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ABSTRACT

Microsimulation models of bus routes allow transit operators to both better un-
derstand the dynamics of bus routes and facilitate better policy making. Several
simulation models of bus routes have been proposed in the literature, including
cellular-automata, bus-following and traffic-following models. The majority of these
approaches aim to simulate the interactions of a bus with other buses (the bus-
following model), with passengers or the surrounding traffic (the traffic-following
model), but they all fail to consider the important interactions between buses
and their schedules. In a conventional schedule-based public transport system, bus
drivers aim to arrive at each stop on time. This means that they will either speed up
or slow down if their vehicles are not meeting the schedule. The research within this
paper is a novel contribution to the literature of bus route simulation. We introduce
the first schedule-following model where buses try to adhere to their schedule in a
conventional schedule-based public transport system. A simulated numerical analy-
sis shows the characteristics of the proposed schedule-following model and compares
it to existing models. Finally, the model is calibrated using Automatic Vehicle Lo-
cation and Smart Card data from Brisbane, Australia. The results show good model
performance against the observed data. The model is relatively simple, yet the fun-
damental mechanisms that drive the model are novel and it has the potential to be
applied in any city with well-defined bus schedules.

KEYWORDS
Bus route model, schedule-following, cross-entropy method

1. Introduction

Microsimulation of transport systems is a topic of considerable interest from re-
searchers and practitioners. Traffic microsimulation in particular, has evolved from
simple car-following models (Tang et al. 2012b) to sophisticated commercial software
packages such as Aimsun (Aimsun 2018). Public transport simulation is often reduced
to a simple component in these packages, with the main focus being to investigate the
impact of buses on traffic.

Nevertheless, the simulation of buses has attracted several methodological ap-
proaches over the years with Cellular Automata (CA) modelling being one of the most
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successful approaches (Luo et al. 2012; O’loan, Evans, and Cates 1998; Chowdhury
and Desai 2000; Jiang et al. 2003). Whilst the dynamical foundations of CA models
are well understood, they are regularly outperformed by more sophisticated models
such as bus-following models (Nagatani 2000; Huijberts 2002; Tang et al. 2012a; Na-
gatani 2001; Hill 2003) and traffic-following models (Cats et al. 2010; Toledo et al.
2010; Hans et al. 2015). Bus-following models account for the fundamental dynamics
of a bus route as individual buses follow each other. They are similar to car-following
models in that the speed of the buses is dynamically adjusted to maintain the schedule.
Traffic-following models take a more holistic approach simulating buses as one com-
ponent of the transport system (private and public vehicles are also accounted for),
where their speeds are affected by the traffic flow, traffic signals (Hans et al. 2015) or
the density of the surrounding traffic (Toledo et al. 2010).

In general, bus-following models focus on the interactions between buses, while
traffic-following models focus on the interactions between buses and the broader traf-
fic system. While the bus schedule exists in both bus-following and traffic-following
models, they do not attempt to capture the schedule-following behaviour of buses. In a
conventional bus schedule, drivers aim to visit each of their stops at a set time (Chen,
Liu, and Xia 2005). If they are behind schedule, they adjust their speed accordingly.
This paper presents the first bus simulation that both captures the schedule-following
mechanism, while also being able to account for other important phenomena (as ob-
served from the Automatic Vehicle Location (AVL) data). The theoretical properties
of the model include: (1) individual (bus) drivers whose aim is to meet their own
schedules; (2) bus bunching that occurs when the passenger demand is large and buses
are delayed while passengers embark; and (3) vehicle overtaking and leapfrogging that
occurs alongside bus bunching. We define bus bunching as the situation when two or
more buses arrive at the same bus stop at the same time. Leapfrogging is a special
variant of bus bunching that occurs when two vehicles cannot separate from each other
over multiple stops; e.g. one bus overtakes another and is later overtaken again by the
same bus.

The main contribution of this paper is the methodological development of the
schedule-following bus simulation model. This innovative approach is one of the first
successful models that is capable of accounting for the combination of schedule fol-
lowing, bus bunching, and leapfrogging. The paper also provides a numerical anal-
ysis using synthetic data and a calibration of the model using observed AVL and
Smart Card data. Whilst there are clear limitations to the work as a transport plan-
ning/management tool, for example the absence of traffic or a realistic transport net-
work, the fundamental mechanisms that drive the model are novel, and can be incor-
porated with other mechanisms such as traffic-following behaviour to create a more
realistic simulation of bus operation.

The paper is structured as follows. Section 2 reviews the current state-of-the-art in
the bus simulation literature. Section 3 details the motivation to replicate the actual
dynamics of buses as observed from AVL data. Section 4 describes the model devel-
opment process. Section 5 provides some numerical results of the proposed model in
comparison with existing models in the literature. Section 6 illustrates the calibra-
tion of the proposed model. Finally, Section 7 concludes the study, summarises the
contributions and suggests some future research directions.



2. Literature review

Models of bus operations are commonly used to predict future system states and to
simulate control strategies (Eberlein et al. 1998; Hickman 2001; Sanchez-Martinez,
Koutsopoulos, and Wilson 2016). The most popular model type is static, where travel
time or travel speed on each link is assumed to be deterministic (Eberlein et al. 1998).
It is also commonly assumed that bus travel time follows a probabilistic distribu-
tion (Daganzo 2009). A recent paper by Sanchez-Martinez, Koutsopoulos, and Wilson
(2016) proposes a dynamic factor function to translate the static bus travel time and
demand into time-dependent functions to be considered in bus holding control strate-
gies. Although those models do not yet consider flow dynamics under different system
states, some mathematical models have attempted to simulate interactions between
other buses, with passengers and with the surrounding traffic. These latest advances
can be classified into CA models (Luo et al. 2012; O’loan, Evans, and Cates 1998;
Chowdhury and Desai 2000; Jiang et al. 2003), bus-following models (Nagatani 2000;
Huijberts 2002; Tang et al. 2012a; Nagatani 2001; Hill 2003) and traffic-following mod-
els (Toledo et al. 2010; Hans et al. 2015; Cats et al. 2010).

