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Abstract: A simple, versatile model for the dynamics of electrically and optically pumped vertical-12 
external-cavity surface-emitting lasers mode locked by semiconductor saturable absorber mirror is 13 
presented.  The difference between the laser operation in the linear and folded cavity, as well as 14 
the potential for colliding pulse operation, are studied. 15 

Keywords: vertical-external-cavity surface-emitting lasers; mode locking; SESAM; frequency combs 16 
 17 

1. Introduction 18 

Vertical External-Cavity Surface-Emitting Lasers (VECSELs) first developed in 1997 [1] have the 19 

advantage of the mature VCSEL technology for the semiconductor gain chip consisting of an epitaxial 20 

Distributed Bragg Reflector (DBR) and several Quantum Well (QW) or Quantum Dot layers. This 21 

allows wavelength flexibility, output power scalability and mass production. The external cavity 22 

makes possible lasing to occur in a single transverse and longitudinal mode by implementing, 23 

respectively, spherical mirrors and Fabry-Perot filters in the external cavity [1-5].  On the contrary, 24 

multi-transverse mode lasing is typical for VCSELs with output power in excess of several mW due 25 

to spatial hole burning [6, 7]. Spectral coverage of VECSELs extends from 390 nm [8] to 5 μm [9] and 26 

even to 244 nm [10] by an intracavity fourth harmonic generation. By efficient thermal management 27 

the output power is scaled by simply scaling the area of the optically pumped spot reaching 100W in 28 

CW operation [11]. VECSELs are very well-suited for mode-locked operation by utilizing 29 

Semiconductor Saturable-Absorber Mirror (SESAM) either in the external cavity [12] or integrated in 30 

the gain-chip [13]. Tremendous progress has been achieved since the first demonstration of an 31 

SESAM mode-locked VECSEL in 2000 [14]: the pulse durations in fundamentally mode locked 32 

operation has been decreased to 107 fs [15] and even to 60fs in a burst operation [16], the average 33 

output power has been increased to 6.4W [17] and the peak power increased to 4.35 kW [18].  While 34 

the shortest pulses have been achieved with optically pumped active layers, electrically pumped 35 

structures are promising for a number of applications. Α versatile, but fairly complex theoretical 36 

model has been presented [19, 20 ] for mode locking in electrically pumped VECSELs, but only for 37 

the simplest linear geometry and using a semi-microscopic model for the optical properties of 38 

Quantum-Well active layers.  Later, a delay-differential model of a similar type but with a simpler 39 

gain model was used for inclusion of complex transverse/lateral effects in a MIXCEL structure, in 40 
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which the active layer and the saturable absorber are hosted within the same chip [21], with a 41 

possibility to substantially enhance computational efficiency by narrowing the temporal window 42 

when simulating the pronounced ML regime [22]. In recent papers [23,24], a version of a delay-43 

differential model was developed taking into account the folded, as well as simple linear, cavity 44 

geometries. These papers centred on lasers designed for ultrashort pulse generation and were mainly 45 

dedicated to the issue of multiple pulse (pulse molecule) generation observed under some operating 46 

conditions in such lasers; therefore the gain chip and saturable absorber were treated essentially as 47 

short travelling-wave amplifiers, ignoring their reflective nature and resonator properties (indeed, 48 

for femtosecond pulse generation it is beneficial to suppress the resonator properties of the chips by 49 

applying antireflection coatings, to minimise any narrowing of the emission spectra). 50 

 An alternative to the delay-differential equation modelling is an iterative pulse shaping 51 

approach [25,26,27], where gain, saturable absorption, and dispersion in each round trip are, as in 52 

classic mode locking theories, represented by pulse shaping operators in time or frequency domain, 53 

as appropriate.  Such an approach is by necessity somewhat artificial as it separates dispersion from 54 

gain and absorption and also effectively assumes a unilateral ring cavity. Still it has proven very 55 

useful for many cases of practical significance, particularly when the main limitation for the pulse 56 

duration is the group velocity dispersion of the cavity (soliton mode locking regime). With simulation 57 

parameters deduced from measurements for a known laser, such a model is capable of providing 58 

very good agreement with experiment in both picosecond [26] and femtosecond [27] regimes; 59 

however it may be not the most appropriate for describing regimes and designs where more than one 60 

pulse can exist in the cavity, and for including the cavity parameters at the design stage.   61 

Here we continue the work started in the earlier conference papers [28] and present a model 62 

based on an approach similar to that of [19, 20] and so treating the cavity properties of the gain and 63 

absorber chip consistently, but using a simpler, generic active layer model that can be used for both 64 

linear and folded-cavity geometry. The model can be, and is in this study, applied to study different 65 

regimes of laser operation, including the possibility of colliding pulse and multiple colliding pulse 66 

mode locking, and also can be used for inclusion of polarization effects in future. 67 

