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Investigating Bayesian Optimization for rail network
optimization

Bob Hickish a, David I. Fletcher a and Robert F. Harrison b
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ABSTRACT

Optimizing the operation of rail networks using simulations is an on-
going task where heuristic methods such as Genetic Algorithms have
been applied. However, these simulations are often expensive to
compute and consequently, because the optimization methods
require many (typically >104) repeat simulations, the computational
cost of optimization is dominated by them. This paper examines
Bayesian Optimization and benchmarks it against the Genetic
Algorithm method. By applying both methods to test-tasks seeking
to maximize passenger satisfaction by optimum resource allocation,
it is experimentally determined that a Bayesian Optimization imple-
mentation finds ‘good’ solutions in an order of magnitude fewer
simulations than a Genetic Algorithm. Similar improvement for real-
world problemswill allow the predictive power of detailed simulation
models to be used for a wider range of network optimization tasks.
To the best of the authors’ knowledge, this paper documents the first
application of Bayesian Optimization within the field of rail network
optimization.
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1. Introduction

Improving the operation of rail networks is an on-going challenge for rail service

providers such as train operating companies and infrastructure managers. In Great

Britain, there is evidence that service providers have recognized the importance of

improving the performance of their network from the passenger perspective. For

example, customer experience is identified as one of four strategic goals by the

Technical Leadership Group [1]. To assist with improving network operation, detailed

models, for example by Yao et al. [2] and Landex and Nielsen [3], have been developed

to predict network performance from the passenger perspective. The optimization of

detailed rail network models will enable service providers to improve the performance

of their network from the passenger perspective. However, the two well-established

methods within the field of rail network optimization [Mathematical Programming and

Genetic Algorithms (GAs)] are poorly suited for this task. Mathematical Programming

requires specific model formulations that make it difficult to adequately capture the

detail of individual passenger journeys [4]. GAs can be applied with any model
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formulation (e.g. an agent-based simulation of individual passenger journeys) to find

solutions that are approaching optimal, although without any formal certainty that an

optimum is found, that is ‘good’ solutions are identified. However, because a GA

requires many computations of a model (e.g. an agent-based simulation) there is

a need to maintain a low computational cost for each model evaluation. This require-

ment is in conflict with the use of detailed simulation models because, in the case where

many passengers are being simulated, it is difficult to adequately capture passenger

journeys at low computational expense.

Bayesian Optimization (BO) has the potential to find similarly good solutions to

a GA, but in fewer model computations because it uses a predictive model of the search

space to target the selection of new candidate solutions for evaluation. GAs are well

suited to tasks with cheap-to-compute models and large numbers of optimization

variables, while BO has the potential to be computationally cheaper for tasks with an

expensive-to-compute model and few optimization variables (many established imple-

mentations currently perform well for less than approximately 25). This reduction in

computational requirement could enable the wider use of more detailed models when

optimizing a rail network, or allow good solutions to be found at lower computational

cost than with a GA. BO might therefore be an additional optimization tool for rail

network operators, especially considering that implementations are being developed to

increase the upper limit on the number of optimization variables and reduce the

computational cost of calculating its inherent predictive model. This paper investigates

BO and experimentally compares it against a GA on a range of test-tasks involving

a passenger rail network where there is a large number of operational options, that is

potential or candidate solutions to the network operation problem. Following a brief

review of GA and BO methods, this paper compares the computational costs of both

methods. To the best of the authors’ knowledge, this paper documents the first

application of BO within the field of rail network optimization.