CA models use discrete variables to model the dynamical properties of the bus
system (O’loan, Evans, and Cates 1998). The road network is generally divided into
a regular grid of cells in a discrete one-dimension lattice, where each cell can take a
binary state (1 or 0) representing the presence of a bus on the cell, while time is discre-
tised into fixed time steps. CA models generally aim to describe the dynamics of bus
operations from rule-based local behaviours of individual buses: acceleration, decel-
eration, stopping and running, without many interactions between multiple vehicles.
CA models have been adapted for simulating bus route operations (O’loan, Evans,
and Cates 1998; Chowdhury and Desai 2000) and have recently been enhanced by
incorporating vehicle capacity (Jiang et al. 2003) and open boundary conditions (Luo
et al. 2012). While CA models are simple to implement and efficient in performance,
they rely on a discretisation of the continuous spatial and temporal spaces. They also
aim to model the bus operation from the dynamics of individual vehicles rather than
emphasising the flow dynamics of the system.

Taking inspiration from car-following models, e.g. Tang et al. (2012b), bus-following
models (Nagatani 2000; Huijberts 2002; Tang et al. 2012a; Nagatani 2001; Hill 2003)
are built on the interactions between multiple buses, in particular on the logic that
buses follow each other. The first bus-following models (Nagatani 2000; Huijberts
2002; Tang et al. 2012a) modified the car-following velocity function from Newell
(1961) and Whitham (1990) to capture the behaviour of bus drivers, who usually
speed up when the headway (or time gap) between buses is large, and slow down
otherwise. An additional term in the optimal velocity function was introduced to
represent the passenger boarding time at a bus stop. The bus-following model was
later modified to become a time-headway model (Nagatani 2001; Hill 2003), where a
desired headway was introduced instead of the optimal velocity. These models are the
best representation of a highly frequent system, where drivers try to maintain a regular
headway with leading buses. However, the follow-the-leader logic means that the well-
known bus bunching phenomenon (Sun and Schmdocker 2018) is treated similarly to a
traffic crash and will never occur in the model.

Traffic-following models of bus routes often derive the dynamics of bus operations
from the interaction with the surrounding traffic, under the rationale that buses are
a part of the overall traffic flow. These models usually separate a link model, where
buses follow the traffic, and a node model where buses dwell for passengers boarding



and alighting. Cats et al. (2010) developed their model as a component of a traffic-
following simulation model. The model of Toledo et al. (2010) estimated a bus average
speed based on the current, maximum and minimum traffic density. At stops, passen-
ger arrivals follow a Poisson distribution and passenger alighting follows a Binomial
distribution. Hans et al. (2015) explicitly estimated bus travel time based on traffic
signals and traffic flows. The dwell time and the number of passengers are stochasti-
cally generated from Exponential or Poisson distributions. While assuming that the
travel time on links is deterministic, Fonzone, Schmdocker, and Liu (2015) introduced
the non-uniformity dynamics of passenger arrival to bus stops, and concluded that the
arrival patterns can worsen or improve bus bunching. Various traffic microsimulation
packages, such as Aimsun (Barcel and Casas 2005), Vissim (Fellendorf and Vortisch
2010) and SUMO (Behrisch et al. 2011) also aim to include buses in traffic simulation.

However, while interactions between multiple buses (e.g. bus following behaviour in
bus-following models), between buses and surrounding traffic (e.g. traffic-following or
traffic microsimulation models) and between buses and passengers (all models) are all
well studied, this is not the case for the interactions between buses and their schedules.
Chen, Liu, and Xia (2005) proposed a bus arrival prediction method based on the
Kalman Filter algorithm where the driver ‘schedule recovery’ behaviour is considered.
Schedule recovery was defined as the effort from bus drivers to adhere to the schedule,
similar to the schedule-following behaviour described in this paper. Chen, Liu, and
Xia found empirically that schedule recovery behaviour could be observed in half of
the bus trips in North Eastern United States. Ji, He, and Zhang (2014) measured
bus drivers’ schedule-following behaviours and their impacts on bus reliability using
automatic vehicle location data. Wu, Liu, and Jin (2018) developed a bus holding
control at stops that incorporates drivers’ schedule recovery behaviour.

The bus route model to be proposed in this paper departs from the existing liter-
ature by capturing the ‘schedule-following’ dynamics of the bus under a conventional
scheduled-based system in a microsimulation model of a bus route. The proposed
model aims to reproduce the actual dynamics of the bus route, as observed from bus
trajectories in real Automatic Vehicle Location (AVL) data.

3. Problem description

Figure 1 shows the observed trajectories of buses on Route 555 in Brisbane, Australia,
on a typical weekday and a weekend. Route 555 is a busy 12-stop bus route connecting
Loganholme to Brisbane CBD. Buses on Route 555 operate on segregated busways,
so there is no impact of the surrounding traffic on the bus operation. The AVL data
include the scheduled (dashed line) and actual (bold line) arrival and departure times
of each bus.

Route 555 operates with the same scheduled travel time of 45 minutes and sched-
uled headway of 15 minutes during both weekdays and weekends. Figure 1b shows that
during weekends, drivers are able to maintain good on-time performance at the major-
ity of stops. It shows that drivers try to adhere to the schedule without any dynamic
control. However, there is a heavy delay during weekdays (1a). Recall that Route 555
operates on a busway, this delay be the result of excessive passenger demand.

Bus bunching is also a problem on high frequency bus routes such as Route 555.
Figure 2 shows an example of the phenomenon. When bus L is late, the following
bus (bus F) tends to travel faster due to having lower passenger demand. Both bus
bunching and leapfrogging can be clearly observed in this situation. After the two
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Figure 1.: Observed bus trajectories (bold line) compared with the schedule (dashed
line) from:(a) weekday, b) weekend
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Figure 2.: Observed bus bunching at Route 555

buses are bunched, bus F overtakes bus L, resulting in the two buses being unable to



separate from each other. As bus F overtakes bus L, it faces a heavy passenger demand
awaiting for bus L. Bus F may now be the slow one due to this heavy demand, and
may be overtaken by bus L at downstream stops. This paper aims to capture these
dynamics, which are classified as:

e Follow-the-schedule: Buses try to adhere to schedules as much as they can;

e Bus bunching: Bunching may occur when a bus is late and the following bus
catches up with it;

e Leap-frogging: As bus bunching occurs, the two bus cannot separate from each
other.