The paper is organized as follows. In section 2 we present the derivation of the model and its 68 

application to a straightforward linear cavity. Sections 2 and 3 deal with different versions of a folded 69 

cavity, with either gain or the absorber forming the central chip.  Finally, in section 4 a brief 70 

discussion and summary are presented. 71 

2. Vertical External-Cavity Surface-Emitting Laser: time-delay model.  72 

2.1. Derivation of a simple equation for the active cavity dynamics.  73 

A schematic of the mode-locked VECSEL consisting of vertical-cavity amplifier chip (left side) 74 

and a SESAM chip (right side) is shown in Fig. 1.  75 

 

 
 

L La

dg da

Lext

r’irir0
r’ia

t’i
ti



Materials 2019, 12, x FOR PEER REVIEW 3 of 20 

 

Figure 1. Mode-locked VECSEL consisting of vertical-cavity amplifier chip with two DBRs with 76 
reflectivities r0 and r1 and active region with thickness dg and a SESAM chip with a single DBR and 77 
active region thickness da. L and La are their effective lengths and Lext is the length of the external 78 
cavity. 79 

The derivation of the model is a somewhat simplified version of that of [19] and is shown here for 80 

completeness. As in [19], we start with the frequency domain approach and then convert it into time 81 

domain. The equation for the reflected “field” (more accurately, wave amplitude) leaving the gain chip 82 

reads 83 

2 2
( )

2
' '

1

j kL

g i o

r g inc i inc rc i incj kL

i o

t r Ge
E r E r E E r E

r r Ge





 
       

, (1) 

In this equation: 84 

Einc is the complex amplitude of the incident field.  85 

Erc is the complex amplitude of the field exiting the active resonator chip into the passive compound 86 

cavity. 87 

ri and ro are the (wavelength-dependent) reflectances of the mirrors of the resonator facing inside 88 

(i.e. the incident light) and outside the cavity ri’ is the reflectance seen by the light incident on the 89 

mirror from the external cavity side, which has the same amplitude as ri but different phase, as usual.  90 

L is the geometric cavity length. 91 

k  is the complex wave vector. We can define a reference frequency and the corresponding wave 92 

vector 
ref ref

n
k

c
  - for convenience it is easiest to assume that ref

  is the frequency of one of the cold 93 

cavity modes. Then, 
int

2
ref

n j
k k

c
    , 

int
 being the internal loss in the passive part of the 94 

resonator. 95 

G is the single-pass dimensionless complex gain by all the QWs in the active layer of the resonator. 96 

Assigning the active layer a thickness La and introducing the equivalent distributed complex gain97 

' ''g g jg  we can write
g ggd gL

G e e
    , where the total confinement factor, including the 98 

enhancement, or relative confinement, factor due to the standing wave profile g is  99 

/g gd L   
 

(2) 

This formalism is most natural in the case of a relatively thick, distributed, gain region, in which case 100 

the standing wave factor is  g=1. In the case of one or several QWs, when dg<<L, the notion of g is 101 

somewhat artificial, but can be introduced heuristically alongside a g value of 1<g<2 (see below).  102 

Using lumped gain per well, as in [19], is more rigorous (e.g. it gives g>1 self-consistently), but also 103 

more complex, particularly in the case of multiple Quantum Well (QW) or Quantum Dot (QD) active 104 

layers separated by a substantial distance (e.g. located in different wave antinodes). The present 105 

formalism, in principle, applies to an arbitrary active layer thickness and location, though in this 106 

paper we shall concentrate on the most usual one using a thin active layer in a single resonant 107 

location. 108 

The usual differential equation for an injected laser (i.e. a vertical cavity amplifier with two strongly 109 

reflecting mirrors, operated above or near lasing threshold) is obtained by taking the absolute value 110 
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of the denominator in eqn. (1) to be small (which means operating above or near threshold, and 111 

simultaneously with a small frequency detuning from the cold cavity mode frequency).  In the more 112 

general case of a resonator with arbitrary reflectances (in electrically pumped VECSELs, reflectances 113 

of 70-90% can be used [19, 20]), we cannot assume the absolute value of the denominator in eqn. (1) 114 

to be small but can assume small frequency detuning 2 1net

nL
G

c
  .  Then,  115 

21 1j kL

i o net rt netrr Ge G jT G     , (3) 

where  116 

      
   intexp expnet net i o cG g L rr g L G          

(4) 

is the complex net roundtrip gain, with 117 

                         intexpc i orr L    (5) 

the (real) cavity attenuation factor. We have also introduced the round trip time of the cavity which, 118 

as usual in the theory of vertical cavity structures, is evaluated as 2
g eff

rt

n L
T

c
 , where

g

dn
n n

d



   119 

is the group refractive index, and  arg argeff o i

g

c d
L L r r

n d
    is the effective cavity length. 120 

Then, the resonator equation becomes  121 

  ' 21 j kL

net rt net rc i i o incG jT G E t t r Ge E    . (6) 

