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Abstract. Compared to biological systems, existing learning systems
lack the ability to learn autonomously, especially in changing and dy-
namic environments. This paper addresses the issue of autonomous learn-
ing by developing a self-learning spiking neural network (SNN) and
demonstrating its autonomous learning capability using a simple robot
controller application. Our proposed learning rule exploits an inherit
property of the existing Spike-Timing-Dependent Plasticity (STDP) rule
in that if the instantaneous presynaptic frequency decreases, then for a
conventional Hebbian window the STDP rule potentiates. Conversely if
the instantaneous frequency increases the STDP rule depresses: the op-
posite is true for anti-Hebbian window. This paper will also show that
obstacle avoidance is achievable using a conventional Hebbian learning
window while object tracking can be learned using an anti-Hebbian learn-
ing window. Hence the proposed learning paradigm is novel in that it does
not require external supervisions for either these tasks. The proposed
learning paradigm also uses a previously explored astrocyte neuron in-
teraction where a periodic Slow Inward Current (SIC) from an astrocyte
can potentiate a postsynaptic neuron for a period of time: this time win-
dow can be used to strengthen/weaken synaptic pathways. An obstacle
avoidance task is used for the performance analysis and results show that
the SNN based robot controller has autonomous learning capabilities un-
der the dynamic conditions.

Keywords: SNN, learning, plasticity windows, robots

1 Introduction

Spiking neural networks (SNNs) are a third generation networks which closely
resemble their biological counterparts. SNNs comprise of neurons and synapses
where the former releases a transient voltage spike when excited. When action
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potentials arrive at the presynaptic terminal, the membrane potential of the
postsynaptic neuron increases under the stimuli and a spike event occurs when
the postsynaptic potential exceeds a threshold level. SNNs have good temporal
data processing capability and are used in many applications such as the pat-
tern recognition [1], data analytics [2], fault-tolerant computing [3,4] and robotic
control [5,6]. Various learning algorithms have been proposed for SNNs and the
choice of algorithm is critically dependant of the application domain. Most SNN
applications use some form of supervision for the learning phase where the learn-
ing data is preselected from a dataset. However, the requirement for a supervised
approach constrains the design, development and deployment of the SNN sys-
tems, especially for applications operating within a dynamic environment, e.g.
robots [7].

The Spike-Timing-Dependent plasticity (STDP) [8] and Bienenstock, Cooper,
and Munro (BCM) [9] learning rules are two commonly used learning rules for
SNNs. A combined STDP/BCM learning rule, termed BSTDP, has be demon-
strated in an SNN-based robotic controller application to implement learning,
e.g. in the approach of [7] the spiking astrocyte neural network used BSTDP
to implement both learning and self-repair in the robotic applications. However,
it required supervisory signals to achieve the correct input/output mapping.
In this paper we address the issue of autonomous learning. This paper revis-
its earlier work and proposes a novel autonomous learning strategy which uses
the Hebbian/anti-Hebbian learning approach where the novelty is a decision ca-
pability that can potentiate or depress as a function of instantaneous previous
synaptic spike frequency. Furthermore, we draw on the concept of an SIC which
is a postsynapitc stimulus current released by astrocytes: note that SIC model
used in this work is a high level abstraction of the biological SIC function. This
approach avoids the complexity involved in modelling many astrocyte processes.
This autonomous learning strategy is demonstrated on a simple SNN robotic
controller.

The rest of the paper is organized as follows. Section 2 describes the au-
tonomous learning strategy and section 3 presents simulation results which
demonstrate the proposed autonomous learning concept for obstacle avoidance.
Section 4 concludes the paper.

2 Autonomous learning principle

This section presents an SNN that demonstrates a plausible autonomous learning
paradigm.

2.1 Autonomous learning strategy

We consider as a demonstrator an SNN-based robotic controller deployed in an
obstacle avoidance application. In the present case our SNN controller senses
one input and learns over time to respond with an appropriate output action to
avoid an obstacle. To put this in context we will consider a robot moving in a
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forward direction with an obstacle placed in its path. We also assume that the
sensor input data is mapped to a linear spike train and the actuator output neu-
rons drive the robot in either the forward direction or to motion a left turn (the
left turn was chosen arbitrarily). Hence our SNN controller has one presynaptic
neuron and two postsynaptic actuator neurons: the proposed autonomous learn-
ing algorithm will learn to respond with either a forward or left turn motion. A
key signalling pathway is the slow inwards current (SIC) emitted by an excited
astrocyte cell [10]. Because astrocyte interacts with many neurons we assume
that the SIC continually stimulates both postsynaptic neurons, which propels
the robot initially towards the obstacle. When the robot becomes in proximity
to the object, the sensor becomes active and the presynaptic neuron fires. How-
ever, because of morphology we assume that astrocyte processes are of different
lengths with different associated delays and therefore the SIC signal will cause
only one of the actuator neurons to become active for a period of time followed
by the other: none of the two actuator neurons are active at the same time.
In the current case this will cause the two postsynaptic neurons to enter into
a “toggling action” where one actuator neuron becomes active for a period of
time followed by the other and then this process repeats. Hence each pathway
between the presynaptic neuron and the postsynaptic neurons will be periodi-
cally strengthened or weakened. If the activity of one of the postsynaptic neuron
causes the instantaneous presynaptic firing frequency ∆fpre to increase then the
synaptic pathway will be depressed: in the present case the SNN based controller
is learning an obstacle avoidance task and consequently motion towards an ob-
ject needs to be avoided. Our simulations will show that a conventional Hebbian
learning window in conjunction with STDP will train an SNN to implement ob-
stacle avoidance without the need for a learning signal. Consequently for obstacle
avoidance we require that for ∆fpre > 0 the weights associated with active actu-
ator neurons are depressed and potentiated only for ∆fpre < 0. This condition
is satisfied by adopting a conventional Hebbian learning window. Conversely the
SNN will learn an object tracking task using an anti-Hebbian learning window.
In the present case the former is adopted and a Hebbian window is selected.