While bus bunching has been discussed in the literature (Abkowitz and Tozzi 1987;
Fonzone, Schmocker, and Liu 2015), existing studies fail to model the follow-the-
schedule dynamics of buses. A model that replicates the actual dynamics of the bus
system will provide a better understanding of the bus operations and a better simula-
tion of bus routes.

4. Schedule-following model formulation

This section aims to propose the schedule-following bus route model that captures the
three aforementioned dynamics.

4.1. Notation

N: Number of buses

j: Index of vehicle (5 = 1..N)

m: Index of bus stop (m = 1..M)
M: Number of bus stops

w: Slack time

H: Scheduled headway

C': Bus capacity

Ly,—1: The distance between stop m — 1 and stop m
Umaz: Maximum mean speed

Umin: Minimum mean speed

t5 ¢ Arrival time of bus j at stop m

t;{m: Departure time of bus j from stop m

0tjm: Time headway, or difference between the departure time of two adjacent
buses from the same stop m

e Dj,,: Dwell time of bus j at stop m for passenger boarding and alighting

e 01,09, 03: Parameters set for estimating D .,

o A, ,: Time difference between actual and scheduled departure time of bus j at
stop m

7j,m: Scheduled departure time of bus j from stop m

Bj : Number of boarding passengers to bus j at stop m

Ajm: Number of alighting passengers from bus j at stop m

Occjm: Occupancy of bus j leaving stop m

I, (t): Number of passengers waiting at stop m at time ¢



4.2. Assumptions

To develop the follow-the-schedule bus route model, the following assumptions are
made:

e The bus fleet is homogeneous with similar capacity;

e Buses are allowed to freely overtake each other when possible: this assumption
is to make sure that the leapfrogging phenomenon can be reproduced;

e Buses have two doors to allow simultaneous boarding and alighting.

4.3. Model formulation

Stop 1 Stop 2 Stop 3 Stop M-1 Stop M
| L(D) | L®) | ce e | LM-1) |
| Bus N | | Bus j | Bus 1 !
O—CO [Q4QJ O—0O

Figure 3.: Schematic illustration of the bus route

We consider a general bus route on a one-dimensional lattice with open boundary
conditions, as illustrated in Figure 3. Each bus travels from Stop 1 to M. The distance

between stop m—1 and m is Ly, 1. The arrival time ¢}, of bus j to stop m is a function

d

of the departure time t7 .4

and stop m:

from stop m — 1 and the travel time between stop m — 1

mel

Vjm—1

a _ o 4d
tim = tjm—1+

(1)

where v;,,—1 is mean speed of bus j (j € [1..N]) between stop m — 1 and m. A
bus driver operates the bus according to its lateness/earliness to the schedule at the
previous stop, where the schedule adherence information is given to the driver each
time the bus reaches a bus stop. If the bus is behind the departure schedule at the
previous stop, the driver will operate with high mean speed, and otherwise with low
mean speed when ahead of the schedule. We assume that this mean speed is dependent
on the schedule adherence A;,,_; at the last visited stop m — 1:

Vjm—1=V(Ajm-1) (2)

We modify the formulation of the optimal speed function V(A;,,—1) from the bus-
following model proposed in Nagatani (2001) and later discussed in Hill (2003). This
optimal speed function is different to those in the bus-following models (Nagatani
2000, 2001; Huijberts 2002). These models use a modified optimal speed function that
is similar to that used in a car-following model. Thus the bus dynamics are based on the
distance between them (time or space headway) and a predefined critical headway. The
proposed schedule-following model, instead, uses the ratio between schedule adherence
Ajm and scheduled headway H to define the speed of buses. In general, buses in the

7



proposed schedule-following model do not ‘see’ other buses but only operate according
to its own schedule. This formulation uses the same number of variables as in Nagatani
(2001) and Hill (2003). V(A m—1) can be calculated in the proposed schedule-following
model as follows:

tanh(A;,,/H) + 1
V(Ajm) = Umin + (Vmaz — Umin) ( ],2 /H) 3)

where v and vy,q, are the minimum and maximum mean speed, respectively. H is
the scheduled headway between buses. Parameters v,,;, and vp,q; can be defined as
deterministic or traffic-dependent variables, where the bus cannot travel any slower or
faster than the surrounding traffic. Although the data being used in this project are
from a busways system with segregated right-of-way, these parameters are included
to make the model more generalisable. Practitioners may incorporate up-to-date traf-
fic data to dynamically calibrate these parameters using data assimilation methods,
such as a Bayesian Filter (Kalnay 2003) or a Particle Filter (Kieu, Malleson, and
Heppenstall 2019). In this paper, parameter calibration is performed off-line to adjust
the values of v, and v, to minimise the difference between estimated velocity
V(Ajm—1) and the observed velocity. We will discuss the parameter calibration in
Section 6.

The hyperbolic tangent factor is a smooth, spread out function that is used to vary
the value of V(A ,,) between vy, (when the bus is ahead of the schedule) and vynqs
(when the bus is behind the schedule). The schedule adherence A; ,, is defined as the
difference between the actual departure time t;{m and scheduled departure time 7;,

Njm = t4 0 = Tim (4)

In this paper, 7, is calculated using the minimum time it takes to travel between
stop m — 1 and m, plus a certain amount of slack time w to accommodate for dwell
time and other uncertainties. Parameter w is a part of the network settings, similar to
parameters L, M and N.

mel

Umax

+w (5)

Tjm = Tjm—1+

The departure time of bus j from stop m is calculated from the arrival time 5 m
plus the time spent at stops for passenger boarding and alighting, or in other words
the dwell time D,,.

tim = tm + Dim (6)

Dj , is calculated as a function of the number of boarding and alighting passengers:
Djm = 01 + max{0z X Bjnm,03 x Ajm} (7)

where Bj,, and A;;,, are the number of boarding and alighting passengers to bus j at

stop m. The parameter set [0, 02, 03] represents fixed values for vehicle stopping and
starting (#;) and the time spent for passenger boarding (f2) and alighting (63). For a



single-door bus system, where passengers alight first then board the bus, the following
equation can be used:

Dj,m =01 + 65 X Bj,m + 93 X Aj,m (8)

These formulations of the dwell time are consistent with many studies in the literature,
such as Bertini and El-Geneidy (2004) and the TCQSM (TRB 2013).
The number of alighting passenger can be estimated as:

Aj(m)) = Occj(m — 1) X pm, (9)

where Occj(m — 1) is the occupancy or the number of passenger inside bus j prior to
stop m. pn, is the probability of a random passenger to alight at stop m.