The active layer in a VECSEL is always thin so G  is never high above one (indeed, the measured 122 

chip reflectance has been reported [29,30] as Rg=|rg|2 for ri≈0.9 and Rg≈1.55 for ri≈0.96 (notations as in 123 

Eq. 1)), from which the value of | G |-1 can be estimated to be of the order of 10-2 at most, meaning it 124 

is safe to approximate in Eq. (6) 125 

1 ,   G G G gL      

Strictly speaking, the expression (6) includes the dispersion of both the VECSEL active subcavity and 126 

the complex gain ( )G G  . If (as is usually the case) the operating wavelength is near the gain peak, 127 

we can use a Lorentzian gain spectrum approximation with a width Δωg. 128 

Then, assuming as usual g  , the usual substitution 
d

j
dt

  gives a single differential 129 

equation for the determination of the field reflected from the cavity 130 

  int'1 + 
g Lrc

rt c c rc i i o inc

g

f G dE
T G E t t r e E

dt


  




 
        

 
 (7) 

where G gL   is evaluated at the reference frequency ref  and 
1

1 ( ) /
g

ref p g

f
j   


 

  131 

represents the carrier density dependent detuning between ref and the spectral peak p  of gain. 132 

In a QW active material, the carrier density dependence of the detuning is weaker than in bulk 133 
material so we can take fg=1=const.  The equation combines cavity selectivity and gain dispersion 134 
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and thus can, in general, describe the performance of a gain chip with arbitrarily small or large 135 
reflectances.  In electrically pumped VECSEL designs, however, typically |ri| > ~ 0.5 [19,30], so, for 136 
realistic semiconductor active media (Δωg>~1013s-1) we can comfortably assume that the spectral 137 
selectivity of the cavity dominates over the gain dispersion: 138 

rt c

g

gL
T




   

Thus in the first approximation, we can neglect gain dispersion and write the equation in the simple 139 

form 140 

  int'1 + Lrc

rt c c rc i i o inc

dE
T G E t t r e E

dt

         (8) 

Equations (7) and (8) are the main result of this section.  141 

 142 

2.2. The full mode-locked laser model: the linear cavity.  143 

To consider the full cavity, we need to recall that with a single incident and single reflected beam in 144 

the linear cavity, 145 

( ) 'g

r rc i incE E r E   (9) 

and note that 146 

( ) ( )
'

a

inc r extE E t T
w


   (10) 

where Text= Lext/c  is half of the round-trip time of the external cavity, and raE  is the field reflected 147 

from the absorber chip,   is the dimensionless attenuation between the chips (including the out-148 

coupling, if it is located between the chips, and the attenuation in the contact layer of an electrically 149 

pumped VCSEL), defined for the intensity as usual, hence square root in the equation for the field 150 

amplitude. Technically speaking, the value needs to be complex, with the phase dependent on the 151 

sub-wavelength variation in the length Lext of the internal cavity, but in the linear cavity this can be 152 

set to zero with no loss of generality.  The dimensionless parameter w’ >1 is the ratio of the beam 153 

cross-section diameters in the gain (broader) and absorber (tighter to ensure saturation). 154 

The absorber chip itself in the linear cavity can be described as in [19] by equations symmetric to 155 
those of the gain chip, with the incident field given by 156 

( ) ( )' ( )a g

inc r extE w E t T   (11) 

( ) ( ) ( )'a a a

r ia inc rcE r E E  . (12) 

Here, the field reflected from the inside of the chip is, assuming a (detuned) Lorentzian absorption 157 
spectrum, evaluated using an equation formally identical to (7): 158 

int,

( )
( ) ( ) ( )1  ' a a

a
La a aa rc

rt ca ca rc ia ia oa inc

a

f A dE
T A E t t r e E

dt


  


 

         
 

 (13) 
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As in the case of the gain chip,  intexpca ia oar r L   , r0a and ria  being the outer and inner 159 

reflectances of the absorber cavity, 
( )a

rtT is the SA cavity round-trip time, and the absorption in the 160 

cavity, evaluated at ωref, at is quantified as 161 

 a aA L   . (14) 

