
This is a repository copy of A Video-based Attack for Android Pattern Lock.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151216/

Version: Accepted Version

Article:

Ye, G, Tang, Z, Fang, D et al. (4 more authors) (2018) A Video-based Attack for Android
Pattern Lock. ACM Transactions on Privacy and Security, 21 (4). 19. ISSN 2471-2566

https://doi.org/10.1145/3230740

© 2018, ACM. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Privacy and Security (TOPS), https://doi.org/10.1145/3230740.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

39

A Video-based Atack for Android Patern Lock

GUIXIN YE, ZHANYONG TANG∗, DINGYI FANG, XIAOJIANG CHEN, Northwest University,

China

WILLY WOLFF, Lancaster University, U. K.

ADAM J. AVIV, Naval Academy, U.S.A.

ZHENG WANG∗, Lancaster University, U. K.; Xi’an University of Posts & Telecommunications, China

Pattern lock is widely used for identiication and authentication on Android devices. This article presents a
novel video-based side channel attack that can reconstruct Android locking patterns from video footage ilmed
using a smartphone. As a departure from previous attacks on pattern lock, this new attack does not require
the camera to capture any content displayed on the screen. Instead, it employs a computer vision algorithm
to track the ingertip movement trajectory to infer the pattern. Using the geometry information extracted
from the tracked ingertip motions, the method can accurately infer a small number of (often one) candidate
patterns to be tested by an attacker. We conduct extensive experiments to evaluate our approach using 120
unique patterns collected from 215 independent users. Experimental results show that the proposed attack
can reconstruct over 95% of the patterns in ive attempts. We discovered that, in contrast to most people’s
belief, complex patterns do not ofer stronger protection under our attacking scenarios. This is demonstrated
by the fact that we are able to break all but one complex patterns (with a 97.5% success rate) as opposed to
60% of the simple patterns in the irst attempt.

We demonstrate that this video-side channel is a serious concern for not only graphical locking patterns
but also PIN-based passwords, as algorithms and analysis developed from the attack can be easily adapted to
target PIN-based passwords. As a countermeasure, we propose to change the way the Android locking pattern
is constructed and used. We show that our proposal can successfully defeat this video-based attack. We hope
the results of this article can encourage the community to revisit the design and practical use of Android
pattern lock.

CCS Concepts: · Security and privacy → Security services; Authentication; Graphical / visual pass-
words; Authorization;

Additional Key Words and Phrases: Pattern lock, Fingertip movement, Video-based attack, Sensitive informa-

tion, Object tracking, Authentication mechanism

ACM Reference Format:

Guixin Ye, Zhanyong Tang∗, Dingyi Fang, Xiaojiang Chen, Willy Wolf, Adam J. Aviv, and Zheng Wang∗. 2018.
A Video-based Attack for Android Pattern Lock. ACM Trans. Priv. Sec. 9, 4, Article 39 (℧arch 2018), 31 pages.
https:⁄⁄doi.org⁄10.1145⁄3230740

Extension of Conference Paper: a preliminary version of this article entitled ªCracking Android Pattern Lock in Five
Attempts" by G. Ye et al. appeared in The Network and Distributed System Security Symposium (NDSS), 2017 [Ye et al.
2017].
∗Corresponding authors: Zhanyong Tang and Zheng Wang.
Authors’ addresses: Guixin Ye, Zhanyong Tang∗, Dingyi Fang, Xiaojiang Chen, Northwest University, China, gxye@stumail.
nwu.edu.cn, {zytang,dyf,xjchen}@nwu.edu.cn; Willy Wolf, Lancaster University, U. K., w.wolf@lancaster.ac.uk; Adam
J. Aviv, Naval Academy, U.S.A., aviv@usna.edu; Zheng Wang∗, Lancaster University, U. K.; Xi’an University of Posts &
Telecommunications, China, z.wang@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and
the full citation on the irst page. Copyrights for components of this work owned by others than AC℧ must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speciic permission and⁄or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing ℧achinery.
2471-2566⁄2018⁄3-ART39 $15.00
https:⁄⁄doi.org⁄10.1145⁄3230740

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

https://doi.org/10.1145/3230740
https://doi.org/10.1145/3230740

39:2 Ye, G. et al

1 INTRODUCTION

Graphical-based passwords, like the Android pattern lock, are widely used as a protection mech-
anism to prevent sensitive information leakage from mobile devices. It is preferred by many users
over PIN- or text-based passwords, as psychology studies show that the human brain remembers
and recalls visual information better than numbers and letters [De Angeli et al. 2005; Standing
et al. 1970; Weiss and De Luca 2008]. According to a recent study, 40% of the Android users use
patterns to protect their devices instead of a PIN [Bruggen 2014]. Pattern lock is also used by
many critical applications for authentication. For example, Alipay, the largest third-party online-
payment platform with over 450 million users in China, uses pattern lock as part of the login
authentication. Considering its widespread usage, a security breach of the pattern lock could lead
to serious consequences.