The number of boarding passengers B; ,, is stochastic because passenger arrivals at
bus stops are random. Bj, depends on the time gap between arrival time ¢7, and
departure time of the last vehicle t;ﬁl’m visiting stop m. The passenger arrival process
is modelled as a homogeneous Poisson process with an average arrival rate \y,. The
use of the Poisson process to model passenger arrivals is consistent with many previous
studies (Toledo et al. 2010). The passenger arrival process is random and independent
from the process of vehicle arrivals, which can be expressed in the following Algorithm
1.

Algorithm 1: Poisson arrival process

1 Set M > Number of stops
2 Initialise Simulation_step=0.1 > Set the simulation step size
3 Initialise Fvents = Total_study_time / Simulation_step > Initialise the total

possible events
for s=1 to M do
> Loop from the first to the last stop
arrival _probability = Random|[0, 1]
> A passenger will arrive if the arrival probability is large enough
Set Events(s) = (arrival_probability > X\ x Simulation_step)
end
10 return Events

© 00 N O otk

Here, Fvents is a matrix of passengers with arrival times at each stop. We define
I,,(t) as the count of available passengers in Fvents who have arrived at stop m at
time ¢ and have not yet boarded any bus. The number of boarding passengers B; ,
is the minimum between the number of available passengers, who arrived at stop m
before time ¢7 . and the residual capacity of bus j after alighting C'+ A; , — Occjm,
where C is the capacity

Bj,m = min{Im(t;m), C+ Aj,m — OCCj7m} (10)

Note that the number of boarding passengers depends on the time gap between

arrival time ¢§, of the current bus, the arrival time of the last vehicle ¢5_, , visiting



stop m, and the remaining passengers at stop m. This is equivalent to an assumption
that no passengers arrive during the dwelling process, and is similar to many other
studies in the literature (Daganzo 2009; Cats et al. 2010). This assumption can be
relaxed by incorporating the boarding process recently introduced in Wu, Liu, and
Jin (2017). After the boarding process of vehicle j at stop m, the number of left-over
passengers in the residual queue that cannot board the bus j can be updated as follows:

In(t5m) = I (t5m) = Bjm (11)

The occupancy of bus j leaving stop m then can be updated after the departure
time t;{m:

Occjm = Occj(m — 1)+ Bjm — Ajm (12)

Finally, the dynamical equation of the proposed model can be rewritten as:

L
L — __m
jom = tm—1+ vj(m—1)

+Djm (13)

Equation 13 defines the departure time of bus j from stop m as a function of the
departure time from the stop m — 1, plus the travel time between stop m — 1 and m
and the dwell time at stop m.

To simplify the modelling process, many of the existing bus route simulation studies
assume that no overtaking occurs in the system; for a detailed discussion see Wu, Liu,
and Jin (2017). However, without the overtaking behaviour it would not be possible to
account for leap-frog bunching. We focus on systems where overtaking is allowed. The
vehicles are allowed to freely over take each other in the proposed schedule-following
model. As a vehicle j overtakes its previously leading vehicle j — 1, we simply swap
the indexes of these two vehicles. This essentially means that the two vehicles swap
their schedule. Recall in Equation 3 that their speeds only depend on the schedule.
Vehicle index swapping has been made possible due to the fact that the passenger
arrival process (Algorithm 1) is independent of the vehicle arrivals, and I,,(¢) only
depends on the arrival time of any bus at stop j.

The next section provides numerical examples and evaluates the performance of the
proposed model.

5. Model performance

To demonstrate the performance and characteristics of the proposed schedule-following
model, we perform some rigorous numerical sensitivity analysis and compare it to
existing bus-following (Nagatani 2001; Hill 2003) and a traffic-following (Toledo et al.
2010; Cats et al. 2010) models.

5.1. Bus-following model formulation

The bus-following model is governed by a dynamical equation as described in Hill
(2003):

10



L

7ym—1

tim = tim—1 + A0t m—1 +

(14)

where t; ,,, is both the arrival and departure time of bus j at stop m; 6t m = tjm—tj+1,m
is the time headway. Note that unlike the proposed schedule-following model, there
is no separation of the departure time and arrival time at a bus stop. 7 is the time
it takes for each passenger to board. Aydt;,,—1 is the estimation of dwell time. The
mean speed Vj,,_1 is calculated using the following velocity function:

tanh[p(dt — t.)] + tanh(pt.)
1 + tanh(pt,)

V(0z;) = Umin + (Vmaz — Vmin) X (15)

where t. is the safe (critical) headway between two buses. ¢ acts as a spread-out
parameter for the hyperbolic tangent factor.

5.2. Traffic-following model formulation

The traffic-following model uses a similar dynamical equation to Equation 13 (Toledo
et al. 2010). Its mean speed is calculated using the following function:

VUmazx k< kmzn
k— kmln ok
f(n) = Umin + (vmam - vmin) x |1 — kii ke [kmzna kmaa}] (16)

VUmin k> kmaz

maxr ~ kmin

where k is the link density, kpin and ke, are the minimum and maximum density
thresholds, a and b are parameters. The traffic-following model (Toledo et al. 2010)
formulates the dwell time D, as:

Djm = 1+ max(PTI 1™, PTTe") + By x 6 + B3 x 6100 + vy m (17)

where PTf ront and PT}o" are the total passenger service time at the front and rear

doors, respectlvely 5 y equals 1 if the bus stop is a bay, and 0 otherwise. 5f equals
1if the stop is completely occupied and 0 otherwise. 31 is the dead time requlred for
door closing and opening; s is the delay due to approaching a bay stop; 33 is the delay
due to approaching a fully occupied stop; and v; ., is an error term. The passenger

. . n
service times PTJf 7o and PT73" can be calculated as:

PTJ{;?M = a1 X Pfront X Aij + ag X Bj,m + a3 X 5;;7%wd6d X Bj,m (18)

PT;:igT = 0y X (1 — pfront) X Aj,m (19)

11



where prons is the fraction of passengers that alight from the front door. a; and ay
are the time for each passenger to alight from the front and rear door, respectively.
«g is the time for each passenger to board a uncrowded bus, and «ag is the additional
time for each passenger to board a crowded bus. 5jrowded equals 1 if the bus exceeds
the number of seats C, and 0 otherwise. The number of boarding passengers B; ,
is estimated by a Poisson process, while the number of alighting passengers A;,, is
estimated by Equation 9.

