is not overbooked, then immediately Yij = 0.285

286

Comment287

If instead of a penalty for overbooking, an expected cost for overcrowding was the driver288

behind the overbooking decision, the corresponding term in the objective function –and the289

associated constraints- will need to incorporate the overcrowding probability (the product290

of the attendance probabilities of the two overbooked patients). In this case, the objective291

function will seek to allocating the overbooked slots to the pair of patients with lowest product292

of show-up probabilities. Consequently, with the aim of minimising the overcrowding penalty,293

the system will still face large idle times (as the probability of none of the patients showing-up294

will still be large). Moreover, the problem will become non-linear.295

3.1 Scheduling Procedure296

The scheduling procedure works as follows:297

1. A waiting list is available with the records of the patients waiting for appointment,298

including information about the number of weeks they have been in the list (sojourn)299

12



and whether it is a first-time visit or not. New patients are added to the list at the300

time the appointment request is received and their sojourn length counter is initialised301

to zero.302

2. The list of patients (henceforth referred to as the buffer) to be passed each week to the303

scheduler is built as follows:304

(a) The system first selects the patients with largest sojourn value and assigns them305

high priority (dk = 0). This group contains both first-visits (Zk = 1) and follow-306

ups (Zk = 0).307

(b) Once the high priority patients have been selected, if the number of first-visits308

in the buffer is still below the legal requirement, the system sequentially adds309

first-visits in decreasing order of sojourn length until the requirement is satisfied310

or no more first visits are left in the waiting list. At each iteration, all first-visits311

in the corresponding sojourn level are included. These patients have low priority312

(dk = 1) and Zk = 1.313

(c) Finally, if after including high priority patients and first-visits, the number of314

patients in the buffer is smaller than the number of available slots (and there315

are still patients in the waiting list), the system sequentially adds patients in316

decreasing order of sojourn length until the size of the buffer is larger or equal to317

the number of available slots (or the waiting list is empty). At each iteration, all318

patients in the corresponding sojourn level are included. These patients have low319

priority (dk = 1).320

3. After this selection has been conducted, the system passes the list of candidates to321

the scheduler for solving the Probabilistic Patient Scheduling Problem with or without322

overbooking. Once the schedule has been obtained, the patients who did not receive323

an appointment are sent back to the waiting list with their original sojourn value.324

Regarding the overbooking policy, whenever two patients show up for the same appoint-325

ment, subsequent appointments are delayed until either a no-show happens and the last326
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delayed patient takes that slot, in which case the original schedule is reestablished, or the327

day finishes and the practitioner does over-time until the list is cleared. Please notice that the328

over-time impact of this policy will be limited as long as the number of slots where overtime329

is admissible does not exceed a reasonable limit (e.g. no more than 2 or 3 slots).330

4 Numerical Experiments331

In order to evaluate the performance of our model, an experiment that reproduces the routine332

of a psychiatry department in a Spanish health centre was designed. In order to estimate the333

probabilities that the patients would show-up for their appointments, a database containing334

information from 47,118 visits to this department was used. In addition to the variable335

indicating whether the patient attended the appointment or not, this database contains336

several variables that have been frequently used to characterise non-shows. These variables337

were age (Alaeddini et al., 2011; Kopach et al., 2007), sex (Alaeddini et al., 2011), week day338

and time of the appointment (Glowacka et al., 2009; Daggy et al., 2010), lead time (time in339

queue) in weeks (Daggy et al., 2010), practitioner ID, appointment type (first visit or follow-340

up) (Kopach et al., 2007), number of previous appointments (Kopach et al., 2007; Daggy341

et al., 2010), and percentage of no-shows in previous appointments (Kopach et al., 2007;342

Daggy et al., 2010). The probabilities of show-up were obtained using a decision tree (Norris343

et al., 2014) classifier. The use of the database allowed us to obtain specific and differentiated344

attendance probabilities for each available appointment slot, provided the patient’s profile.345

