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The use of classical regression techniques in social

science can prevent the discovery of complex, non-

linear mechanisms, and often relies too heavily on

both the expertise and prior expectations of the

data analyst. In this paper, we present a regression

methodology that combines the interpretability of

traditional, well used, statistical methods with the

full predictability and flexibility of Bayesian statistics

techniques. Our modelling approach allow us to find

and explain the mechanisms behind the rise of Radical

Right-wing Populist parties (RRPs), that we would

have been unable to find using traditional methods.

Using Swedish municipality level data (2002-2018)

we find no evidence that the proportion of foreign-

born residents is predictive of increases in RRP

support. Instead, education levels and population

density are the significant variables that impact

the change in support for the RRP, in addition to

spatial and temporal control variables. We argue

that our methodology, which produces models with

considerably better fit of the complexity and non-

linearities often found in social systems, provides a

better tool for hypothesis testing and exploration of

theories about RRPs and other social movements.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction

Radical right-wing populism is resurgent across European societies, posing an existential threat

to established democratic systems. Radical Right-Wing populist parties (RRPs) share a common

emphasis on ethnonationalism, rooted in myths about the past, and their programs are directed

towards strengthening the nation by making it more ethnically homogeneous [1,2]. In recent

decades, RRPs have grown in electoral support and are now established throughout Europe:

e.g. in Poland, ‘Law and Justice’ (37.6%, 2015); in Hungary, ‘Jobbik’ (20.22%, 2016); in France,

‘National Front’, (13.02%, 2017); Austria, ‘Freedom Party of Austria’, (27%, 2017); and in Germany

(2017), a nation without a RRP in the parliament in decades, ‘Alternative for Germany’ received

13% support. In Sweden, where RRPs have traditionally had very little support, one such party,

the ‘Sweden Democrats’ obtained 17.53% of the votes in the last election in 2018, an increase from

12.86% in 2014. They became the third (out of 8) largest party in the Swedish Parliament, having

more than tripled their support from 2010. Understanding the mechanisms behind their growth is

not only of high importance to the political process in Sweden, but also crucial for understanding

what is happening all across Europe, and also in places like Australia and in the United States,

where populism is on the rise [1,3].

The two predominant theories for why RRPs experience increased support are the social

marginality theory [4–8], which suggests a stronger RRP support in socially marginalized areas,

and ethnic competition theory [5,9–15], which suggests that voters turn to RRPs because they

want to reduce competition, both cultural and economic, with immigrants. We introduce and

test these theories as the major competing explanations for increasing RRP support, but it is

important to note that other mechanisms have been posited that go beyond the scope of this paper.

For example, supply chain explanations, such as the political opportunity structure and party

how how parties are organized [16]. Studies done across Europe have come to slightly different

conclusions about the relative importance of the two major theories. Some examples supporting

the social marginality hypothesis are: RRPs have been found to have a negative correlation with

level of education in the populous [4]; workers and middle-class voters are over-represented

among new supporters of RRPs [4,17,18]; unemployment is positively correlated with new RRP

voters [4]; unemployment together with high share (more than 6.3%) of foreign-born residents in

the population have a positive interaction effect on support [19]. Even though there is support for

this theory, there are also conflicting results. For example, it has been shown that RRPs receive the

most support in the mid-educational stratum [6,8]; unemployment levels have been found have

non-significant [4,20] or even negative correlations [6,7] with RRP support. Support for ethnic

conflict theory has been tested by investigating if RRPs are more prosperous in areas with a large

immigrant population [5]. Previous results show a positive correlation between RRP support and

the number of foreign-born within a country [4,7]; RRP support correlates positively with both the

proportion of immigrants and asylum seekers [20,21]. However, in Rydgren (2008) [22], a positive

correlation is found between the number of immigrants within a country and RRP support

in the Netherlands and Denmark, but not in Austria, Belgium, France, and Norway; ethnic

heterogeneity has also been reported to have a non-significant correlation to RRP support [18].

In 2011, Rydgren and Ruth [5] presented a meticulous study of the current Swedish RRP, in

which the authors find support for both the social marginalization and ethnic conflict theory.

Specifically, Rydgren & Ruth [5] found a significant negative correlation between both education

level and gross regional product (GRP) per capita and a positive correlation with unemployment

rates. They also found RRP support to be positively correlated with a high immigrant proportion

from EU/EFTA countries, but negatively correlated with the immigrant ratio from both the

Nordic countries and non-European countries.

It should be noted that both social marginalisation and ethnic competition may occur on many

dimensions and any attempt to find support for each can be influenced by the choice of data and

measurements, as well as contexts such as nationality. In some cases individual-level responses

to ethnic competition may not be apparent at the aggregated level, for example if foreign-born
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residents comprise a substantial part of the voting population in a municipality, then their voting

patterns may conflict with the response of other voters in ways that cannot be observed in

aggregate. Throughout this paper we use data aggregated to the municipality level, and therefore

acknowledge that a more complex reality at the individual level may be hidden by this constraint.