5.3. Parameter settings

Table 1 shows the parameter settings used in the numerical sensitivity analysis for the
three models. The parameters for the time required for boarding, alighting and door
closing are adopted from Bertini and El-Geneidy (2004), which equal 3.6, 0.85 and 5.8
respectively. The global network setting parameters are: L = 0.5km, M = 20, N = 6,
w = 0.3 and H = 5min for all models.

Note that for our comparison study we use the same passenger arrival process as
in Algorithm 1 for estimating the number of arrived passengers I,,(¢t) and board-
ing passengers B, for both the schedule-following and traffic-following models. The
reasons for this are first to enable a consistent and fair comparison, and second, to
enable vehicle overtaking in both the proposed schedule-following and traffic-following
models.

For both schedule-following and traffic-following models, we assume that the proba-
bility of alighting at each stop py, is fixed within the same time period. Parameter p,,
linearly increases from 0 — 1 as m increases from 1 — M, so that passengers are more
likely to alight downstream of the bus route, and all on-board passengers would alight
at the last stop M. The bus-following model ignores the effect of alighting passengers,
but uses the same arrival rate A as the other two models. Table 1 shows the parameters
used in each model under comparison.

Table 1.: Parameter settings for the three bus route models. TF: traffic-following model

Schedule-following Bus-following TF TF (cont’d)
Umaz=60km /h Umaz=60km/h  v;,0,=60km/h B3=0
Upmin=40km/h  vpip=40km/h  vp;m=40km/h 5=

0,=5.8 s p=1 k=05 5/1“”
0;=3.6 s te = 1lmin kmar = 1 l/]7m—0
03=0.85 s v=3.6 s kmin =0 a1=0.85s
A= 1 pass/min A= 1 pass/min a=1 a=3.6 s
C=80 passengers b=1 a3=3.6 s
51=5.8s gérowded e [0, 1]
52:0 pfront:0~5

A= 1 pass/min C,=40 passengers

The following subsections evaluate the three bus route models in two scenarios
where: (1) there is no perturbation introduced (nothing disrupts the buses as they
travel between stops and the passenger arrival rate is deterministic); and (2) random
perturbations are introduced at every link.
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5.4. Study cases

5.4.1.  Scenario 1: No perturbation

This sub-section compares the three models being studied without adding any random
perturbations to their operation. This demonstrates the operational characteristic of
the models. Figure 4 shows the impact of A (the number of passengers per minute) on
bus trajectories from the (a) schedule-following model, (b) bus-following model, and
(c) traffic-following model. The bold lines are trajectories of buses, where a darker
colour means a lower mean speed. The dashed lines are the scheduled arrival times at
stops.

a) Schedule-following model
Y. 2 PSR

15 Lo g g

7
10 10 // / // // // // Speed
VR T (km/h)
Ny
5 1, “
i i
/ r/ A=2 58
0 0
0 40 50 0 10 20 30 40 50 56
b) Bus-following model s
20 A A 2 YA AV < N
7/ /! I/ / /7 // / / / / / 52
’ VA ’ L/ /! A /! / / 7 7 7 7 7 e
15 g 15 VA A A 15 PO g
/, / / /, / / / / / / / / / / / / / /
o ol / / A 1S S S 50
210 i / 10 IV A 10 1)) /
7] / Y / /
@ / / / // / / / / / // // / // // / 48
Y Y /ol /ol 1/ /
5 ! ! // A 5 / // / /7 5 // /; /; // // 46
/ / 7 / / 7 / /7 / /7 / / / / / /
’ ST A=0 Lo =1 / ;L A=2
0 0 44
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Time from first service (min)

Figure 4.: Sensitivity of \: (a) schedule-following model, (b) bus-following model, and
(c) traffic-following model

All three models capture the fact that buses experience more delays as A increases.
The following are the two main differences between the models:

e In the proposed schedule-following model, drivers try to adhere to the sched-
ule by adapting their speeds, while drivers in the other models do not consider
a predefined schedule. Buses in the schedule-following model speed up when
behind schedule and slow down otherwise, while buses in bus-following and
traffic-following models maintain constant speeds regardless of the on-time per-
formance. The schedule-following behaviour is consistent with the observation
in Figure 1.

e The leapfrogging phenomenon at larger values of A is captured in the proposed
schedule-following and traffic-following models as a result of the Poisson-based
stochastic passenger arrival process. While the modelling results at A = 1 pas-
senger/s are similar for the schedule-following and traffic-following models, the
latter shows significantly more bunching at A = 2 passenger/s than the former.
This is because the proposed schedule-following model has a speed adaptation
feature where drivers try to speed up to adhere to schedules, while the speed

13



in the traffic-following model depends on the value of traffic density k. On the
other hand, a larger passenger arrival rate does not create disturbances in the
bus-following model because the deterministic passenger arrival process delays
every bus equally.

Figure 5 demonstrates the speed adaptation feature of the proposed model (Fig-
ure 5a) compared to the bus-following model (Figure 5b) and traffic-following model
(Figure 5¢). On the left side of Figure 5a and 5b buses are constrained by a narrow
speed range [Umin, Umaz)=[45,55] km/h of the traffic, whereas on the right side, the
constraint is very large. Traffic-following is a special case, where the bus speed is cal-
culated using the link density k. Therefore, the speed range [Umin, Umaz] on both sides
of Figure 5c is [10,90], but the left side has high traffic density (k=0.5) while the right
side has no traffic density (k=0). In practice we can say that the right side of Figure 5
simulates a system with dedicated rights-of-way, such as busways or bus lanes, where
buses do not interact with the surrounding traffic. The left side of Figure 5 on the
other hand represents a system with shared rights-of-way. A equals 1.5 passenger/s in
this experiment.