The simulation is conducted as follows:346

1. At the beginning of each week, we generate the set of patients who call for a new347

appointment. To do this, a random number is generated according to a discrete uni-348

form variable whose parameters are provided below. This number is used for randomly349

selecting a number of patients from our database. By doing this, we respect the pro-350

portion of first visits/follow-ups as well as the distribution of the variables representing351

the patients’ characteristics. The selected patients are added-up at the end of the wait-352

ing list. Each patient in the waiting list has assigned a sojourn value representing the353
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number of weeks that he or she has remained in the list. New arrivals are all assigned354

a sojourn value equal to zero.355

2. The list of patients to be passed each week to the scheduling model is built as described356

in item 2 of Section 3.1.357

3. After this selection has been performed, the Probabilistic Patient Scheduling Prob-358

lem is solved using the generated data2. Once the model makes the assignment, the359

parameters of the system are updated for the following week as follows:360

For each appointment we randomly determine whether the patient will show-up or not361

depending on the patient’s estimated attendance probability given the allocated slot. If362

the patient shows-up to the appointment, the health centre obtains the corresponding363

income and the patient is removed from the system. Otherwise, the patient is either364

returned to the waiting list according to a predetermined probability, or eliminated365

from the system. If returned, the patient is put at the end of the list with sojourn366

value 0. This way, the experiment mimics the situation in which the patient that did367

not attend an appointment asks for a new one.368

Patients who did not receive an appointment are sent back to the waiting list with their369

initial sojourn time.370

4. At the end of each scheduling stage, the sojourn values of all patients in the waiting371

list are increased by one.372

4.1 Simulation framework373

As we mentioned, our experiment reproduces the functioning of a psychiatry department374

week by week during one year (52 weeks). In this centre, the doctor does consultation from375

8:30 to 15:30 from Monday to Friday and each consultation lasts 30 minutes. Therefore,376

if overbooking is not considered, the doctor would attend a maximum of 70 patients. Of377

those, at least 30% are first visits to comply with the regulatory requirements. For each first378

2We solved the optimisation problems using Cplex 12.7.
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visit the centre receives 70 euros and for each revision 50 euros. At the beginning of the379

simulation, it is assumed that there is a 7-week waiting list to access to the medical services.380

For each of the simulated weeks, the following operations are performed:381

The weekly number of new requested appointments in the simulation follows a uniform382

[51, 69] distribution. This choice, together with an estimated no-show rate of 24% and the383

60% of no-shows who are referred back to the waiting list, returns an expected number of384

appointment requests of 68.64 per week. These figures guarantee that the weekly number385

of patients asking for a new appointment is always close to the 70 slots available for each386

practitioner.387

Using this scenario, we test the following scheduling approaches:388

1. The probabilistic scheduling model without overbooking.389

2. The extended model with overbooking in three different situations: allowing overbook-390

ing just at 12:00 each day, allowing overbooking at 9:00 and at 12:00; and allowing391

overbooking at 9:00, at 10:00 and at 12:00. The reason why we chose these hours is392

because, in our database, they are the time-slots with the greatest number of no-shows.393

From hereafter, they will be referred as one, two and three rows of overbooking, re-394

spectively. In all of them, the parameter that limits the maximum expected number of395

patients πi,j is set to 1.5. Later, we will perform a sensitivity analysis to analyse the396

influence of this parameter.397

3. The traditional model in which each patient is assigned to the first available slot (Daggy398

et al., 2010). We will refer this model as a FIFO system.399

4.2 Results400

Figure 1 shows the obtained results. In these plots, the legends “NoOver”, “Over1”, “Over2”401

and “Over3”stand for model without overbooking, and model with one, two and three rows402

of overbooking respectively.403

Figure 1 (a) displays the number of people in the waiting list along the different weeks.404

It can be seen that the models which use overbooking obtain a fast reduction of the length405
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Figure 1: Simulation results.
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of this list. It can be notice that the model which uses three rows of overbooking handles406

to eliminate the waiting list by week 35. After this week, the queue length is stable. One407

important result is that the proposed model that does not use overbooking (NoOver) is able408

to maintain the queue stable while the FIFO model cannot. At the end of the experiment,409

in week 52, the difference on the number of patients in the waiting list of these two models410

is 70 patients, which represents the complete schedule for a week. This result indicates that411

by only improving the patient assignment, without considering overbooking, is possible to412

avoid that the length of the waiting list increases.413

Figure 1 (b) exhibits the mean time that the patients remain in the waiting list. These414

results are similar to the previous ones: the overbooking models reduce the mean time faster415

than the other two models, and the Over3 model stabilised around week 35. As before, the416