Previous studies in this area use standard regression techniques to analyse drivers of RRP

support [23–29]. However, while they allow hypothesis testing within a standardized framework,

traditional regression models are unlikely to provide the best fit of the data because they

assume linearity or a particular chosen, often polynomial, form, thus missing things that do

not correspond to this form, and perhaps falsely identify patterns that actually have a different

form. They depend heavily on the analyst to pick the functional form and therefore rely on prior

ideas about how the system works. Modelling is most useful where it is based on sound theories

that underpin the model formulation. However, even where the analyst has a strongly motivated

theory for how a variable of interest affects the system, they may not have equally well developed

prior expectations for the effects of confounding variables that must also be controlled.

The challenge of best modelling the available data can be addressed using a Gaussian

processes (GP) regression, which is today commonly used in machine-learning [30,31], but

which has also been applied to problems in biology and social science (e.g [32,33]). GPs

model the relationship between covariates non-parametrically allowing lots of flexibility for the

approximating functions. However, GP regression lacks much of the interpretability of standard

parametric regression. The advantage of parametric methods is that inferred coefficients tell us the

importance of different factors, and the fitted models are simple to understand and to use. This

presents a dilemma: do we use more flexible models that promise greater model fit, predictive

power and a more data-driven approach, or do we prioritize interpretability by using simpler

linear models?

In this paper, we address precisely this problem. We develop an approach that combines

the interpretability of standard regression with the model fitting capabilities of GPs. We choose

GPs from among the many possible, flexible approaches inspired by machine-learning (such

as neural networks, Random Forests and generalised additive models), because they are (i)

intrinsically Bayesian, allowing principled model selection via the marginal likelihood; and (ii)

integrate seamlessly with classical linear regression methods when expressed in a Bayesian

framework (as we will describe below). Specifically, we use a GP framework to perform Bayesian

linear regression to find the best explicit model in the explanatory variables, the variables we

wish to investigate, combined with a fully non-parametric statistical control for confounding

variables. We present several ways in which we can adequately measure the relevance of different

variables and explicitly test theories proposed in political science. We use this approach to

model and investigate the rise of the Swedish RRP, the Sweden Democrats, using aggregated

municipality-level data, and re-evaluate the predominant theories of RRP support.

We will focus on the dynamics of RRP support (i.e. changes over time), rather than stock

values. A dynamical systems approach uses a non-linear differential or difference equation to

describe the rate of change of each variable in a social system in terms of itself and other social

variables [34–37]. For example, rate of change in RRP support can be fitted as a function of

education, unemployment, immigration and so on. One advantage of this approach is that it

allows social systems to be described by coupling functions [38], which can then be solved to

better understand the dynamics of the social system [39–41]. A similar approach has been adopted

in chemistry [42–44], neural science [45] and communications [46].

2. Modelling approaches

We consider data D= {(xi, zi, dyi)|i= 1, ..., N}, consisting of N observations of a social system,

where x= [x1, x2, ..., xD]⊤ denotes a D dimensional input vector of explanatory variables,

which we wish to include as predictors in the form of an explicit polynomial function f(x);

z= [z1, z2, ..., zD∗
]⊤ denotes a D∗ dimensional input vector of confounding variables, which we

want to statistically control for, but not model as an explicit polynomial function; and target dy
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represents the change over time of the response the variable y, i.e. dyt = yt+1 − yt. We denote the

coupling between y and the other variables in the system as

dy= h(x, z) + ǫ (2.1)

where ǫ is noise. For now, we have not specified the form of the coupling h(x, z). Indeed, the focus

of this paper is on how we can find better fit this coupling functions, both in a predictability and

an interpretability sense, using Gaussian processes.

Throughout this paper, we will move the chosen variables between x and z depending on

what models (variables) we wish to investigate. The original longitudinal data comes from M

entities over T time steps. We assume that all the entities’ individual time series are just different

realizations of the same social system and concatenate the entity level data into input variables

x, z, representing the state of the input variables for the corresponding observation in dy. Hence,

the number of observations are N =M × (T − 1). The inputs can be aggregated into a D ×N

design matrix X for the explanatory variables, a D∗ ×N design matrix Z, for the confounding

variables, and to the target vector dy. All input vectors are standardized to unit variance and zero

mean, to enable variable comparison.

(i) Bayesian linear regression approach

Regression analysis aims to find a good approximation of the true functional relationship between

variables [47]. Standard linear regression [30,48–51] is the simplest statistical model of the form

we consider,

dy(x) = β0 + xβ + ǫ (2.2)

where β is a vector of regression coefficients and ǫ∼N (0, σ2
n) is Gaussian white noise. The

ordinary least squares (OLS) method [52–54] can be used to obtain the maximum-likelihood

estimates for the parameters in this multivariate linear model.