1.1. Genetic Algorithm for optimizing rail networks

Recently GAs have been applied to tasks involving rail network operation, for example

timetabling [5,6], train control [7], and resource allocation [8]. However, typically these

tasks have required the evaluation of 104–105 candidate solutions to find a good

solution. The computational cost of the optimization procedure has often been kept

reasonable by ensuring that the models used for evaluating candidate solutions require

less than 1 second of computation time. Where this is not the case, the total computa-

tional cost of optimizing an expensive-to-compute model using a GA may be intract-

able. It is therefore desirable to find a method that can find a good solution using fewer

candidate solution evaluations. This would allow models with a greater computational

expense to be used. To keep the computational expense of the optimization procedure

reasonable an alternative approach is to consider only a small network. For example,

Wei and Yuan [5] demonstrate the use of a GA implementation on a network consist-

ing of a single line and 13 stations that required ~1.5 × 103 evaluations. However, there

are 2560 mainline stations in Great Britain (GB) [9] and a method that will scale to

realistically sized networks is desirable.
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1.2. Applications of Bayesian Optimization

There are many examples of BO being used to select the hyperparameter values of

expensive-to-compute machine learning algorithms [10,11]. Applications outside the

field of machine learning are less common but can be categorized into two purposes:

● To maximize the agreement between a model and observed data by optimally

fitting model parameters.
● To maximize the performance of a real-world entity by optimizing design and

operational model parameters.

In this paper, the BO and GA methods are compared for the latter purpose. An

example of this type of application is the use of BO by Candelieri et al. [12] to maximize

the performance of a simulated water distribution network by optimizing the pump

schedule. Candelieri et al. use BO because of its advantages when applied with expensive-

to-compute simulations. For an alternative case, Lisicki et al. [13] report that BO finds

a solution which performs approximately 50% better than that found by random search

with an equal number of evaluations. Neither Candelieri et al. or Lisicki et al. make

a quantitative comparison of BO against a sophisticated optimization method such as GA

and at the time of writing, the only identified application of BO in a transportation

network setting is by Schultz and Sokolov [14] who optimize the parameters of trans-

portation network simulators to maximize agreement with observed data.

An explicit comparison between GAs and BO is presented by Trotter et al. [15] to

compare both approaches for maximizing the performance of a distributed computing

system. However, it can be inferred that this comparison is not made for an equal budget of

candidate solution evaluations and is therefore difficult to generalize from.

Chandrashekaran et al. [16] report the number of candidate evaluations in a comparative

optimization of a speech recognition model. However, the use of a very small population

size again limits the generalizability of the conclusions.

2. Genetic Algorithm and Bayesian Optimization

As a basis for equitable comparison of BO and GA we consider the general task of

selecting the optimum value of a vector, x, which maximizes a non-negative objective

function, f xð Þ. In the case of a rail network, the objective function quantifies the

performance of the network. The vector, x; comprises n elements and exists in the

n-dimensional search space, X, bounded by the upper and lower bounds (constraints) of

each optimization variable, xi; i ¼ 1; 2; . . . n, leading to the optimization task given by

(1) subject to constraints (2) and (3).

x
� ¼ argmax

x2X
f xð Þ (1)

gj xð Þ ¼ 0 for j ¼ 1; 2; . . . ; p (2)

hk xð Þ � 0 for k ¼ 1; 2; . . . ; q (3)
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Where: x� is the global optimum and there are p equality constraints on x, defined by

gj xð Þ, and q inequality constraints, defined by hk xð Þ. For a case requiring minimization

of f xð Þ, maximization of � f xð Þ would be used.

A brief description of both GAs and BO is given in the following subsections. More

comprehensive descriptions of GAs can be found in Goldberg [17] and Mitchell [18],

and of BO in Shahriari et al. [19]. Note that within the GA literature, the objective

function is usually referred to as a ‘fitness function’, however ‘objective function’ is used

here for both cases for consistency.

2.1. Genetic Algorithm

A GA is a simple computational model of the process of natural selection in an evolving

population. At every iteration, a GA evaluates the objective function for every candidate

solution within a population. By selecting the candidates with the best objective function

scores and ‘mating’ them, the population at later generations exhibits more characteristics

of candidates with good objective function scores and converges towards the optimum.