a) Schedule-following model

v =90 km/h,v_. =10 km/h
ax min

v
ma m;

=55 km/h, v_. =45 km/h
X min

Speed
(km/h)
90

50 0 10 20 30 40 50 80
b) Bus-following model

v =55km/h,v . =45 km/h v_ =90 km/h,v_. =10 km/h 70
2 max = I Vi =5 ML 2 max ™ I Vi =0 SR
VNNV VEY,
VYV, 60
15 15 A A A A
VAV, “
= ANV AN
g n 10 AN
s s
5 st/ 7 7 7 7 7 40
/7 77T T
VR VA
0 0 30
0 10 20 30 40 50 0 10 20 30 40 50

¢) Traffic-following model
v =90 km/h,v_. =10 km/h v =90 km/h,v_. =10 km/h
ma e Y =0 VR % max™ T Vg =10 X

A A 10

/ A
/7 ey
st/ 7/ /o
VAR AR A A _
77777 k=0
0
50 0 10 20 30 40 50

Time from first service (min)

Figure 5.: Impact of speed constraints on on-time performance: (a) schedule-following
model, (b) bus-following model, and (c) traffic-following model

In the left side of Figure 5, the narrow range of possible speeds causes limited
speed variation between the three models. All three models show a similar colour in
their trajectories. There are significant differences in vehicle speeds on the right side
of Figure 5 because in those experiments bus speeds can vary between 10km/h to
90km/h. Buses in bus-following (Figure 5b) and traffic-following (Figure 5c) models
do not change their operating speed. They almost always travel at the maximum
speed. Whereas buses in the schedule-following model adapt their speed to adhere
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to the schedule. By comparing the two sides of Figure 5a, we notice that the overall
performance of the bus route is better if there is the freedom to adapt bus speeds for
schedule adherence. This is similar to practice, where buses on dedicated rights-of-
way are better able to keep to their schedules than buses on shared roads due to being
unconstrained by the surrounding traffic (Chen et al. 2009).

Another way to evaluate the two models is to use a phase diagram of system states.
States here refer to the headway between vehicles: whether the headway is uniform;
unstable; or if buses are bunched. Simulations are executed with different values of
A and H using the 3 models, and repeated 10 times to reduce numerical instability.
A 4-region Phase diagram is illustrated in Figure 6. The definitions of these phases
follow Luo et al. (2012).

e Phase region I: the uniform state, where all simulated headways are more than
half of the scheduled headway. Formally, Vj, m : 6t;,, > H/2 with j € [1..N] and
m € [1..M], where H is the scheduled headway. In this phase, buses maintain
a regular headway. Schedule-following and traffic-following models exist in this
phase when the demand is low, while the bus-following model always stays in
this phase.

e Phase region II: the lack of capacity state, where the simulated headways are still
more than H /2, but some buses reach full capacity. Formally, Vj,m : 6t; ,, > H/2
but 3j,m : Occj == C. When both A and H are high, most of the buses will
reach their capacity. While the headway between them is relatively uniform
because they share the same workload, there will be passengers who cannot
board a bus. This region appears only in the proposed schedule-following and
traffic-following models thanks to the existence of vehicle capacity.

e Phase region III: the unstable state, where at least one simulated headway dt; ,,
drops below half of the scheduled headway, but more than the critical headway
te. Formally, 35, m : H/2 > 6t;, and Vj,m : 6tj,, > t.. This region appears in
the proposed schedule-following model with a V-shape around region IV. The
traffic-following model also enters this phase occasionally, but Phase region IV
is a lot more common.

e Phase region IV: the congested state, where bus-bunching occurs. Formally,
35, m : t;m < te. This region only appears in the proposed schedule-following
and traffic-following models.

The bus-following model always yields the uniform state in this experiment, due to
the model’s deterministic nature. Even at high demand and frequency, buses maintain
the same headway between each other, which results in the system always being in
Phase region 1.

The four phase regions are consistent with Luo et al. (2012) and the observations
using real-data in Liu and Sinha (2007). At low demand, both schedule-following and
traffic-following models are stable, and they become more unstable as A increases. The
traffic-following model appears to be quite random, because Phase IV also appears
when the scheduled headway H is large and the passenger demand A is low. Using
the same system of randomness as the traffic-following model (a Poisson process), the
performance of the proposed schedule-following model seems to be more resilient due
to the speed adaptation feature.
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Figure 6.: Phase diagram analysis of: (a) schedule-following model, (b) bus-following
model, and (c) traffic-following model

5.4.2. Scenario 2: Random perturbation at every link

This scenario evaluates the stability of bus system when the travel time between stops
includes a random perturbation. The purpose of this experiment is to evaluate the
stability of the three bus route models when the observed data contain noise, or when
the system is exposed to random disturbances in operation such as random travel
time between links that might be caused, for example, by the surrounding traffic. The
dynamical equations of the proposed schedule-following and traffic-following models
now read:
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_Lm
vj(m—1)

and similarly for the bus-following model:

td =t 1+ + Djm +E X1 (20)

td =+ MOt + ——— +E X7y (21)

‘/j,m 1

where r; is a uniformly distributed random number between [-1,1] and £ is the pertur-
bation magnitude. £ = 0 means no perturbation, while & = 1 means that the deviation
from the scheduled dispatch time is [-1,1] minute. Figure 7 shows the bus trajectories
from the three models when & = 0.1. This perturbation setting is consistent with (Hill
2003).

a) Schedule-following model

//////

/////A o

Time from first service (min)

Figure 7.: Bus trajectories after random perturbations:(a) schedule-following model,
(b) bus-following model, and (c) traffic-following model

As ¢ = 0.1, the deviation is only between [—6, 6] seconds at each stop, which is hardly
noticeable in practice. It is expected that the models should show relatively similar
simulated trajectories as in Figure 4. However, only the proposed schedule-following
model (Figure 7a) exhibits unnoticeable differences to the bus trajectories. This is
because, as with real practice, drivers can easily recover from small deviations by
adapting their speeds. Conversely, the bus-following (Figure 7b) and traffic-following
models (Figure 7c) show much less realistic trajectories under noise, where the small
perturbations evolve into significant service disturbances especially at large . Figure
7c shows that bus bunching now appears even at low passenger demand (A = 1). These
results are further investigated in the phase diagram in Figure 8.