Security experts have demonstrated several ways to launch an attack for pattern lock in the past.
These include thermal [Abdelrahman et al. 2017], smudge [Aviv et al. 2010] andWiFi attacks [Zhang
et al. 2016]. However, these previous attacks all rely on assumptions that are often too strong to
realize in practice, and as a result, the attack is unlikely to be successfully launched. For examples,
thermal and smudge attacks can be easily disrupted by other on-screen operations after drawing
the PIN or pattern, and they are less efective on lock patterns that contain multiple overlaps;
wireless based attacks, on the other hand, require the environment to remain static, because any
moving object nearby can interfere the wireless signal.
Recently, video-based analysis is shown to be efective in reconstructing PIN- or text-based

passwords. Some of the early successes in this area rely on video footage ilmed using a camera
directly facing the screen or the keyboard [Balzarotti et al. 2008; Kuhn 2002]. Latest work shows
that this limitation can be lifted by exploiting spatial-temporal dynamics of the hands during
typing [Shukla et al. 2014]. Despite the success of video-based attacks on PIN- and text-based
passwords, no work so far has exploited video-based side-channels to crack pattern lock. To do so,
the attacker must deal with the fundamental diference between graphical patterns and PIN-or text-
based passwords1. He must be able to map the user’s ingertip movements to a graphical structures
and to translate the graphical structure into locking patterns. To overcome these challenges requires
new methods and analysis to be constructed in the new application context of pattern lock.
In this article, we present a novel approach to crack Android pattern lock using video footage

that captures the user’s ingertip motions when drawing the pattern. Unlike prior work on pattern
lock attacks such as the thermal [Abdelrahman et al. 2017] and smudge attacks [Aviv et al. 2010],
our approach does not require the video footage or images to be captured by a camera directly
faced the screen. Furthermore, the video can be ilmed at a distance of two meters away from
the user in public places. Such a distance is less likely to raise suspicion compared to shoulder
suring [Rogers 2007] that requires a closer observation distance to have a clear sight of the content
displayed on the screen. A recent study has shown that shoulder suring is not perceived as a
serious threat by many mobile users because to launch the attack an adversary has to stay close
to the target [Eiband et al. 2017]; and as a result, many users do not take extra protection when
entering sensitive information in public spaces. As a departure from prior approaches, our attack is
more likely to succeed because the adversary can stay further away from the target and the attack
does not rely on any information on the screen.

Approach. To infer the user’s locking pattern, the attack uses a computer vision algorithm to
track the ingertip motions from the video. Using the geometry information extracted from the
ingertip motions, it then maps the tracked ingertip locations to a small number of candidate

1A pattern essentially is a graphical shape with continuous points. This is diferent from a PIN-or text-based password
consisting of discrete characters.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:3

patterns to be tested on the target device. We show that an adversary can employ a set of empirical
heuristics and algorithms developed in other domains to overcome a range of practical issues to
successfully launch the attack. This set of issues include how to translate the video footage from
the camera’s perspective to the user’s, how to identify the start and the end of pattern drawing,
how to rank candidate patterns, etc.

Results. We thoroughly evaluate our approach on a large number of locking patterns, including
120 unique patterns collected from independent users. The experiment results show that our
approach is highly accurate in inferring candidate patterns and as a result, an attacker can unlock
the target device with a success rate of over 95% (up to 97.5%) in ive attempts. We demonstrate
that, in contrast to many people’s belief, complex locking pattern is less secure than a simpler one
under our attacking methodology. We also show that the algorithms and analysis developed in this
attack can be used to target PIN-based passwords with a high success rate. As a countermeasure,
we propose to change the way how a locking pattern is formed and used. We show that by adding
some randomness to pattern drawing, our countermeasure can signiicantly increase the diiculties
for launching the video-based attacks.