Presynaptic 

neuron

Postsynaptic 

neuron

a

b

c

t1 t2

Presynaptic neuron

Input sensory data

Postsynaptic neuron

Output action: moving forward

Fig. 1. Temporal changing between the input sensory spikes and output spikes for
obstacle avoidance where the output neuron is to move forward.
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Fig. 1 shows a synaptic connection between the input sensory neuron and
output actuator neuron (forward motion). Each time the postsynaptic neuron
fires, the robot will move forward decreasing the distance to the obstacle which
increases the input sensory neuron spike frequency. Therefore, the inter spike
interval (ISI) decreases, as shown in Fig. 1. Spikes at times a, b and c show a
steadily reducing ISI where the time period between spike a and b is greater than
the time period between spike b and c, t1 > t2 and ∆fpre > 0. The proposed
rule effectively uses the sign of ∆fpre to implement either potentiation if ∆fpre
is negative or depression if ∆fpre is positive. Note that in the present case
our approach uses all correlations between pre and post firing times that are
within the plasticity window except for the presynaptic spike time that causes
the postsynaptic response to cross the firing threshold. This spike time when
correlated with postsynaptic firing tends to favour weight potentiation strongly
and swamps out other correlations within the plasticity. Therefore, to avoid this
and make learning more sensitive to ISI we only consider before and after spike
correlations.

2.2 Models

The STDP learning rule with different kernel structures can be used for synaptic
long-term potentiation (LTP) or long-term depression (LTD). Based on the Heb-
bian STDP learning rule, LTP occurs when the presynaptic neuron fires before
the postsynaptic firing, whereas LTD occurs when the temporal firing order is
reversed [11]. STDP based learning is described by

δwi
syn(∆t) =















A0exp(
∆t

τ+
), ∆t ≤ 0

−A0exp(
∆t

τ−
), ∆t > 0

(1)

where δwi
syn(∆t) is the ith synaptic weight to be updated, ∆t is the time dif-

ference between post and presynaptic spikes, A0 is the height of STDP learning
window, τ+ and τ− are the widths of the plasticity window. In addition, the
postsynaptic neuron was modelled using the Leaky Integrate and Fire (LIF)
approach, due to its simplistic nature, and this neuron model is expressed as

τm
dv

dt
= −v(t) +Rm

n
∑

i=1

Iisyn(t), (2)

where τm and v are the time constant and membrane potential respectively,
Rm is the membrane resistance, Iisyn(t) is the current injected to the neuron
membrane at synapse i, and the firing threshold voltage is 9 mV . The neuron
model also includes a refractory period of 2 ms, and the current injected to the
neuron from the ith synapse, Iisyn(t), is calculated by

Iisyn(t) = rI ∗ w
i
syn(t) + Is, (3)
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where rI is the synaptic current production rate, Is is the SIC signal from as-
trocyte, wi

syn(t) is the synaptic weight of the ith synapse, which is modulated
by the STDP learning rule, i.e.

wi
syn(t) = wi

syn(t− 1) + δwi
syn. (4)

Note that Is is the SIC signal and because the formulation of a biologically
plausible model for this current takes into account many factors, we will assume
for simplicity an SIC spike of duration 1 ms. Additionally, since SIC currents
correlate with neuron activities, but on a slow time scale, we choose arbitrary
an SIC interspike interval of 1/6 of the presynaptic spike frequency.

3 Results

In this section a simple robotic demonstrator is used to showcase the proposed
autonomous learning algorithm where the data was collected using the Psi swarm
robot developed by the York Robotics Laboratory, University of York, UK [12].
An infrared sensor placed at the front of the robot provided the sensory input
data for the SNN-based controller. This data was converted to a linear spike
train which modelled the presynaptic neuron: a rate-based encoding scheme is
used where the distance between the mobile robot and obstacle (or object), d, is
proportional to the reciprocal of input spike train frequency, 1/fpre. Fig. 2 shows
the SNN structure for the obstacle avoidance task, where two output neurons
are synaptically connected to the input of a sensory neuron. The input neuron
senses the output of the front sensor and, in response, the output neurons A and
B will, when active, motion the robot to move forward and turn left.