Τhe detuning factor 
1

1 ( ) /
a

ref pa a

f
j   


 

needs to take into account that the SA is typically 162 

operating at the spectral slope of the absorber ( ) /ref pa a   ~1. 163 

The complex gain and absorption in the case of bulk or QW active layers (QD layers may need more 164 

complex analysis) can be parametrized using the phenomenological concepts of gain and absorption 165 

compression coefficients g , 
a , and  linewidth enhancement factors for the carrier-dependent 166 

gain and absorption ,H Ha  and the nonlinearities , a   : 167 

   1
( )

1
g H g g

g g

g g N j S
S

  


 
   
  

 (15) 

   1
( )

1
a Ha a a a

a a

N j S
S

    


 
     

 (16) 

where Sg,a are the effective photon densities in the gain and absorption chip active layers.  To write 168 

out the rate equations for carrier densities in both chips, we need the explicit expressions for these 169 

quantities, which depend on the geometry. Since 1,  1G A    , we can estimate the field in 170 

the active layer of both chips in the passive resonator approximation. In the case of active layers in 171 

the form of (single or multiple) thin (QW or QD) layers very near the field antinodes, which we shall 172 

follow in the analysis below, we can write 173 

Sg=
2( )

int

g

E , Sa=
2(a)

intE , (17) 

where the fields inside the gain and SA active layers are evaluated assuming a resonant QW position 174 
as 175 

( ) ( )
int

0

1g go

rc

i

r
E E

t r


 ;    

( ) (a)
int

1a oa

rc

ia oa

r
E E

t r


  (18) 

From these expressions, the enhancement factors can be evaluated as 176 

2 2

( ) (a)

2 2

0 0

1 1
;       

1 1

o oag

a

r r

r r
 

 
 

 
 (19) 

which in the case of |
or |~1 gives ξ(g)≈2, the well-known result for the wave enhancement factor in an 177 

isolated VCSEL cavity with the QW active layer at the resonant position.  178 
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In the case of distributed (multilayer of bulk) gain or absorbing layers occupying a substantial fraction 179 
of the cavity, the enhancement factors ξ could be taken as ξ ≈1, with the intensities calculated as  180 

  22 ( )1 /g

g o rc iS r E t  ,   22 (a)1 /a oa rc iaS r E t   but that case is not considered here.   

The effective photon densities Sg,a  then are used  in the carrier rate equations: 181 

( )
    =

( ) 1

g g g g

g

g g g g g

dN N g Nj
S

dt ed N S 
 



v
 (20) 

( )
    =

( ) 1

g p aa a

a

a a a a

NdN N
S

dt V S


 

 


v

, (21) 

where as usual gv =c/ng,  ( )a aV is the absorber recovery time,  Va  being  the (reverse) bias applied 182 

to the chip, if any.  For the carrier dependences of gain and absorption, in this paper we use the 183 

standard phenomenological expressions 184 

0( ) ln
g s

p g

tr s

N N
g N G

N N





 (22) 

0( )p a aN N     (23) 

The dependences of gain and absorption bandwidths (BW) on respective carrier densities are estimated 185 
in the first approximation as linear, i.e. 186 

0( ) ( ),
g

g g g g

g

d
N N N

dN


     

0( ) .a

a a a a

a

d
N N

dN


     

2.3. The main “observable” parameters.  187 

It is useful to establish the relations between parameters used in the model and the measurable 188 
values typically quoted in experiment, such as the threshold of laser operation, the saturation fluence 189 
of the absorber, and the modulation contrast of the SA chip.  190 
The threshold condition of the compound cavity is given by a transcendental equation which in our 191 
notations is written as 192 

0

22 2 2
20

2 2
0

  
' ' 1

1  1

a

inrercavity

a

j kLj kL
j k Li o th ia oa

i iaj kL j kL

th i o ia oa

t r G e t r A e
r r e

G rr e A r r e





 

  
         

 (24) 

where 1th thG G   and 0 01A A  are (complex) threshold gain and unsaturated absorption, 193 

and 
0 ref

k k
c


   the wave vector in vacuum at the resonant (modal) frequency. The threshold 194 

condition is taken as the lowest gain of all the multiple solutions of the transcendental equation (24), 195 
which correspond to modes of the compound cavity. The numerical solution of essentially the same 196 

problem, though in different notations, illustrates [19] that, since the cavity length inrercavity
L >>L, La, the 197 

modes are spaced closely enough for there always to be a few near the resonance of both chip 198 

resonators, essentially allowing us to count 02
1inrercavityj k L

e
  .  In that case, assuming that the gain chip 199 

and SESAM are resonant cavities, we can establish an analytical estimate for the threshold in the form 200 
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    
 

int1 11 1 1
ln 1 1i oA

th th th

oA i o

r r L
g G G

L L L r r r

 
   