Often when we test the robustness of a model, of the from given in Eq. 2.2, we wish to control

for potentially confounding variables, z to check if the the results still holds after additional

variables are introduced [5,55]. In this case, we fit various forms of,

dy(x, z) = β0 + xβ + zγ + ǫ, (2.3)

where γ is another vector of regression coefficients. We can determine which confounding

variables are important and which can be ignored by assessing the degree to which the values

of β and the overall explanatory power of the model are affected by the addition of the variable

z.

One way of allowing models to explain more complicated relations is to perform regression on

a projection onto a higher dimensional feature space, e.g., polynomials of x, using a set of basis

functions b. For example, a one-dimensional basis function, for variable x1, of order three can be

set to b= [1, x1, x
2
1]. Polynomial regression, for example, [29,51,56] allows for nonlinear relations

in the explanatory variables in the form,

dy(x) = β0 + f(x) + ǫ. (2.4)

In this case, β is implicitly defined as the parameters of a linear function f(x) = b(x)⊤β. We

further define B =









b(x1)
...

b(xn)









for the evaluation of these basis functions over all data points, where

the indices of xi refer to the data point identity rather a specific choice of explanatory variable.

Polynomial functions are also sometimes used as statistical control for confounding variables in

order to see if relations are robust under influence of non-linear relations (see [5]). In this paper,

we choose the polynomial form of the basis functions to allow for complex models, but not too

complex to retain interpretability.
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Throughout this paper we adopt a Bayesian approach to the regressions performed. By adding

a prior distribution on β we attain linear models in a Bayesian setting. Specifically, we define

b(x) to be a set of predefined basis functions, consisting of linear and non-linear polynomials

of x, and we assume a Gaussian prior distribution on the regression coefficients with mean zero

and a covariance matrix V : β ∼N (0, V ). In our implementation we further assume a diagonal

covariance matrix such that V = cI, where I is the identity matrix and the constant c is chosen

to be the same as the number of observations (1160). This corresponds to ridge regression with

an uninformative prior distribution with wide coverage. In addition, it is a conjugate prior that

permits analytical evaluation of the posterior distribution. We compare the set of models M,

consisting of all possible combinations of the terms in the basis functions using the log marginal

likelihood (logML) as measure of model fit [30,34,39,41,57].

(ii) Gaussian process approach

Gaussian processes are a generic method for supervised learning in regression and

classification [58]. A GP is defined by [58] as an infinite collection of random variables, any

finite number of which have a joint Gaussian distribution. In our setting we consider the random

variables that represent the values of the function g(x) we wish to learn about at the locations x. A

GP g(x) is fully specified by its mean function µ(x) = E[g(x)] and covariance function k(x,x′) =

E[(g(x)− µ(x))(g(x′)− µ(x′))], where x, and x′ are any two possible observations [30]. The

mean function and covariance function contain all information about the assumptions we have

for the function g(x). The mean function is the expected values of the random variable g(x) and

the covariance function defines how similar the values of function g(x) are at data points x and

x′. In supervised learning it is assumed that input data x which are close to each other are likely

to have similar outputs dy(x), hence data points close or similar to some test point x∗ should be

informative about the prediction at that test point and the covariance function specifies what we

mean by similarity [58]. The chosen mean and covariance function do not depend on the actual

data at this stage, but specify the properties we assume for the functions and are used as a prior for

Bayesian inference, and their parameters can be learnt by the data. The model setup we consider

has the form,

dy(x) = β0 + g(x) + ǫ (2.5)

where,

g(x)∼ GP(µ(x), k(x,x′)). (2.6)

It is particularly worth noting that Bayesian linear regression can be performed through GPs by

setting a specific mean function and dot product covariance function kdot(x,x
′) = b(x)⊤V b(x′)

evaluated at points x and x′ [30]. In what follows we, in some cases, use this particular choice, but

in other cases, we will choose a more flexible covariance function, the squared exponential (SE) to

provide a more pliant model fit (see equation 2.11). Rather than specifying a particular (e.g. linear)

functional form for g(x), this instead restricts this function only to be a smoothly varying and

differentiable function of x. Gaussian processes with squared exponential covariance functions

are non-parametric since we do not assume any parametric form of the function g(x). We will

also consider models of the form:

dy(x, z) = β0 + gx(x) + gz(z) + ǫ (2.7)

where,

gx(x)∼ GP(µ(x), k(x,x′))

gz(z)∼ GP(µ(z), k(z, z′)).
(2.8)

Here we have split up the variables x and z into two different functions gx and gz . Observe

that this model do not allow interactions between the variables x and z. This model is used as a

benchmark for the semi-parametric model explained below.
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(iii) Semi-parametric approach

In our proposed semi-parametric approach we combine two GPs to model the change term dy.