‘Mutation’ is used to allow a GA to ‘explore’ the search space. The GA method can be

applied to many types of optimization task with any number of optimization variables and,

because it requires many (typically >104) evaluations of f xð Þ, it is well suited to tasks where
f xð Þ is cheap-to-compute. Algorithm 1 presents pseudo-code for a simple GA. An

important control parameter of the algorithm is the population size, P. The algorithm

iterates depending on a conditional statement at line 4 that is often related to the objective

function scores of the candidates found so far, or, the computational resources used. The

number of algorithm iterations used by a GA, IGA, is the final value of i in Algorithm 1. At

every iteration all of the candidates in a generation are evaluated so the number of

objective function evaluations, ηGA, required, is given by:

ηGA ¼ IGA � P (4)

Algorithm 1: Genetic Algorithm (P)

1. Initialize population, G1, with P candidates

2. Evaluate objective function for every candidate in G1

3. i ¼ 1

4. while Is-Not-Terminatedði;GiÞ
5. Giþ1 ¼ Evolve Gið Þ//select, mate and mutate candidates

6. Evaluate objective function for every candidate in Giþ1

7. i ¼ iþ 1

8. end

9. Return best candidate evaluated so far

2.2. Bayesian Optimization

To estimate the global maximum of an objective function, a BO implementation creates

an approximation of it, called a proxy function (also referred to as a surrogate model or

response surface). In comparison to the objective function, the proxy function is cheaper
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to compute and is continuous so it is ‘easier’ to find its maximum. To create the proxy

function, a probabilistic model is inferred from previous evaluations of the objective

function’s value at different locations in the search space. For this model, it is common

[10] to use a Gaussian Process (GP) regression model as is the case considered here.

The proxy function, μ xð Þ, and its uncertainty, σ xð Þ, are respectively the mean and

standard deviation of the GP model. At each iteration of a BO algorithm, the objective

function is evaluated and the new data is used to update the probabilistic model and,

hence, the proxy function. Information from the proxy function is used to create an

acquisition function, whose global maximum indicates where in the search space the

objective function should next be evaluated. The acquisition function is important to

the success of BO because it ‘guides’ the search, but finding its maximum increases the

computational expense of the whole process, particularly for tasks with more than

approximately 25 dimensions [20]. Nonetheless for tasks with less than approximately

25 dimensions, it is often cheaper than evaluating an expensive-to-compute objective

function and consequently the BO method is often well suited to task of this type. For

higher dimension tasks, BO implementations are still being developed that keep the cost

of maximizing the acquisition function reasonable, for example Li et al. [21]. Algorithm

2 presents pseudo-code outlining BO and is further described in the appendix. BO only

uses one objective function evaluation per iteration; therefore, the number of expensive-

to-compute evaluations, ηBO, is equal to the value of i at the end of Algorithm 2.

Algorithm 2: Bayesian Optimization()

1. Initialize candidate, x1
2. y1 ¼ f x1ð Þ//sample objective function

3. D ¼ x1; y1½ �//data set of corresponding x and y values

4. Calculate μ xð Þ and σ xð Þ using D

5. i ¼ 1

6. while Is-Not-Terminated i;Dð Þ
7. Create acquisition function, α xð Þ; using μ xð Þ and σ xð Þ
8. xiþ1 ¼ argmax

x2X
α xð Þ

9. yiþ1 ¼ f xiþ1ð Þ
10. D ¼ D; xiþ1; yiþ1½ �f g//augment new data to data set

11. Calculate μ xð Þ and σ xð Þ using D

12. i ¼ iþ 1

13. end

14. Return best candidate evaluated so far

2.3. Comparing the computational cost of Genetic Algorithms and Bayesian

Optimization

Here, the total computational cost of each method is decomposed into the cost of all the

objective function evaluations, Γ, and the cost of computing the algorithm (excluding

objective function evaluations), �. Γ is the product of the number of evaluations, η, and
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the cost of a single evaluation, γ. Note that when variables apply to both approaches,

superscripts are used to denote variables specific to an approach. Because of the

multiplier, P, in (4), it is expected that ηGA > ηBO and consequently that ΓGA > ΓBO.