  
       

 (25) 

where 201 

 
  

2
0

0

1
'

1 1

ia ca a la a

oA ia

i ca a la a

t a f L
r r

r a f L

 
 


 

 
 (26) 

is the unsaturated SA chip reflectance. 202 

The saturation fluence of the absorber in the model we use (Eq.(23)) is 203 

 

2

01

1

ia oa

sat

ia oa

A r r
F

t r








 (27) 

The reflectance contrast is estimated most easily neglecting the self-phase modulation in the SA (since  204 
the Henry factor in the absorber is usually believed to be smaller than in the amplifier) and assuming 205 
small detuning from resonance, in which case 206 

 
 

2

02
2 2

1

ia ca

sA sA oA sA a a

ia ca

t
R r r r r a L

r


 


  


 (28) 

where 207 

 
2

'
1
ia ca

sA ia

i ca

t
r r

r




 


 (29) 

is the amplitude reflectance of a fully saturated absorber. 208 

2.4. Numerical Results.  209 

The gain-chip and the saturable absorber parameters used in this section, unless specified 210 
otherwise, are listed in tables I and II, respectively. 211 

 212 
Table I.  Gain-chip parameters 213 

Parameter Nota- 

Tion 

Value Units 

back mirror amplitude 

reflectivity 

ro 0.9995  

front mirror amplitude 

reflectivity 

ri 0.7  

internal losses αi 0.001 μm-1 

effective length La 1.5 μm 

QWs cumulative thickness dg 0.024 μm 

radius of the active region ρg 3 μm 

group refractive index nrg 3.5  

confinement factor Γg 0.06  

linewidth enhancement 

factor 

αg 3  

carriers lifetime τg 1 ns 

gain compression factor εg 0.5.10-5 μm-3 
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Table II.  Saturable absorber parameters 215 

Parameter Nota- 

tion 

Value Units 

back mirror amplitude 

reflectivity 

roa 0.97  

front mirror amplitude 

reflectivity 

ria 0.565  

internal losses αia 0.001 μm-1 

effective length La 1.5 μm 

group refractive index nra 3.5  

confinement factor Γa 0.06  

linewidth enhancement 

factor 

αa 3  

carriers lifetime τa 0.03 ns 

compression factor εa 1.5.10-5 μm-3 

absorber saturation cross-

section 

σ 2.10-7 μm-3 

absorption coefficient α0 0.5 μm-1 

Coefficients of absorption 

bandwidth dependence 

dΔωa/

dNa 

Δωa0 

0.048 

 

15199 

μm3/n

s 

1/ns 

The values of the external cavity parameters are: the time of flight between the gain and the absorber 216 

cavities τ=0.02 ns, the transmission coefficient γ=1 and the ratio of the beam cross-section diameters 217 

onto the gain and the absorber chips ω’ = 3.  218 

 219 

Figures 2-4 present an example of simulated mode-locked operation of a VECSEL – SESAM 220 

configuration.  Long- and short-term time traces of photon density 
(a) 2| |rcE   are shown in Fig. 2 (a) 221 

and (b), respectively. Fig. 2(c) shows the transient of carrier densities Na and Ng corresponding to the 222 

photon density transient of Fig. 2(b). The optical spectrum of the time trace of Fig. 2 (a) is shown in 223 

Fig.2 (c).  224 
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Figure 2.  Time traces of the long-term (a) and short-term (b) evolution of the photon density 227 
reflected from the SESAM chip. (c) the corresponding evolution of the carrier densities; (d) the 228 
spectrum of (a). Gain chip current ic=0.6 mA (stable mode locking). 229 

As the modification of the pulse by a single round-trip is only moderate in the ML VECSEL, the pulse 230 

shape is fairly symmetric; however the up-chirp usual in passively mode locked semiconductor lasers 231 

is still present, if relatively modest, with the time-bandwidth product of n0.6 (the pulse duration 232 

 and the spectral width n being evaluated at half maximum) at the current shown. The chirp also 233 

manifests itself in the asymmetry and some envelope modulation of the spectrum.  234 