The proposed schedule-following model shows a very similar phase diagram to that
produced in the first scenario (Figure 6), with slightly more stochasticity due to the

17



L=500m, v__=60km/h, v _. =40km/h, w=0.3min
max min

Phase region
o

Scheduled headway H (min)

w

)

Phase region

25
30 — = L1

Scheduled headway H (min) 0.1 ’ A (passengers/min)

v

Phase region
o

25

30 < 11

. T —~
Scheduled headway H (min) 0.1 A (passengers/min)

Figure 8.: Phase diagram analysis of: (a) schedule-following model, (b) bus-following
model, and (c) traffic-following model under small perturbation
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random perturbation. However, major changes in the phase diagram can be found in
the bus-following model, where the unstable (Phase III) and congested state (Phase
IV) can now be found. The traffic-following model shows even more stochastic results
than before, as the Phase I (stable) and Phase IV (congested) are occasionally mixed
up when A =~ 0.6 passengers,/min.

5.5. Model Performance: Discussion

Two scenarios have been developed to evaluate and compare three bus route simulation
models: bus-following, traffic-following and the proposed schedule-following model.
Figures 4 to 8 illustrated the results. The two scenarios showed that the proposed
model captures the three important bus operation dynamics:

e Buses adhere to schedules when the demand is low, but they cannot do so when
the demand is large. When bus speed is not constrained by traffic, better schedule
adherence can be obtained;

e A late bus may cause bus bunching when the following bus catches up with it;

e The leapfrogging phenomenon occurs as two or more buses cannot separate from
each other.

There are two main differences between the bus-following model and the proposed
schedule-following model. First, the bus-following model is deterministic, meaning that
it is always in the stable phase (Phase I, Figure 6), until some random noise is intro-
duced (Figure 8). Conversely, the proposed schedule-following model is stochastic and
is able to capture 4 phases of a bus operation with or without random noise in the
system. Second, the bus-following model assumes that a bus would slow down when
approaching another bus, similar to a collision-free car-following model. This means
that the bus bunching phenomenon, which is a common occurrence in real systems,
will not occur in the standard bus-following model. On the other hand, the proposed
schedule-following model captures both bus bunching and leapfrogging phenomena.

Compared to the traffic-following model, the proposed schedule-following model
shows two major differences. First, the traffic-following model aims to model buses as
a component of the traffic system. Cats et al. (2010) use a traffic simulation model as
the traffic environment, and Toledo et al. (2010) use traffic density data to model the
traffic state on the links where buses are operating. However, this explicit approach
requires a substantial amount of traffic data or a comprehensive traffic model (Cats
et al. 2010) to account for the surrounding traffic. It is very challenging to collect
traffic data for every bus link in practice because data are often only available at major
road links, while buses tend to also cover minor links to serve residential areas. The
proposed schedule-following model, on the other hand, can model the bus speed under
the influence of traffic conditions through the parameters vy,q; and vp;,. This is of
course a vast simplification of the broader traffic patterns, but it provides a simple way
to calibrate the model without traffic data. Second, the proposed schedule-following
model is a better candidate for simulating a conventional schedule-based bus system.
Buses in the schedule-following model try to maintain a predefined schedule, similar
to bus drivers in practice. This is best shown in Figure 7, where buses in the schedule-
following model can recover a schedule at low demand, and buses in the traffic-following
model become bunched even with low demand after a minor perturbation.

It is clear that the proposed schedule-following model captures well the dynamics
in a conventional schedule-based bus system. We will show in the next section how it
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is calibrated to the observed data.

6. Model calibration

This section calibrates the proposed schedule-following model against the observed
Automatic Vehicle Location (AVL) and Smart Card data from Route 555 in Brisbane,
Australia. It aims to demonstrate that the proposed model is capable of reproducing
reality as seen from observations. The schedule-following model is run multiple times
and the distribution of simulated vehicle headway between buses is collected. These
are then compared to the observed headway from the AVL data. Recall that Route
555 operates on a busway, so there is no impact from traffic. We only calibrate the
proposed schedule-following model, not the traffic-following and bus-following models,
because there are no traffic data that can be used to calibrate the traffic-following
model, and because the deterministic bus-following model has no variation in vehicle
headway to get a distribution.

6.1. Data description

This paper uses uses 4 months of AVL and Smart Card data from July to October
2013. Each AVL record includes information about each visit to a bus stop, including:
route number, trip ID, vehicle ID, scheduled departure time, observed arrival time
and observed departure time. The time headway between vehicles is estimated as the
difference between the departure time from the same stop of two adjacent buses. In
addition to the AVL data that provides the arrival and departure times, the calibration
also uses the Smart Card data for the same route, giving the number of boarding and
alighting passengers at each stop. Each Smart Card record includes boarding and
alighting locations, time stamps as well as a hashed unique ID of the smart card used
for the journey. Only working days are used for calibration. The study period is 7:15
AM to 9:15 AM on the inbound direction, thus N equals 9, H equals 15 minutes and
M equals 12 stops.

6.2. Calibration problem formulation

Parameter calibration is an optimisation problem to minimise some error index PI ()
over all 7 € RF. A solution m = (my, 79, ..., ;) refers to a set of model parameters
and k denotes the number of parameters in this set. Let m, denote the optimal set of
parameters, that is:

7« = argmin  PIl(m), weR" (22)

Equation 22 is equivalent to finding 7, such that PI(m,) < PI(r) VX € 1I, where
IT is a constrained parameter space such that I € R*. The error index PI(7) is the
difference between model outputs and observed data.

The challenges in this calibration problem come from the fact that the schedule-
following model is stochastic, i.e. the same solution 7 may yield different realisation
PI(7). To reduce this stochastic effect, we evaluate each solution 7 a hundred times
(replications) and compare the distribution of outputs with the distribution of the
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observed data. Solving this optimisation problem by hand is tedious, so we propose
the use of a population-based Monte Carlo learning algorithm, based on the Cross-
Entropy Method (CEM) (Rubinstein 1999) for optimising the parameters of the model.