However, because BO involves the expensive step of maximizing an acquisition func-

tion at every iteration, �GA
<�BO resulting in a trade-off between the low algorithm

cost, high objective function evaluation cost of GAs and the high algorithm cost, low

objective function evaluation cost of BO. The case of BO being cheaper than a GA is

captured by (5) which demonstrates that the value of γ is important for determining the

best method. Note that γ is constant between the approaches and is assumed to be

constant for all x.

�BO þ γ � ηBO < �GA þ γ � ηGA (5)

Because the number of objective function evaluations and the number of algorithm

iterations are related, the value of � is dependent on η. In the case of a GA this is

a linear dependency. However in the case of BO with a GP model, calculating the model

with i data points requires inversion of a square matrix of dimension i. The computa-

tional cost of this is O i3ð Þ. Consequently, the value of �BO may become fourth order for

large ηBO. However, developing methods to compute large matrix inversions at reduced

cost is an active area of research [22,23] so this is not seen as a fundamental limitation

of BO. Furthermore, although not utilized here with BO, Gardner et al. [24] present

a method using parallel computing techniques that can reduce the cost of computing

a GP model can be reduced to O i2ð Þ:

3. Experimental comparison of a Genetic Algorithm and Bayesian

Optimization

For an experimental comparison, specific GA and BO implementations were applied to

a range of test-tasks involving an expensive-to-compute objective function that simu-

lates passengers using a rail network and captures their satisfaction. For an unambig-

uous comparison, the globally optimal solutions (x*) must be known. For this reason,

the test-tasks have been chosen so that x* can be calculated analytically.

3.1. The test-tasks

Two examples of demands in rail network operation are:

● The allocation of finite rolling stock between scheduled train paths [25].
● The choice of which areas of the rail network should receive investment for

increased line speed [26].

These general demands are synthesized with a family of rail networks to create

a family of test-tasks that involve the allocation of a limited number of identical

carriages between trains and the setting of line speeds around the network. The

number of carriages allocated to a train determines its passenger capacity but, for

these test-tasks, does not affect any other characteristics of the train. For the purpose
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of the test-tasks, any number of carriages greater than zero can be allocated to a train

provided that the limit on the total number of carriages available is not exceeded. The

passenger capacity of a train affects the performance of the network because it is

related to the comfort and duration of passenger journeys. A track section linking

adjoining stations in the test-task network is defined as a line that is homogenous and

bi-directional. In these test-tasks, the line speed can be one of two alternatives:

a ‘basic’ level and an ‘upgraded’ level. The line speed affects passenger journey

times and hence the network performance. For the test-tasks, the carriage allocations

and line speeds are the optimization variables whose values are chosen to maximize

network performance from the perspective of passengers and for the greatest number

of passengers.

The family of networks used in the test-tasks are chosen to have a high degree of

symmetry so that the global optimum can be calculated analytically. A radial network

design is used where the central station is connected to outer stations by two lines. The

networks are named B2, B3, and B4 where the number refers to the number of links in

the network.

Figure 1 shows the topographies of the networks with a circle representing a station

and a connecting edge representing a railway line. Each line within the network has one

train operating upon it and the trains do not transfer between lines. Table 1 displays the

number of lines and trains in the test-networks and how this controls the number of

optimization variables. The number of trains within the network is equal to the number

of lines within the network so we only state the number of trains from here on in. The

Figure 1. Topographical representation of three different sized networks from the family of networks
used for test-tasks. A circle represents a station. An edge between two stations represents a bi-
directional line upon which trains travel. The name of the network topography is displayed below
each network.

Table 1. The number of lines and trains for the three different
sized networks used in test-tasks.