One GP, f(x), is intended as an interpretable relation in the explanatory variable x, while a non-

parametric statistical control GP, g(z) is used for confounding variables z. The model has the

form,

dy(x, z) = β0 + f(x) + g(z) + ǫ, (2.9)

where
f(x)∼ GP(0, kdot(x,x

′))

g(z)∼ GP
(

0, kSE(z, z
′)
)

(2.10)

and the covariance functions are,

kdot(x,x
′) = b(x)⊤V b(x′)

kSE(z, z
′) = σ

2
f exp

(

−
D∗
∑

i=1

(zi − z′i)
2

2l2i

) (2.11)

evaluated at points x and x′ and z and z′. Hyperparameters are a set of parameters for the

covariance function, and for SE covariance function, kSE they are the signal variances σ2
f and

length scales li of variable zi, indicating the relevance of this variable [30]. If the length scale is

very long, for a specific variable, the covariance function will be almost completely independent

of this variable, and vice versa [30]. This model is inspired by [59] where GPs are used to model

residuals, with the conceptual difference to split explanatory variables and confounding variables

into different covariance functions. This choice of structure assumes that the group of variables

of x does not interact with the group of variables z. Combining multiple GPs results in a new

GP [30],

dy(x, z)∼GP(β0, kdot(x,x
′) + kSE(z, z

′) + σ
2
nI). (2.12)

Notice the mean function of the semi-parametric GP is now β0 and the covariance function is

obtained by adding the individual covariance functions in Eq. 2.11 with σ2
nI, the covariance

function for the noise ǫ. The choice of how we split data in to explanatory variable (x) and

confounding variables (z) depends, like in Eq. 2.3, on how we wish to model dy. Note that setting

g(z) = 0 means that Eq. 2.9 and Eq. 2.4 are equivalent. Setting f(x) = 0 and plugging data [x, z]

into Eq. 2.5 is equivalent to model dy using a GP with a SE covariance function.

We test a number of polynomial models f(x) to find the model in M that best approximates

the underlying dependence of the change dy while statistically controlling using non-parametric

g(z). We do this by first fitting the model specified by Eq. 2.7, then removing the first non-

parametric function gx(x) and then approximating it with a polynomial f(x). Hence, we estimate

the parameters β in f(x) for all models in M by Bayesian linear regression, maximizing the

overall marginal likelihood in the presence of g(z) and picking the model with the highest

model evidence. For the optimization of SE covariance functions, we use the automatic relevance

determination (ARD) distance measure, and 10 restarts, where variables providing a good (bad)

fit are assigned shorter (longer) length scales li in the optimization step [30]. A very long length

scale of the ith variable (Eq. 2.11) means that the covariance function is almost independent of the

ith input, and thereby its contribution to the inference is essentially removed [60]. We use the GPy

toolbox [61] provided by the Sheffield Machine Learning group to fit our Gaussian processes.

(iv) Choice of polynomials

For both of the parametric model (Eq. 2.4) and the semi-parametric model (Eq. 2.9) we wish to

approximate the relations in the explanatory variables x using the polynomial function f(x). The

functions f(x) consist of linear and non-linear combinations of x. In other words, we project the

variables into a feature space and then perform Bayesian linear regression in this new feature

space [30]. In order to find the polynomial expression that best approximate the relation between
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variables x and the level of change in RRP support (both with (Eq. 2.4) and without (Eq. 2.9) the

presence of confounding variables z), we test a predefined set of different model configurations

Mj , where j = [1, ..., Nm] is the different model configurations out of Nm possible models. The

model configurations consist of all combinations of the available polynomial terms we choose to

test for. Hence we assume that f(x) is ‘built up’ of k basis functions bi, where i= [1, 2, ..., k] and

k the number of terms in the polynomial model we test, and their corresponding coefficients β,

f(x) =

k
∑

i=1

βibi(x). (2.13)

Where the basis functions are a subset of the possible basis functions b, i.e. bi ⊆ b and βi are

the corresponding slope coefficients. In this paper we consider models with all combinations of

variables up to order 3. For a constant, one variable x1 (e.g. unemployment) polynomial models,

terms up to order three: a linear x1 term, a quadratic terms x21 and a cubic term x31, Hence, the

basis function we consider in the one dimensional case is,

b(x1) = [1, x1, x
2
1, x

3
1] (2.14)

and the models we test for consist of all combinations of these four terms. For two variable models

(e.g. unemployment and education level), we allow for non-linear relations in the two variables,

x1 and x2. The basis functions we consider consist of the following combinations variables,

b(x1, x2) = [1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2,

x1x2, x
2
1x2, x1x

2
2]

(2.15)

For extra clarity: a two-variable example model of a polynomial approximation of the relation

of variables x= [x1, x2] we wish to test in our investigation could be, f(x1, x2) = β1x1 + β2x
3
1 −

β3x1x2. The user of this approach can choose to include any linear and non-linear combination to

the set of tested basis functions b. The included terms can be either more complicated linear and

non-linear combinations, but also any special terms the user want to include from some existing

theory, in order to test that theory.