 235 

The evolution of the pulse duration and amplitude with current is illustrated in Fig, 3 a and b 236 

respectively. the pulse duration is in the picosecond range and, as in [19], decreases overall with 237 

current. As normal in mode-locked semiconductor lasers (see [32,33] and references therein), the 238 

pulses become longer with an increase in the absorber relaxation time.  239 
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Figure 3.  Current dependences of the pulse duration (a) and amplitude (b). In (b), the absorber recovery time 241 

is 10 ps. 242 

 243 

As in [19], no trace of the “trailing edge” self-pulsing instability was observed in our simulations; this 244 

can be attributed to both the relatively low repetition frequency and the weak pulse modification per 245 

pulse. However, at high currents, the irregular “leading edge” instability, in the form of two or, at 246 

higher currents, several non-periodically competing pulse trails (Fig. 4a) is present; its onset has been 247 

chosen as the upper extent of curves in Figure 3a. 248 

 249 
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Figure 2.  Time traces of the long-term evolution of the photon density reflected from the SESAM 251 
chip (a) and the corresponding spectrum (b). Gain chip current ic=1.2 mA (unstable operation) 252 

As in edge-emitting ML lasers, the spectral signature of this unstable regime is the spectral shape 253 

(Fig. 4b) less regular and with more envelope modulation than the spectrum of stable ML (Fig. 2b). 254 

3. VECSEL – SESAM in a folded geometry.  255 

 3.1.  Formulation of delay-differential model for the folded cavity 256 

In this section, we consider the case of geometry alternative to the linear one treated in [19] and the 257 

previous section: the folded geometry. In this case, the three “reference points” of the cavity (Fig. 5) 258 

are the output mirror (m), the gain chip (g) and the SESAM (a).   259 

 260 
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Figure 5. Mode-locked VECSEL –SESAM in folded geometry with an additional mirror. 263 

 264 

The purpose of the intermediate fully reflecting mirror is essentially for establishing the correct 265 

value of the width ratio w’.   266 

 267 

In the folded cavity designs realised so far [21] it is the gain chip that is located in the middle of the 268 

cavity (Fig. 5). In this case, the equation for the SESAM chip remains the same as Eq. (13),  269 

int,

( )
( ) ( ) ( )1  ' a a

a
La a arc

rt ca ca rc ia ia oa inc

dE
T A E t t r e E

dt

          , and we still have  270 

( ) ( )' ( )a g a

inc r a gE w E t T 
   (30) 

where Ta-g= La-g/c  is  the flight time between the gain and absorber chips, and 
( )g a

rE


 is the field 271 

reflected from the absorber chip in the direction of the gain chip. 272 

For the gain section, the equation is functionally different, taking into account reflections in two 273 

directions. For the field leaving the cavity towards the output mirror, we would have 274 

int

( )
(g ) ( )1  '

g m
Lm a grc

rt c c rc i i o inc

dE
T G E t t r e E

dt

  


        (31) 

The total field measured near the gain chip and propagating towards the output mirror then is 275 

( ) ( ) ( )'g m a g g m

r ia inc rcE r E E
     (32) 

For the field leaving the cavity towards the SESAM, we have 276 

int

( )
( ) ( )1  '

g a
Lg a m grc

rt c c rc i i o inc

dE
T G E t t r e E

dt

  


        (33) 

The total field travelling from the VECSEL gain chip towards the SESAM then is 277 

( ) ( ) ( )'g a m g g a

r i inc rcE r E E
     (34) 

Finally, the field returning to the gain chip from the mirror is 278 

( ) (g ) ( 2 )g mjm g m

inc m m r g mE r e E t T
  

   (35) 

with Tg-m the flight time between the gain chip and the mirror,  and the factor g mj
e

  taking into 279 

account wavelength-scale cavity length variation. The field returning to the gain section from the 280 

SESAM will be the same as in the linear cavity: 281 

( )g m

rE


( )g a

rE


outE

(SESAM)a

 (gain chip)g
m

( )a

rE
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The output field at the time t then is given by  282 

( ) 2( ),    1g m

out m m r g m m mE t E t T t r 
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For the carriers in the VECSEL gain cavity we have the rate equation identical to (20), but the intensity 283 

in the cavity is now due to propagation in both directions. In the plane wave approximation and, as in 284 

[23,24], assuming in this study incoherent addition of the counter propagating signals (applicable given 285 

a wide enough aperture) the intensity within a thin resonantly positioned gain layer is 286 

 
2

2 2(g ) (g )1 a mo

g rc rc

i

r
S E E

t

 
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3.2.  Results of the simulations for the folded cavity. 287 

 288 

Figure 6 illustrates the dynamics of the photon (a) and carrier (b) densities in a short folded cavity, 289 

with  40 psg a m gT T   , corresponding to the repetition rate of 12.5 GHz (in the example shown, 290 

 25 psg aT   ,  15 psm gT   ).  As in the case of the linear cavity, there is only one pulse in the cavity 291 

per round trip; however the pulse is amplified in the gain chip twice per round-trip, which thus has 292 

substantially shorter time to recover than in a linear cavity with the same overall length.  293 
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Figure 6. dynamics of the photon (a) and carrier (b) densities in a short folded cavity 295 