Network topography name B2 B3 B4

Number of lines 4 6 8
Number of trains 4 6 8
Number of optimization variables 8 12 16
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trains operate to a symmetrical timetable and all lines have a dedicated platform at their

connected station. The passengers using the network (defined as the passenger load)

have a symmetrical origin-destination-time matrix. It is recognized that these networks

are simplistic and idealized relative to real world networks, however their properties are

sufficient to test the relative performance of the GA and BO methods in preparation for

application to more realistic cases.

Although the BO implementation tested here cannot be scaled to tasks representing

the whole GB network in this way, that is every individual line represented by an

optimization variable, there are opportunities at regional and individual train opera-

tor scales. While these tasks present a computational challenge at present, new

developments such as a BO implementation allowing more optimization variables

might be used [21].

3.2. Formal definition of the test-tasks

Here the general definition of constrained optimization given by (1), (2) and (3) is modified

to the family of test-tasks described in the previous section. The tasks can be described as

optimizing the distribution ofM identical carriages amongst R trains and selecting the line

speed of each of the L lines from S discrete choices. The vector, x, is R + L dimensional with

x1; x2; . . . :xR describing the number of carriages allocated to trains 1 to R and

xRþ1; xRþ2 . . . xRþL describing the line speeds of lines 1 to L. The form of x is therefore

shown by:

x ¼ x1; x2; . . . :xR; xRþ1; xRþ2 . . . xRþL½ � (6)

The general objective function, f xð Þ, is modified to the specific function F x; λ; θð Þ which
quantifies network performance from the passenger perspective where λ describes the

network parameters other than carriage allocations and line speeds (e.g. station loca-

tions, train performance, timetable) and θ describes the passenger load. Neither λ or θ

are optimized. The test-tasks have no constraints placed on the choice of line speed (i.e.

all lines can have the maximum line speed). Furthermore, because there is no penalty

associated with increasing the line speed, the globally optimal solution will have all line

speeds maximized – in real-world application costs such as energy and wear and tear

are associated with higher line speeds so a cost function penalizing these aspects could

be accommodated. However, in this task, there is a constraint on the carriage alloca-

tions that a maximum of M carriages can be distributed between all the trains,

captured by:

X

k¼R

k¼1

xk � M (7)

A negative number of carriages cannot be allocated, this is captured by (8), and the

limit on the number of choices of line speed is captured by (9).

0 � xk for 1 � k � R (8)

1 � xk � S for Rþ 1 � k � Rþ L (9)
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The formal definition of the family of test-tasks can therefore be written as (10) subject

to (7)–(9).

x
� ¼ argmax

x2X
F x; λ; θð Þ (10)

3.3. Quantifying solution performance

The objective function F x; λ; θð Þ quantifies the performance of a network, described by

x and λ and carrying passenger load, θ, from the passenger perspective. To calculate the

value of the objective function, an agent-based simulation is used that models indivi-

dual passengers using a rail network to make their journeys. The quality of the

individual passenger journey is quantified and all passenger journeys aggregated to

give a network score. This model has been developed by the authors and is fully

described by Hickish et al. [27]. The value of F x; λ; θð Þ is expressed on the percentage

scale from 0 to 100%. 100% relates to the known global maximum, 0% relates to the

known global minimum. The experimental parameter, F�, is introduced to describe the

target performance of the solution. F� is the smallest value of F x; λ; θð Þ that must be

found by an implementation before terminating with a result. Candidates (x) for which

F x; λ; θð Þ � F� are referred to as acceptable solutions.

3.4. Methodology

Experiments were carried out in MATLAB 2017b using its proprietary optimization

functions, here denoted ga and bayesopt. The number of objective function evaluations

used by ga and bayesopt was measured for eight ‘jobs’, that is a specific combination of

test-task and F� that is input to a function. A test-task is defined by the number of

trains in the network and the number of carriages to be allocated. To collect experi-

mental data, a job is submitted to a function and the algorithm iterates until an

acceptable solution is found or a limit on the number of objective function evaluations

is reached. The number of objective function evaluations required by the algorithm is

recorded for the experiment. Because the algorithms are non-deterministic it is neces-

sary to repeat, independently, each experiment multiple times and describe distribu-

tions. For comparison between the GA and BO methods, identical tasks are submitted

to the algorithms. Because the control parameters of each implementation differ,

attainment of identical terminal objective function values is used to ensure like-for-

like comparison.