The number of model configurations we investigate depends on the number of possible basis

functions we allow into the model. For k allowed basis functions we get the number Nm = 2k − 1

possible models (where we exclude the case where no input variables are considered). So if we

consider the one explanatory variable x1 setup, using set of basis functions (Eq. 2.14) we have k=

4 and thereby 15 different model configurations to investigate. The two variable model Eq. 2.15

then give 1023 models to test, and so on.

(v) Model evidence and slope parameters for the semi-parametric model

After we have performed GP regression for all models Mi, we compare and rank them using

marginal likelihood, p(dy|X,Z,Mi), which is a measure of the probability of observing the

data under the hypothesis that the model configuration Mi is true. The marginal likelihood is

a likelihood function where the hyperparameters in the model have been marginalized. Using

an SE covariance function together with a dot product covariance function (our semi-parametric)

yields the following expression for the logarithm of the marginal likelihood, also referred to as

the model evidence,

log p(dy|X,Z, θ) =
1

2
dy

⊤(B⊤
V B +KSE(Z,Z) + σ

2
nI)

−1
dy

−
1

2
log|B⊤

V B +KSE(Z,Z) + σ
2
nI|

−
n

2
log(2π)

(2.16)
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where θ= [β, σ2
f , l] is the set of all hyperparameters in the model M. This marginal likelihood

punishes over-complicated models and hinders overfitting by penalizing models with too much

structure, in terms of the number of parameters & the numbers that they can take [62]. In Eq. 2.16,

the quadratic term in dy gives a positive contribution depending on model fit, the negative log

determinant punishes over-structured models and the term proportional to n is for normalization.

For expressions of the model evidence for non-parametric and standard polynomial models are

found in [30].

The final estimation of the parameters β in f(x) maximizing for the model evidence given a

model in M then becomes,

β̂ = (V −1 +B(KSE(Z,Z) + σ
2
nI)

−1
B

⊤)−1
B(KSE(Z,Z) + σ

2
nI)

−1
dy (2.17)

Note that the covariance structure from g(z) affects the estimates of β.

3. Data

We use aggregated data on Sweden’s 290 municipalities from the last five Swedish election years

(2002− 2018). Based on the choices in previous studies, we include the following variables to

check the social marginality theory: education, the proportion of the population with three or

more years in post-secondary education; median income; and unemployment. We include foreign

born density to test the ethnic conflict theory. We also include population density, mean age,

crime, the total number of reported crimes per 100 000 inhabitants. These variables are commonly

used to test the ’ethnic conflict’ and social marginality theories (e.g. [5]). In addition we use

the latitude and longitude of municipality capitals, i.e. we assume that the entire population

is located in the 290 different regional capitals, to capture spatial dependence to account for

spatial differences, i.e. a spatial regression model [63,64]; time (year); and support of the RRP

in the national election. The time variable is included to capture the baseline overall increase

of RRP support, like the constant (intercept) in a linear regression between time t and t+ 1.

All variables except latitude, longitude and time are logarithm-transformed, using log(xi + 1) to

make the variables more approximately normally distributed and the ‘+1’ to allow zero values in

xi. The Swedish National Council for Crime Prevention [65] provided data for crime, the Swedish

Public Employment Service [66] provided data for the unemployment , and Statistics Sweden [67]

provided data for all the other variables. All data and Python code can be found in supplementary

materials.

4. Results

We compare all three regression approaches; standard regression, GP regression, and the

proposed semi-parametric approach, by applying them in turn to investigate variable relations

to changes in support for the Swedish RRP (∆RRP). Model evidence (LogML) and R2 values are

measures of model fit and are presented in Table 1 for 8 different models. Models 1-3 are standard

regression models, models 4-7 are non-parametric GP models, and model 8 is the proposed

semi-parametric approach models. A good model fit is important because (1) it means that the

hypothesized mechanism is more likely to have generated the data and (2) because models with

better fit will produce more accurate predictions of the future of the dynamical system. For all

models (1-8) the constant intercept parameter is β0 = 0.70, i.e a constant increase in RRP support.

Polynomial model expressions and slope parameters for models are presented in Table 2.

(vi) Standard regression models

We used Model 1, a one variable version of simple linear regression approach (Eq. 2.2), to

investigate the relations between all of the individual variables and the change in support for

the RRP. The variables found to have the highest model evidence were RRP support [−183.77],

median income [−221.00], and education [−235.17]. The slope coefficients βi for the simple linear
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regressions shows a negative correlation in RRP support (β =−0.14), a negative correlation for

median income, and also a negative correlation in education (β =−0.08). The variable with the

highest R2 was RRP support explaining about 20% of the variability in the data. It should be

noted here and in respect to later results that the explanatory power of current RRP support for

predicting changes in RRP support may represent regression to the mean in a stochastic process,

rather than a causal mechanism.

We then applied Model 2, the generalized linear regression approach (Eq. 2.2) to check the

robustness of Model 1. We used all 11 variables and found a decrease in model evidence [−939.05]

and R2 value 45%. The reason why this model has a very low model evidence is because it

includes all variables, even the ones with very low explanatory power. The slope coefficient

of time is then considerable steeper and is now positive (β = 0.24) indicating a strong time

dependence. Median income now have a small positive slope (β = 0.01). We find the slope

coefficient for the level of RRP support is now a strong negative correlated variable (β =−0.51).