 296 

Figure 7 shows the pulse duration and amplitude for the case of a short folded cavity as functions of 297 

the gain chip current. As in the linear cavity, and as is typical in all mode-locked semiconductor 298 

lasers, the pulse duration is somewhat longer for longer absorber recovery time.  The current 299 

dependence of the pulse duration in this case is non-monotonic, decreasing with current at lower 300 

currents, as predicted also by [19] as well as by early generic theories of ML lasers with weak pulse 301 

modification per pulse (see e.g. [31]), but increasing at higher currents, when pulse modification per 302 

pulse is more significant, in common with most edge-emitting ML lasers [32,33]. As in Fig.3, the 303 

upper limit of the curves is set by the onset of leading-edge chaotic instability.  304 
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Figure 7.  Current dependences of the pulse duration (a) and amplitude (b) in a short folded cavity. 306 

 307 

For the relatively high repetition rate shown in Figures 6-7, the pulse parameters show almost no 308 

dependence on the relative length of the two branches of the cavity, so long as 
g a m gT T   is kept 309 

constant (note the rectangular dots in Figure 7a).  This is understandable, because given 310 

,g a m g gT T    , the recovery of the population inversion in gain chip (strictly speaking, exponential) 311 

is virtually linear and so the total depletion of the gain chip by both pulses does not depend on the 312 

relative magnitudes of the flight times ,g a m gT T  . This dependence becomes more pronounced in 313 

longer cavities, when the flight times approach g by order of magnitude.  This is illustrated in 314 

Fig. 8, calculated for  200 psg a m gT T   , or the repetition rate of 2.5 GHz.  As seen in the figure, 315 

there is an optimal relation of the cavity branch lengths in this case yielding the shortest ML pulse 316 

width, which, at least for the values of reflectances studied, corresponds to the gain chip near the 317 

middle of the cavity.  318 
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 Figure 8.  Dependences of the pulse duration (a) and amplitude (b) in a long folded cavity  320 

(  200 psg a m gT T   ) for two values of current 321 

 322 

At relatively high currents, close to the onset of the leading edge instability, the geometry affects the 323 

stability limits: with the lengths of the branches strongly unbalanced, the gain chip current limit of 324 

stability is lower (the extent of the curves in Fig. 8 corresponds to stable single-pulse emission limit).  325 

 326 

 327 

 328 
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4. Colliding-pulse mode locking configuration.  329 

 330 
4.1.  Time-delayed model  331 

We consider last an alternative, and so far hypothetic, case of the central chip being the SESAM, with 332 

the gain chip and the mirror m terminating the cavity, which is more difficult to realise (and has not, 333 

to the best of our knowledge, been realised in this form so far) but offers greater functionality, 334 

potentially offering Colliding Pulse Mode locking (CPM) option.  The equation system for this case 335 

is obtained from one for the folded cavity with the gain chip in the middle by simple permutation of 336 

the symbols g and a in the notations.  337 

 338 

Figure 9. Colliding-pulse Mode-locking  folded geometry. 339 

 340 
Indeed, in a folded cavity with the SESAM in the “middle”, the equation for the gain chip remains the 341 
same as eqn. (8) 342 

  int'1 + Lrc

rt c c rc i i o inc

dE
T G E t t r e E

dt

          

and we still have 343 

( ) ( )
'

a g

inc r a gE E t T
w

 
   (39) 

where Ta-g= La-g/c  is  the flight time between the gain and absorber chips, and 
( )a g

rE


 is the field 344 

reflected from the absorber chip in the direction of the gain chip. 345 

For the SESAM, the equation is functionally different, taking into account reflections in two 346 

directions. For the field leaving the cavity towards the output mirror, we would have 347 

 348 

int

( )
( ) ( ) ( )1  '

a m
La a m g arc

rt ca ca rc ia ia oa inc

dE
T A E t t r e E

dt

  


        . (40) 

The total field towards the output mirror then is 349 

( ) ( ) ( )'a m g a a m

r ia inc rcE r E E
     (41) 

For the field leaving the cavity towards the gain (VECSEL) chip, we have 350 

int

( )
( ) ( ) ( )1  '

a g
La a g m arc

rt ca ca ca rc ia ia oa inc

dE
T A E t t r e E

dt
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

        . (42) 

The total field travelling from the SESAM towards the VECSEL chip then is 351 

( ) (m ) ( )'a g a a g

r ia inc rcE r E E
    . (43) 

Finally, the field returning to the SESAM from the mirror is 352 

(a )m

rE


(a )g

rE


outE

 (gain chip)g

(SESAM)am

(g)
rE



Materials 2019, 12, x FOR PEER REVIEW 16 of 20 

 