NoOver model attains to stabilised and the FIFO model do not. The drastic drop-out during417

the first weeks is consequence of the initial waiting list structure.418

Figure 1 (c) shows the cumulative revenue. As expected, the models that have the greatest419

incomes are the overbooking models, followed by the NoOver and the FIFO models.420

Figure 1 (d) illustrates the cumulative number of people who show up to the appointment.421

It can be noticed that this value is greater for the overbooking models. It is sensible to think422

that it is consequence of the fact that these models assign more patients, but it is also423

because these patients are optimally scheduled. This fact can also be appreciated in the424

NoOver and FIFO models. Despite they have the same number of assigned patients, the425

number of patients who show up is higher for the NoOVer model.426

Figure 1 (e) shows the cumulative doctor’s idle time. The first interesting fact is that427

this value is higher in the FIFO model that in the NoOver model even though doctors in428

these models have assigned the same number of patients. It was observed that FIFO had429

an average of 3.5 empty slots per day, while NoOver just 2.8. Regarding the overbooking430

models, it can be observed that, at the end of the simulation, models Over2 and Over3 have431

a similar cumulative doctor’s idle time. This is, again, consequence that after week 35, the432

length of the waiting list for the Over3 model is minimal.433

Figure 1 (f) displays doctor’s overtime in which the effect of adding an extra row to the434
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overbooking model can be appreciated. It is important to differentiate the curves before and435

after week 35 because, for the Over3 model, the waiting list is practically zero after this week436

as it was commented before. Therefore, after week 35, doctor barely suffer from over time in437

this model.438

Figure 1 (g) represents the average time that each patient waited in the health centre to439

be attended. It can be observed that for the Over3 model, the patients have to wait between440

2 and 6 minutes, which is a 6% and 20% of the time of each slot.441

442

Next, a sensibility analysis is conducted in order to assess the effect of parameter π443

in the model’s performance. To this end, the previous experiment is repeated for values444

{1.1, 1.3, 1.5, 1.7} of this parameter. Table 1 shows the obtained results.445

Number in Waiting Revenue Average Average Average doctors’ Average patients’
queue weeks (e) show-ups (%) empty slots weekly overtime (min) extra waiting time (min)

FIFO 542 4.29 145,330 75.19 3.47 0 0

NoOver 472 3.88 153,430 79.53 2.86 0 0

Over1, πi,j = 1.1 382 2.97 156,340 79.49 2.66 3.4 0.75

Over2, πi,j = 1.1 262 1.90 161,200 77.69 2.29 5.1 2.35

Over3, πi,j = 1.1 147 0.90 164,970 74.29 2.06 6.85 4.05

Over1, πi,j = 1.3 280 2.14 161,990 78.48 2.33 18.85 3.95

Over2, πi,j = 1.3 107 0.75 169,060 77.63 1.85 29.15 8

Over3, πi,j = 1.3 84 0.15 168,190 76.40 1.91 33.45 9

Over1, πi,j = 1.5 272 2.05 162,090 78.64 2.35 16.25 4.4

Over2, πi,j = 1.5 78 0 169,140 77.50 1.85 36 9.6

Over3, πi,j = 1.5 78 0 168,640 77.72 1.93 51.40 15.85

Over1, πi,j = 1.7 263 1.87 163,270 79.20 2.26 20.55 5.05

Over2, πi,j = 1.7 83 0.14 168,780 77.60 1.91 41.15 12.25

Over3, πi,j = 1.7 83 0 168,530 77.40 2 63.5 20.05

Table 1: Results of the sensitivity analysis.