For the GA experiments, the default ga settings were used with a cross-over rate of

0.5, a mutation rate proportional to the initial range of values in the population

(shrinking to zero at the final generation), a uniform stochastic selection function

and a population size of 30. For the BO experiments, the bayesopt default Matern 5/2

kernel was used, with the Probability-of-Improvement acquisition function and an

exploration ratio of 0.5. Computational cost is measured using wall clock time. This

is machine specific, but gives an indication of the relative behaviour of the algorithms

and is comparable across jobs since they were performed on the same machine, an Intel

Xeon Dual Processor @ 2.4 GHz.
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3.5. Results

Figure 2 is a box and whisker plot comparing the number of evaluations required by ga

and bayesopt, ηGA and ηBO, for eight jobs. Each box and whisker represents, on

a logarithmic scale, a distribution from 32 repeats of an experiment. Distributions for

the same job are plotted next to each other and separated by vertical dashed lines to

allow easy comparison. The job and method that each distribution relates to is dis-

played on the x-axis. The notation ‘J1’, ‘J2’, ‘J3’, etc. can be cross-referenced against

Table 2 to observe the experimental parameters defining the job. A full factorial design

for three experimental parameters and two levels has been used. An arbitrary limit of

1.6 × 104 objective function evaluations was used which corresponds to approximately

48 hours of objective function computation time per experiment. This limit only affects

the median and quartile results of ‘J6,GA’, but still allows a discernible difference with

‘J6,BO’. The box notches indicate a 95% confidence interval of the median. When

comparing distributions for the same job but different methods, there are no cases in

which the notches overlap indicating that, on average, ηGA > ηBO with approximately

95% confidence [28]. The features of the ‘J6,GA’ plot are indiscernible because for 31 of

Figure 2. Box plots showing the distribution of the number of objective function evaluations
required, η, for eight different jobs. The y-axis is on a log10 scale. Each box plot represents
a distribution of 32 repeat experiments. Table 2 displays the experimental parameters of each job
described by the ‘J number’. The whiskers extend to a maximum of the inter-quartile range below
and above the 25th and 75th percentiles respectively. Data outside this range is considered an
outlier and is shown by a cross.

Table 2. The experimental parameters of the eight jobs for which the BO and GA methods are
compared in Figure 2.

J1 J2 J3 J4 J5 J6 J7 J8

Trains 4 4 4 4 8 8 8 8
Carriages 8 8 48 48 8 8 48 48
F� (%) 90 95 90 95 90 95 90 95
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the experiments, the GA implementation did not find an acceptable solution within the

limit of objective function evaluations. Comparing all eight jobs, the mean of the factor

differences between ηBO and ηGA is 43 with a standard deviation of 76. Furthermore,

excluding J6 where the comparison is not valid, the inter-quartile ranges of the BO

distributions are narrower (the log scale of the y-axis means this is true even for J7),

indicating that BO is more consistent in the number of objective function evaluations

required to find an acceptable solution.

3.5.1. The number of objective function evaluations and target performance

Following the comparison to a GA, the relationship between the number of objective

function evaluations required by bayesopt and the target solution performance was

investigated. Five different tasks were considered and the y-axis value of Figure 3 is the

logarithm of the median from 24 repeats of the experiment.

The data shows a positive relationship between F� and log10ðη
BOÞ that is at least

linear. This means that the relationship between F� and ηBO is at least exponential. The

increase in ηBO is more sensitive to the number of trains in the task than the number of

carriages. It can be seen that for the two most difficult problems (six and eight trains, 48

carriages) there is no data for F�> 99% and 95.5% respectively. This is because after

4 days of computation, F� had not been increased and the experiment terminated.