CEM originated from the field of rare event simulation, where even small probabil-
ities need to be estimated. It has been developed into a combinatorial multi-extremal
optimisation (Rubinstein 1999). Formally, CEM maintains and develops a probability
distribution over a generation of solutions for an optimisation problem (model parame-
ters in this case). At each iteration, new solutions are drawn from this distribution and
evaluated. After ranking the solutions according to a predefined performance indez,
the best ones are selected to develop an improved probability distribution of the pa-
rameters, which will then be used to create a new generation of solutions for the next
iteration, until certain criteria are met (a.k.a. convergence). CEM has been chosen
over other popular optimisation methods such as Genetic Algorithms (Heppenstall,
Evans, and Birkin 2007), because its probabilistic nature facilitates the calibration of
stochastic models (Ngoduy and Maher 2012). Interested readers may refer to Rubin-
stein (1999) for a more detailed account of the CEM. Pseudo-code for CEM for the
Normal distribution is also included in the Appendix A of this paper.

The proposed schedule-following model is driven by 5 parameters:
[Umins Umaz, 01,02, 03]. These 5 parameters will be calibrated in this section. Pa-
rameter \ is estimated from the Smart Card data by taking the mean number of
boarding passengers per minute over the studied period. Other parameters L,w, M, H
are taken directly from the AVL data. The objective function is formulated as:

M 2H
1 -
. _ _ — 2
min z =F 7 g g (P(ham = hm) — P(hm = hp)) (23)
m=1 h=0
subject to:
e >y > 7T;~Wm (24)

where h, and h are the time headway obtained from the proposed schedule-following
model and observed AVL data, respectively. P(hxm = hy) and P(hy, = hy,) are the
probabilities that the simulated or actual headway are equal to a value h at stop m.
These values range from 0 (bus-bunching) to 2H minutes. By this definition, z € [0, 1]
and z — 0 represents the better fit whereas z — 1 indicates the worse fit. Each
set of solutions contains 5 values for [Upmin, Umaz, 01, 02,03, where the calibration is
subjected to the predefined upper and lower bounds [715”‘“”, 7757“”] of each parameter.
We replicate each solution 100 times to build up a comparable sample size of h; to
compare with the observed data h. After several empirical tests, we adopt the following

hyper-parameters for the CEM:

e Samples: 1000 solutions
e Elite samples ratio: 20 %
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6.3. Calibration results

The calibration process is considered ‘converged’ if the mean and standard deviation
of z over 1000 samples satisfy the following two criteria:

e After 5 iterations, the mean of z (over 1000 samples) do not reduce by more
than 5%.
e The standard deviation of z (over 1000 samples) is close to zero

Figure 9 shows the progression of z after 27 iterations.

04 0.012
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Figure 9.: Progression of the performance index z (over 1000 samples): (a) Convergence
of the mean of z, (b) Convergence of the standard deviation of z

Figure 9 shows that a reasonable convergence has been reached where the standard
deviation of the objective function approaches zero and the value of the expected ob-
jective function does not improve anymore. Table 2 shows the best parameters settings
and performance index z of the proposed schedule-following model after calibration.

Table 2.: Schedule-following model parameters and performance index after calibration

Calibrated parameters Value

Umin  17.06 km/h
Umaz 91.83 km/h

01 23.4 s
92 3.9s
93 1.54 s
Best 2 0.057

Figure 10 compares the simulated headway h, of the calibrated model and the ob-
served headway h from AVL data at some stops along the Route 555. The distribution
of h; and h are very similar. Two-sample Kolmogorov-Smirnov tests are also conducted
to compare the two distributions. The results are also presented in Figure 10, where
D is the Kolmogorov-Smirnov statistic, or the absolute max distance (supremum) be-
tween the CDF's of the two samples. p is the p-value of the Kolmogorov-Smirnov test.
The null hypothesis that A, and h come from the same distribution can only be re-
jected at the 95% confidence level if the p-value is less than 0.05. Figure 10 therefore
shows that the proposed model can reproduce a similar headway to that exhibited by
the observed data.
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Figure 10.: Headway distribution at some stops along the Route 555

7. Conclusion

This paper develops a new innovative bus route simulation model to capture the
dynamics of buses as observed in Automatic Vehicle Location (AVL) data. The model
captures three important phenomenon: (1) buses follow the schedule and aim to adhere
to the schedule as closely as possible, (2) bus bunching occurs when the following bus
catches up with a late bus, especially at times of high demand, and (3) leapfrogging
occurs when two or more buses cannot separate from each other.

When evaluating the numerical simulation results using time-space and phase dia-
grams, the proposed model shows the most realistic dynamics compared to two pop-
ular types of bus simulation models: the bus-following model and the traffic-following
model. Buses in the proposed model adjust their cruise speed to adhere to the sched-
ules, which is similar to the practice when bus drivers have to follow a predefined
schedule. The proposed schedule-following model also shows all 4 operational phases,
similar to the empirical findings in Liu and Sinha (2007) using only 5 governing pa-
rameters.

The model is calibrated using the observed AVL and Smart Card data. The case
study demonstrates that the proposed model reproduces similar headway to the ob-
served data. Further developments include incorporating schedule-following and traffic-
following mechanisms and extending the model to system-wide networks to augment
the model’s applicability to policy makers in practice. The model can also be used to
investigate the causes and impacts of bus bunching and leap-frog bunching.
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Appendix A: Cross Entropy Method for Optimisation

This Appendix describes the pseudocode for the Cross Entropy Method for Normal
distribution (Rubinstein 1999).

Algorithm 2: Cross-Entropy Method for Normal distribution

Set p = (1,01, 2,09, ..., ik, 0x)  %lInitial distribution parameters

Set M %Number of stops

Set T % Maximum iteration number

Set I % Maximum iteration number

Set p % Set selection ratio

for t from 1 toT' do

%Main CEM loop

for i from 1 to I do
Draw y@ from N(p,0) %Draw I samples
Compute f*:= f(y®

end

© 00 N O Tk W=

[
= O

Sort fi-values %Order by decreasing magnitude
v < for  %Set threshold

L, + {yD|f(y¥) <y  %Collect elite samples
L"r’

M; - L% Y2 iy %Update p

16 | 0= L% ZiL:H oij %Update o

17 i < apl+ (1 —a)u;  %Update with step size o

-
W N

[y
'y

ey
[}

18 0j < ao; + (1 —a)o;  %Update with step size o
19 end
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