Some remarks on Table 1: i) values in the first three columns correspond to week 52; ii)446
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values displayed in columns four and five are averages over 52 weeks; and iii) average values447

in the last two columns are calculated over the first 35 weeks to avoid the noise caused by448

the exhaustion of the waiting list (please see the comments around model Over3 earlier in449

this section). Moreover, for the sake of clarity, we report the average number of empty slots450

per day instead of doctor’s idle time.451

We notice that the model without overcrowding (NoOver) increases the centre’s revenue452

in 5.5% with respect to the current policy (FIFO), reducing the waiting list by 13% in453

a year. The results show that a scheduling regime that assigns appointments taking into454

consideration the patient’s characteristics may contribute –in the health centre under study-455

to a reduction of about 17.5% in the number of empty slots.456

Regarding the overbooking model, the results depend on the value assigned to parameter457

π and the number of slots in which the overbooking is allowed (Gij = 1). If, for instance,458

π = 1.1, it can be noticed that the impact on practitioners and patients is minimal. This is459

due to two main reasons: i) the small probability of overcrowding (two overbooked patients460

showing-up to the same appointment), 0.3 maximum; and ii) in the case of overcrowding, it461

occurs early enough for a no-show in later hours to compensate for the extra time devoted462

to attending the additional patient. For this value of π the revenue would increase in a463

range between 7% and 13% and the waiting list would be reduced from 30% to 72%. These464

values are consistent with the ones reported by Moore et al. (2001). We also notice that465

allowing overbooking always improves the health centre’s revenue (with respect to the NoOver466

case), with the maximal revenue attained when overbooking is allowed in up to two slots467

(Over2). Moreover, allowing overbooking in two slots always reduces the number of empty468

slots, irrespectively of the value of π.469

Finally, regarding the value of parameter π, the best results are obtained when this470

parameter takes values between 1.3 and 1.5. In those cases, the value of the objective471

function increases noticeably without imposing serious penalties on the patients, with average472

waiting times below 10 minutes for models Over1 and Over 2. These values return maximum473

overcrowding probabilities (two overbooked patients showing-up to the same appointment)474

of 0.42 and 0.56, respectively. This suggests that the optimal value of π should be such that475
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the overcrowding probability is close to 0.5.476

5 Conclusions477

In this article we address the problem of no-shows in specialty clinics. This problem imposes478

large economic costs to the health centres –mainly due to practitioners’ idle times-, and to479

the patients, who suffer the personal and economic impact of long waiting lists.480

The no-shows problem is tackled in this article by proposing a scheduling strategy based481

on a mixed-integer programming model together with a dynamic priority allocation scheme.482

The proposed model aims at maximising the expected revenue of the health centre taking483

into account the revenue obtained from both first visit and follow-up patients. When the484

revenue of these two groups is the same, the objective function is equivalent to maximising the485

expected number of show-ups. The model takes into account several constraints imposed by486

both the law and the health centre’s policies; among them, allocating a minimum percentage487

of the available slots to first visits, or assigning priorities based on the time the patient has488

been in the waiting list. Our formulation can be easily adapted for considering other types of489

priority, as jumping the queue when the severity of the patient’s condition demands it,among490

others. The base model is extended for allowing the possibility of overbooking.491

The maximisation of the expected number of show-ups is attained by using individualised492

show-up probabilities which depend on the patients’ socio-demographic and personal charac-493

teristics as well as on his or her diagnosed pathology. These probabilities are computed for494

each day/slot combination using a decision tree classifier on a sample of nearly 50 thousand495

visits.496

Simulation experiments show that whereas the waiting lists size increases on time when497

a FIFO scheduling regime is used, our base model is capable of reducing the waiting list498

and attaining a 5% increase in revenue with respect to the FIFO regime. Experimental499

results also suggest that a more significant reduction in the waiting list would be attained if500

overbooking was applied. The magnitude of this reduction would naturally depend on the501

amount of doctors’ overtime that the health centre is willing to accept. It was observed that,502

by allowing overbooking in one time slot per day, a reduction of the waiting list of about503

21



30% can be achieved at a minimum overtime cost. These results suggest a combined strategy504

where limited overbooking can be initially used for obtaining a significant reduction in the505

waiting list and, later on, switching to a regime without overbooking.506

Our results point at two interesting research lines. The first one will aim at endogenising507

the number and selection of the appointment slots where overbooking is allowed. Given that508

not all the patients require the same consultation time, the second research line should extend509

the model for taking into account the expected consultation times of the different types of510

patient.511
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