While this appears limiting it is worth nothing that, in the case of the eight train task,

relaxation of the target performance to 95% enables the target solution performance to

be reached in only 1 hour and 20 min of computation. The rapid increase in ηBO for

solutions close to the optimum is believed to be because of the GP model and not

inherent to BO. This is further explained in the discussion section.

Figure 3. Scatter plots to show the number of objective function evaluations required by Bayesian
Optimization, ηBO, at varying target performance, F�. Data is shown for five different tasks. The
values plotted are the median of a distribution of 24 repeat experiments. The y-axis displays ηBO on
a log10 scale.
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3.5.2. Algorithm computation time

To investigate the relationship between ηBO and the algorithm time of BO, �BO, Figure 4

displays the measured total computation time for the bayesopt algorithm at varying

iterations with different numbers of trains. The computation time required was found to

be insensitive to the number of carriages so this is not displayed. For each task the data

plotted is the median from eight repeat experiments. Figure 4 shows that the computa-

tional cost of the bayesopt implementation grows rapidly at later iterations of the algo-

rithm. This is thought to be specific to the use of a GP model within BO and the associated

matrix inversion, rather than inherent to the BO approach. The data also shows that the

algorithm computation time increases faster for tasks with more trains. This is because

increasing the number of trains in the task increases the GP model matrix dimensions and

the associated cost of inverting it. Taking the logarithm of �BO and ηBO, to determine the

order of computational cost as a function of ηBO, O ηb
� �

, gives b ¼ 2:73 . However, testing

to larger values of ηBO would be required to confirm that b is not larger.

4. Discussion

The results in Figure 2 show that for all the test-tasks, the BO implementation finds

acceptable solutions in significantly less objective function evaluations than the GA. It is

not expected that this is unique to the test-tasks. However, the results in Figure 3

indicate that increasing the target performance of the solution leads to an at least

exponential increase in the number of objective evaluations required by BO. This is

thought to be because in general, for jobs with a high target performance, a proxy

function which accurately models the objective function is required. This demands

a higher density of evaluations but when many evaluations become clustered in one

Figure 4. The total algorithm computation time of the Bayesian Optimization implementation, ΠBO,
at increasing objective function evaluations, ηBO. This relationship is investigated for three different
tasks. The value displayed by each marker is the median from eight repeat experiments.
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region the ability of BO to effectively select new candidates is reduced [29]. In addition

to the increase in objective function evaluations, the results in Figure 4 indicate that

there is a super-linear relationship between the number of evaluations and the algo-

rithm cost. This is thought to be because of the matrix inversion when calculating a GP.

Both these effects are thought to be a consequence of implementing BO with a GP

model rather than inherent in the BO method. Investigating the effect of using

a different probabilistic model within the BO is an area for future investigation.

The results indicate that for certain tasks BO may find ‘good’ solutions in signifi-

cantly fewer objective function evaluations than a GA. For tasks involving expensive-to-

compute objective functions, this leads to a reduction in total computational expense.

When a GP regression model is used as the probabilistic model within BO, increasing

the quality of the solution required significantly increases this total expense. However if

accelerated techniques for calculating GP models, such as the one developed by

Gardner et al. [24], can be implemented with the BO method, this effect might be

reduced. The threshold solution quality and computational cost of one evaluation (γ)

for which BO is cheaper than GA, are task specific. As identified by McLeod et al. [29] it

is likely that in applications where the target performance for the solution is high,

a multi-strategy optimization method would be most effective, that is switching from

BO to GA (or another alternative).