In Model 3 we use a polynomial regression approach (Eq. 2.4), using only single variables,

to check if the nonlinear polynomial terms will increase the model fit and understanding. Just

two variables, time and level of RRP support, have polynomial models with better model fit. The

model with time has a considerably higher model evidence [−78.68] and R2 value of 54%.

(vii) Gaussian process models

We test four non-parametric GP regression models (Eq. 2.5) with SE (ARD) covariance functions,

where the only difference is in the number and identity of explanatory variables included in each

model. In Model 4 we use a GP with a single zi input variable to see how good the estimations

can be using only one variable. The one variable that best described the change in RRP support

was time with model evidence [171.19] and R2 describing 54% of the variability, followed by RRP

support and median income.

Another way of testing the relevance of a variable in making estimations is to omit it. In

Model 5 we used only confounding variable z as input to the model to see how well a model

fits without the exploratory variables zi. The model with lowest model evidence (i.e. largest

difference between Model 5 and Model 6), indicating the highest relevance in the variable zi is the

level of RRP support, having model evidence [405.80] and R2 value (0.84) was closely followed

by time, latitude and education level.

In Model 6 we use all variables as input z for the GP. This model could be considered as an

‘upper bound’ of the model evidence and R2 since we utilize all available data in an entirely

non-parametric model. However, as we will see in the next section, more specialized covariance

function set-ups might give us a higher model evidence. The difference in model evidence

between Model 5 and Model 6 is the room of improvement that explanatory variable xi can fill,

Table 1: Comparison of model fit for models predicting change in RRP support in national

elections. The values are the model log marginal likelihoods and (R2 values). Amongst the semi-

parametric models we indicate (*, bold text) the models in which the inclusion of the variable of

interest improves upon an equivalent model excluding that variable (model 5).

Standard regression models Non-parametric models Semi-parametric models

Model 1: Model 2: Model 3: Model 4: Model 5: Model 6: Model 7: Model 8:

Variable (i) βixi βixi +Σj 6=iγjzj f(xi) g(xi) g(zj 6=i) g(z) g(xi) + g(zj 6=i) f(xi) + g(zj 6=i)

Latitude −262.60(0.03) −939.05(0.45) −262.60(0.03) −255.37(0.04) 568.06(0.82) 651.69(0.88) 623.85(0.84) 573.90 (0.82)*

Time −407.19(0.08) −939.05(0.45) 151.29(0.54) 171.19(0.54) 442.85(0.84) 651.69(0.88) 633.48(0.86) 618.99 (0.86)*

RRP support −183.77(0.20) −939.05(0.45) −78.62(0.32) −29.89(0.43) 405.80(0.81) 651.69(0.88) 658.20(0.86) 648.83 (0.86)*

Longitude −273.13(0.01) −939.05(0.45) −273.13(0.01) −264.95(0.02) 630.26(0.85) 651.69(0.88) 633.02(0.85) 625.16(0.85)

Education −235.17(0.07) −939.05(0.45) −235.17(0.07) −229.09(0.08) 593.54(0.87) 651.69(0.88) 650.77(0.88) 642.75 (0.87)*

Population density −244.93(0.05) −939.05(0.45) −244.93(0.06) −242.15(0.06) 649.47(0.88) 651.69(0.88) 655.40(0.88) 649.61 (0.88)*

Foreign born −244.89(0.06) −939.05(0.45) −244.89(0.06) −237.84(0.06) 649.01(0.88) 651.69(0.88) 650.58(0.88) 643.24(0.88)

Mean age −268.74(0.02) −939.05(0.45) −268.74(0.02) −262.19(0.02) 650.22(0.88) 651.69(0.88) 650.22(0.88) 644.73(0.88)

Unemployment −264.09(0.02) −939.05(0.45) −264.09(0.02) −259.04(0.03) 651.14(0.88) 651.69(0.88) 651.33(0.88) 645.79(0.88)

Median income −221.00(0.10) −939.05(0.45) −221.00(0.10) −183.47(0.16) 651.72(0.88) 651.69(0.88) 654.52(0.88) 645.73(0.88)

Crime −268.09(0.02) −939.05(0.45) −268.09(0.02) −264.97(0.02) 651.589(0.88) 651.69(0.88) 652.08(0.88) 646.14(0.88)
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Table 2: Parameter values for models of change in RRP support.