Input sensory neuron

      (Front sensor)
B

Output control neuron

(Turn left)

A

Output control neuron

(Move forward)

#2

#1

Fig. 2. Synaptic connections between the input and output neurons.

The output actuator neurons are periodically firing due to the astrocyte
signal SIC. Also, we initiate the learning process with neuron A (forward motion)
becoming active before neuron B, as shown in Fig. 3(c): neuron A is active for 3
seconds followed by neuron B for a further 3 seconds and this process continually
repeats. In the time period when neuron A is active, the synaptic pathway (#1)
is depressed from an initial synaptic weight of 20, see Fig. 3(f). Under the input
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Fig. 3. SNN activities between input sensor neuron and output action neurons. (a).
Input spike train. (b). ∆fpre. (c). Neuron A active status where 1 represents active and
value 0 represents inactive. (d, e). Spikes of output neuron A and B. (f, g). Synapse
#1 and #2 weights.

stimuli, the postsynaptic neuron fires at ∼ 0.6 sec as shown in Fig. 3(d), then
the robot moves forward to the obstacle and ∆fpre is positive, see Fig. 3(b). An
STDP window with equally balanced LTP and LTD kernel structure is used for
the learning. When the output neuron A continues to fire from ∼ 0.6 second,
the robot continually moves towards the obstacle and the frequency of input
sensory spike train increases. This leads to the LTD, as shown by Fig. 3(f). Each
time neuron A is stimulated the synaptic pathway #1 is further depressed and
eventually pathway (#1) becomes inactive and postsynaptic neuron A ceases to
fire (∼ 6.5 sec in Fig. 3(d)). This we define as autonomous learning as weight
depression does not require the external supervision.

Now consider the connection between input sensor and output neuron B (left
turn motion) when synaptic pathway #2 is active due to SIC. The initial weight
for the synapse #2 is also set to 20 (see Fig. 3(g)). The synaptic pathway #2
is active between 3 and 6 sec. Under the input stimuli, the output neuron B
fires at ∼3.4 sec, i.e. the robot turns slightly to the left and therefore away
from the obstacle. Thus, the frequency of input sensory spike train decreases
(negative ∆fpre in Fig. 3(b)). Note the same plasticity window is used in all
pathways. The weight of synapse #2 starts to be potentiated, as shown by
Fig. 3(g) and as the synaptic weight increases, the SNN continues to promote a
left turning motion, see the output spikes in Fig. 3(e). As the robot turns to the
left moving away from the obstacle, ∆fpre approaches zero, learning ceases and
the synaptic weights stabilize, see Fig. 3(g). Results demonstrate the autonomous
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learning process favours strengthening the pathway to neuron B, which is a left
turning motion, and the weight associated with this pathway is potentiated
accordingly. Note that during the initial learning phase, one of the actuator
neurons is active for a period of time followed by the other due to the delays
in the SIC spikes. However, after a period of learning, only one actuator neuron
will be active (left turn motion) due to the potentiated synaptic weight, and
the other actuator neuron becomes inactive as the associated synaptic weight
is depressed. Compared to other approaches such as [7], the proposed method
can learn and adapt to the surrounding environmental conditions based on the
STDP kernel structures. Therefore, the proposed learning approach does not
require an input to output mapping table and thus points to a possible future
direction for SNN metaplasiticity.

4 Conclusion

A novel autonomous learning strategy for SNNs has been presented which uses
the STDP with kernel structures. It exploits an inherit property of STDP where
if ∆fpre < 0, the STDP rule potentiates for conventional Hebbian window.
Conversely if the ∆fpre > 0 the STDP rule depresses: the opposite is true for
anti-Hebbian window. This novel learning strategy, demonstrated using an obsta-
cle avoidance task, used a conventional Hebbian learning window. However, the
SNN could be reconfigured to learn an object tracking task using an anti-Hebbian
learning window. Another novel feature of the proposed learning paradigm is an
astrocyte associated SIC. The SIC potentiates postsynaptic actuator neurons
periodically and in each time window weight potentiation/depression occurs.
Results of an SNN under an obstacle avoidance robotic task show that the pro-
posed paradigm is able to learn autonomously within a dynamic environment.
The authors recognise that the proposed SNN demonstrator requires much re-
finement to allow scaling to a useful SNN. Despite this our SNN fragment does
demonstrate a new approach to autonomous learning. Furthermore, this ap-
proach could be taken further but would require a significant body of research
involving experimentalists to determine the time course of SICs and other asso-
ciated secondary messengers. However, with current data on astrocyte process
morphology it may be possible to model delays but this would in itself be a chal-
lenge well beyond the scope of this paper. Overcoming this challenge in future
work would permit scaling the network to a more useful SNN controller with the
capability to continually learn more complex input/output patterns and operate
in a real-world environment.

Acknowledgments. This work is part of the EPSRC funded SPANNER project
(EP/N007141X/1) (EP/N007050/1).
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