5. Conclusions

GAs are a well-established optimization method. However, because they typically

require, for real-world applications, in the order of 104 objective function evaluations

or more, there is a pressure to keep the computational cost of an objective function

evaluation low. BO uses information from all previous evaluations of the objective

function to guide the selection of new candidate solutions so that the most beneficial

ones are targeted. This means that BO has the potential to find solutions of a similar

quality to a GA but in fewer objective function evaluations and, for tasks with

expensive-to-compute objective functions, be computationally cheaper. This was

experimentally confirmed using a range of test-tasks where the mean factor difference

between the numbers of evaluations required by the methods was 43 with standard

deviation of 76. However, due to the overhead in the algorithm of the BO implementa-

tion tested, a super-linear relationship was found between the total algorithm cost and

the number of objective function evaluations required. Furthermore, the relationship

between the number of objective function evaluations required and improving solution

quality is at least exponential. This is thought to be an effect of using a GP model within

the BO algorithm and not inherent to the BO method itself. This means that the BO

implementation tested is better applied to tasks involving expensive-to-compute objec-

tive functions where approximate answers are satisfactory and the budget for computa-

tional expense is small. Two approaches which may improve the solutions found by BO

are to either: improve the probabilistic model used within BO, or, sequentially combine

BO with GA for a multi-strategy optimization method. The experiments in this paper

are conducted using a family of tasks with up to 16 optimization variables. To further
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evaluate the suitability of BO for the optimization of expensive-to-compute transporta-

tion network models, investigation of a wider range of tasks (e.g. train scheduling or

driving tasks) and a greater number of optimization variables is a target for the next

stages of research in this area.

Nomenclature

f xð Þ A general objective function
μ xð Þ A proxy function
σ xð Þ An uncertainty function
α xð Þ An acquisition function
F x; λ; θð Þ A specific objective function
x
� Solution vector
x Candidate vector
n Number of optimization variables in a task
λ Fixed network parameters
θ Passenger load
m Number of carriages to be allocated
R Number of trains
L Number of lines
S Number of line speed choices
F� Target performance of solution
η Number of objective function evaluations used
γ One objective function evaluation computational cost (seconds)
Γ Evaluating the objective function computational cost seconds)
� Algorithm computational cost (seconds)
I Number of algorithm iterations
P GA population size
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Appendix

Figure 5 illustrates the early stages of the BO procedure, given in Algorithm 2 pseudo-code for the
general BO approach. The x-axis represents the value of the optimization variable, x, and the left
ordinate represents both the value of the objective function, f xð Þ, its proxy function, μ xð Þ, and the
uncertainty about the proxy function, μ xð Þ � σ xð Þ. The right ordinate represents the value of the
acquisition function, α xð Þ. The first stage is to evaluate f xð Þ at the initial candidate, x1, whose
location is shown by a square marker (line 2 of Algorithm 2). Stage 2 shows that this information is
used to create an initial μ xð Þ that models what is known about f xð Þ at this stage (line 4 of
Algorithm 2). A corresponding σ xð Þ is also calculated and combined with μ xð Þ to calculate the
acquisition function. Stage 3 shows that α xð Þ increases further away from x1 because of the
increased uncertainty on the value of f xð Þ. Stage 3 also shows the maximum of the acquisition
function with a triangle marker. The x-axis value of this maximum is x2 (line 7 of Algorithm 2)
which is then used to evaluate f xð Þ in Stage 4, shown by a square marker (line 9 of Algorithm 2).
Stage 4 shows a circle marker to represent that data from previous samples remain in the
probabilistic model and because there is now more data, μ xð Þ better approximates f xð Þ than in
Stage 2 with reduced σ xð Þ in the region around the second observation. Stages 5 and 6 demonstrate
that maximizing α xð Þ and calculating μ xð Þ and σ xð Þ are two important processes that are repeated
in every iteration of the BO approach.
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Figure 5. Illustration of six of the early stages in the BO approach. The objective function, f xð Þ, is
shown by a solid line, the proxy function, μ xð Þ, is shown by a dotted line and the uncertainty about
the proxy function, μ xð Þ � σ xð Þ, is shown by a dash-dot line. The values of f xð Þ, μ xð Þ and μ xð Þ � σ xð Þ
are plotted on the left ordinate. The acquisition function, α xð Þ, is shown by a dashed line and its
value plotted on the right ordinate. The x-axis represents the variable, x, being optimized.
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