Standard regression models Semi-parametric model

Model 1: Model 2: Model 3: Model 8:

Variable (i) βixi βixi +Σj 6=izj f(xi) f(xi) + g(zj 6=i)

Latitude 0.05 −0.16 0.05xi −0.07xi
Time −0.09 0.24 0.19 + 0.40xi − 0.19x2i − 0.29x3i 0.75xi − 0.20x2i − 0.25xiu

3

RRP Support −0.14 −0.51 0.10− 0.10x2i .− 0.06x3i −0.42xi + 0.06x2i
Longitude 0.03 0.001 0.03xi −0.17

Education −0.08 −0.01 −0.08xi −0.09xi
Population density −0.07 −0.08 −0.07xi −0.04xi
Foreign born −0.07 −0.01 −0.07xi −0.07

Mean age 0.04 0.01 0.04xi −0.08

Unemployment 0.05 0.01 0.05xi −0.10

Median Income −0.09 0.01 −0.09xi −0.09

Crime −0.04 0.01 −0.04xi −0.09

Table 3: Relevance of variables to predict changes in RRP support in national elections using

squared exponential (ARD) covariance function. Low length scale indicates more relevance. All

variables are normalized to unit variance to enable variable comparison.

Cumulative

Ranking Variable Length scale LogML R2

1 Latitude 0.62 −255.37 0.04

2 Time 0.77 260.69 0.65

3 RRP support 1.30 419.00 0.76

4 Longitude 1.83 517.81 0.84

5 Education 4.04 639.26 0.87

6 Population density 10.48 644.57 0.88

7 Foreign born 12.48 649.79 0.88

8 Mean age 14.16 650.97 0.88

9 Unemployment 22.46 651.59 0.88

10 Median income 36.53 651.59 0.88

11 Crime 48.06 651.69 0.88

indicating that longitude, population density, crime, foreign-born, mean age, unemployment, and

median income are variables with little potential to improve the models.

In Model 7 we use all variables, but we split them up into the sum of two different non-

parametric functions, one for the explanatory variables xi and the other for the confounding

variables z. This makes interactions between the split variables impossible, and the effects are

instead additive. Model 7 are later going to be used to benchmark (in Model 8) how well a

polynomial function f(xi) can approximate the g(z) part of eq. 2.7.

(viii) Variable relevance

Including all variables into an ARD model (Model 6) and optimizing the hyperparameters,

we implicitly obtain the relevance of the different variables by telling us how sensitive the

response dy is to changes in the corresponding variable (shown in Table 3). A short length-scale

indicates that a variable is more relevant, and long length-scale can be used to remove irrelevant

variables [68]. However, this is not always true and the length-scale should be used as a guide

to the variable’s likely effect on the model evidence, not as a definitive measure of the size of the

effect. The most relevant variables to model change in SD support are, in order, latitude (l= 0.62),

time (l= 0.77), RRP support (l= 1.30), longitude (West/East) (l= 1.83) and education (l= 4.04).
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In Table 3 we also present cumulative log marginal likelihood and R2, where one variable after the

others is included, in order of shortest length scales. The cumulative log marginal likelihoods and

R2 values indicates that almost all of the explanation power are obtained after the five variables

(up to education) with the shortest length scales.

(ix) Semi-parametric model

Lastly, we look at a semi-parametric model where an explicit expression gives the relation in

the explanatory variable xi and the confounding variables z are modelled using a SE covariance

function (Eq. 2.9). In Model 8 we allow the configuration to take the polynomial form with the

highest model evidence. By comparing the semi-parametric Model 8 to Model 5, we can see how

much the approximating polynomial expression using xi improves the model evidence. Only

the variables: RRP level, time, latitude, education, and population density improved upon the

model evidence of Model 5. The variable where the model evidence increased the most was in the

variable for the level of support for the RRP.

(x) Higher dimensional models

By using two or more variables in the polynomial function f in (Eq. 2.9) we can gain more

understanding of the linear or non-linear relation between these explicit variables. Using the

variables: support for RRP (S) and time (t) we get the resulting best polynomial model, f(S, t) =

−0.56S + 0.89t− 0.14t2 − 0.25t3 with model evidence [618.38] and R2 value (0.88). Notice the

regression to the mean effect of RRP support, and that the model captures the decrease in growth

of RRP support before the last election in 2018. (Fig. 1A). The best model using education (E)

and population density (P) is f(E,P ) =−0.04E − 0.08P with model evidence [639.56] and R2

(0.87) (Fig. 1B). Both the variables latitude and longitude have short length scales, but only

latitude contribute positively to the model evidence in Table. 1. Investigating the impact of these

relevant variables, according to length scales, we find that the best semi-parametric model is:

f(latitude, longitude) =−0.07 · latitude; only the latitude gives a contribution to the change in

RRP support. This result is shown in Fig. 1C.

In Fig. 2 we can see the relationship between education level and RRP support using the two

standard 1-variable models, Model 1 (Fig. 2A); our standard 11 variables Model 2 (Fig. 2B); our

best polynomial model, Model 3 (Fig. 2C); and our semi-parametric approach using Model 8 (Fig.