( ) ( ) ( 2 )a mjm a a m

inc m m r a mE r e E t T
  

   (44) 

whereas the field returning to the SESAM from the gain section will be the same as in a linear cavity: 353 
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The output field at the time t then is given by  354 
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Inside the SESAM cavity we still have the same rate equation but the fields exist due to propagation in 355 
both directions.  In the plane wave approximation and with a thin resonantly positioned absorber, 356 

 
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2 2( ) ( )1 a g a moa
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r
S E E

t

 
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The absorber saturation fluence in the folded cavity, with either absorber position, would be the same 357 
as in the linear geometry (though effectively in the colliding pulse design it will become twice smaller 358 
with 2 pulses arriving simultaneously), and the threshold condition in the CPM cavity becomes 359 

 
  

 
2

int

2

1 11 1
1 1

i m oA m

th th

m oA m i o

r r r L
g G

L L r r r r

 

  

  
    
  

. (48) 

4.2. Calculations and results. 360 

  

Fig. 10 presents the schematic of evolution of the output photon density in a CPM configuration (a, 361 

b) and the corresponding spectrum (c), for one operating current in a short (  40 psg a m gT T   ) 362 

cavity.  The time-domain pulse trail (Fig. 10a) shows complete repetition frequency doubling 363 

compared to a linear cavity (two pulses per round trip; note the identical amplitudes of adjacent 364 

pulses and the repetition period same as in Figure 2 despite a twice longer cavity), as expected for 365 

well developed CPM operation.  However, in the spectrum, the doubling of frequency interval 366 

between modes is not complete; intermediate modes corresponding to the round-trip of the entire 367 

cavity are somewhat suppressed but still present (see inset to Fig. 10c).  Similar performance was 368 

simulated for edge emitting mode locked lasers under certain conditions [34].   369 

 370 

 371 
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Figure 10 Mode-locked VECSEL–SESAM-output mirror structure time traces of 

2| |g aE  : (a) pulse trail 374 

and (b) single pulse. (c) shows the spectrum of the time trace of (a), with a fragment in an inset.  Injection 375 
current is j=1.1 mA; absorber recovery time a=10 ps. 376 

Figure 11 shows the evolution of the CPM pulse duration and amplitude with current.  In this 377 

geometry, the simulated pulsewidth increases with current through the current range studied; as 378 

mentioned above this is typical for edge emitting lasers and can be associated with relatively strong 379 

modification of the pulse per round trip. In edge emitters, such a situation is associated with an 380 

asymmetric shape with the longer trailing edge, which indeed is observed also in our simulations 381 

(Figure 10b).  382 
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Figure 7.  Current dependences of the pulse duration (a) and amplitude (b) in the CPM design. a=10 ps 384 

 385 
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The upper extent of the curve, as in Figures 3 and 7, is the onset of the leading edge instability.  The 386 

stability range for this design, with two pulses saturating the absorber simultaneously, is substantially 387 

higher than in the case of a simple linear cavity with the same repetition rate, and the pulses, shorter, 388 

by virtue of more efficient absorber saturation, which is one of advantages of CPM [32].  The cavity 389 

thus looks suitable, in principle, for picosecond puse generation.  In the case of the femtosecond 390 

regime using a low-dispesion optically pumped active chip, the more complex, but also more reliable 391 

ring CPM geometry used in recent studies [35] may be preferable (the folded cavity studied here 392 

would need micrometer-scale balancing of subcavity lengths).  More detailed investigation is 393 

reserved for future work.  394 

5. Conclusions 395 

We have presented a simple, versatile model for the dynamics of electrically and optically 396 
pumped vertical-external-cavity surface-emitting lasers mode locked by semiconductor saturable 397 
absorber mirror. Time delays in the external cavities formed by the VECSEL gain chip and the 398 
saturable absorber mirror and output mirror are accounted for. Analytical expressions for the 399 
experimentally accessible characteristics of the system are provided, namely, the threshold gain and 400 
saturation fluence and reflection contrast of the absorber. For realistic parameters of the 401 
semiconductor cavities, the model predicts fundamental mode locking with ps pulse duration. The 402 
dependences of the pulse width and pulse amplitude, as well as the frequency chirp are investigated 403 
as a function of injection current. The model is easily generalized for different VECSEL and SA 404 
configurations and examples for the case of folded geometry with central chip being either the gain 405 
section or the SESAM are presented. Future work can concentrate on perfecting the model for the 406 
folded cavities, including account of partly coherent addition of signals as in [35] and possibly the 407 
lateral effects, as well as polarization properties and more diverse geometries.  408 
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