2D). As we clearly can see, the results are more detailed for our semi-parametric model (Model

8). If we put all of the most significant variables– except latitude and longitude– time (t), RRP

support (S), and education (E) into one polynomial model with all others as confounding z we

get the best model,

∆RRP =−0.57S − 0.10E − 0.02E2 + 0.92t− 0.14t2 − 0.25t3

with model evidence [610.19] and R2 (89%), indicating that there are no clear interactions between

the explanatory variables.

5. Discussion

In this paper, we have investigated the driving factors behind the rise of RRPs. The variables that

we found to best explain the changes in support of the Swedish RRP were, in order of relevance:

latitude, time, RRP support, longitude, education level and population density. Out of these

variables, the only one we found to support the social marginality theory is education, unlike

in [5], where GRP, reported crime and unemployment were also found to be significant. Based

only on proportion of foreign-born residents, we found no support for the ethnic competition

theory as the proportion of foreign born was found to have very little contribution to the model

fit. However, we acknowledge that this is a relatively crude test of ethnic competition theory, and

individual-level processes may exist that are not observed on the level of municipality-aggregated
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data. The conflict between our results and earlier studies suggests that an individual-level

approach is needed to test this theory further.

Our new modelling approach has allowed us to obtain a model fit with R2-values capturing

over 88% of the variance in the data. This offers considerably better predictability when compared

to the best model for change in Swedish RRP support in Rydgren & Ruth [5] where they could

explain 9% of the variability in the data. Compared to [5], we used more variables (e.g. latitude,

longitude, population density, domestic migration, median income, and time) and longer time

series, (2002-2018) instead of (2006, 2010), but it is also the updated methodology that allow us to

capture so much of the dynamics — we only can fit 45% of the variability in the data with Model

2, corresponding to the approach of [5] (see Table. 1).

The identified strong effect of time suggests an intrinsic acceleration in support for the RRP.

However, time itself cannot causally influence RRP support. Instead, this is likely to be the result

of one or multiple underlying causes for increased RRP support not picked up due to our choice

of variables. For example, time could capture: increased media coverage, social media usage or a

transition of the demand side (voter support) to meet a renewed supply of political ideas by the

RRP [69]. This suggests that there is still substantial scope for identifying the underlying causal

factors influencing RRP support in Sweden and beyond.

Our results have important implications for policy makers who want to understand the

development of RRP support over the last two decades. The conclusions we can draw from our

investigation are that (1) there are large regional differences, with the increase in RRP support

being concentrated in southern Sweden to an extant that is not explained solely by differences

in the other variables we have measured ; (2) RRP ideas have spread faster in rural regions with

low population densities (controlling for the overall spatial pattern); and (3) that a high education

level has made the population less susceptible to the recent overall increase in RRP support.

Our results pertain to changes in RRP support as opposed to stock values. We consistently find

that current levels of RRP support are negatively correlated with future increases. This may in part

be a regression to the mean amid stochasticity, but could also represent a process whereby regions

with high existing levels of RRP support have limited potential for further growth in that support.

Our goal has been to explain the large change in RRP support that has been a feature of Swedish

and European politics in this century, but we should bear in mind that in some regions support for

RRPs was already high before this period, which may influence the dynamical models we have

inferred. For example, if support for RRPs was already very high in regions with high immigrant

populations in 2002, we may observe no further increase as a result of this factor during our study

period.

In contemporary social science, classical statistical techniques have been favoured over more

complex models in part because of their ease of interpretation. Our methodology substantially

improves the trade-off between model accuracy and interpretability, and thus allows us to

discover important effects within a complex, non-linear and multivariate system. Here we have

focussed on modelling the change of one variable, the rise of an RRP. It is however straightforward

to use our method to simultaneously fit coupled equations, as in [34,39], with each fit made

independently [70]. Our method thus provides a powerful way for identifying and explaining

the complex, coupled relationships found within social systems. The methods we present can

also be applied in a wide variety of fields to explicitly study variables of interest contributing to

the dynamics, while controlling for additional variables in a flexible way.
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Figure 1: Impact of time, education and latitude & longitude on RRP support. (A) Impact

of time and RRP support on ∆RRP support. (B) Impact of education and population density on

∆RRP support. (C) Impact of latitude & longitude on ∆RRP support. The points in A & B are

data observations. Red regions correspond to positive contributions on ∆RRP support, and blue

regions to negative contributions, with numerical values indicated by contour lines. Observe that

we show logarithmic values on the black axes (bottom and left) of A & B

Figure 2: Four different models of change in RRP support dependent on education level

and current RRP support. (A) Model 1, (B) Model 2, (C) Model 3, and (D) Model 8. Panel A

shows a visualisation of the two, one variable, linear models (Model 1). Panel B shows the linear

model with all variables included (Model 2), Panel C shows the best two variable polynomial

model (f(S,E)). Panel D shows the semi-parametric model (Model 8) with the highest model

evidence [633.26] and R2 of 87%. The points in each panel are data observations. Red regions

correspond to positive contributions on RRP support, and blue regions to negative contributions,

with numerical values indicated by contour lines. Observe that we show logarithmic values on

the black axes (bottom and left)
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