Contributions. The key contribution of this article are summarized as follows.

Ð This is the irst work to exploit the video side-channel to automatically reconstruct Android
pattern lock using computer vision algorithms. (Section 4).

Ð We identify a new vulnerability. In our attacking scenario, ilming can be carried out at a
distance of two meters away from the user and the camera does not need to directly face the
target device (Section 3). Such a camera setting makes our attack less likely to raise suspicion,
but is more likely to succeed when compared to direct observation, e.g. shoulder suring.

Ð We discover a counter-intuitive inding. The experimental results suggest that complex
patterns are more vulnerable under video-based attacks (Section 7.1). This inding debunks
many people’s conception that more complex patterns lead to stronger protection. Therefore,
this work sheds new insights on the practical use of pattern lock.

Ð We present a new countermeasure. We show that by making some small modiications to
how the pattern lock is formed, a simple yet efective countermeasure can be proposed to
signiicantly reduce the risk of the presented attack.

2 ANDROID PATTERN LOCK

Pattern lock is a popular authentication mechanism for Android touch-screen devices such as
mobile phones, smart watches and tablets. ℧any users prefer to use pattern lock because they are
easier to be recalled over alphanumeric characters [Standing et al. 1970; Weiss and De Luca 2008].
To unlock a device protected with pattern lock, the user is asked to draw a predeined sequence of
connected dots on a pattern grid2 (see Figure 2e).
There are several rules for creating an Android pattern: (1) a pattern must consist of at least

four dots; (2) each dot can only be visited once; and (3) a previously unvisited dot will become
visited if it is part of a horizontal, vertical or diagonal line segment of the pattern. Considering these
constraints, the total number of patterns on a 3 × 3 grid is 389,112 [Uellenbeck et al. 2013]. Given
the large number of possible patterns, performing brute-force attacks is inefective, especially for
the patterns with complex structures [Kelley et al. 2012; ℧azurek et al. 2013], because the device
will be automatically locked after ive failed tries. Previous works also show that a brute-force
attack is likely to fail on patterns with complex structures [Kelley et al. 2012; ℧azurek et al. 2013].

2In this article we use the Android default pattern grid with 3 × 3 dots, unless otherwise stated.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:4 Ye, G. et al

(a) The video was
recorded from a
distance of 2.5 meters.

(b) The device screen
seen from the video
ilmed in (a).

(c) An outdoor sce-
nario.

(d) The device screen
seen from the video
ilmed in (d).

Fig. 1. Examples of scenarios in which a mobile phone camera is used to film the unlocking process. In these

scenarios, the camera does not need to have a clear sight of the screen.

3 THREAT MODEL

In our threat model, we assume an adversary wants to access some sensitive information from or
to install malware on a target device that is protected by pattern lock. This type of attack is mostly
likely to be performed by an attacker who can physically access to the target device for a short
period of time (e.g. via attending a meeting or a party where the user is present). To quickly gain
access to the device, the attacker would like to obtain the user’s locking pattern in advance.
The attack starts from ilming how the user unlocks the device. Video recording can be done

on-site or ahead of time. Because ilming can be carried out from a distance of as far as 2 meters
using a mobile phone camera (or about 9 meters using a DSLR camera) and the camera does not
need to directly face the target device, this activity often will not be noticed by the user. ℧oreover,
given that many users use the same pattern across devices and applications, the pattern obtained
from one device may also be used to break the user’s other devices.

Examples of Attacking Scenarios. Figure 1 illustrates two day-to-day scenarios where ilming can
be performed without raising suspicion to many users. The ilming camera had a left- or right-front
view angle from the target device indoor or outdoor and did not directly face the screen of the
target device. Due to the ilming distance (2-3 meters), the recoded video typically does not have a
clear vision of the content displayed on the screen as shown in Figure 1.

Assumptions. Our attack requires the video footage to have a vision of the user’s ingertip that
was involved in pattern drawing as well as part of the device. We believe this is a reasonable
assumption because in practice many users often do not fully cover their ingers and the entire
device when drawing a pattern. This is particularly true when holding a large-screen device by
hands. To launch the attack, the attacker needs to know the layout of the grid, e.g. whether it is a
3 × 3 or a 6 × 6 grid. This can be simply decided by seeing target device.

4 OVERVIEW OF OUR ATTACKING SYSTEM

In this section, we give an overview of our attacking system which analyzes the user’s ingertip
movement to infer the locking pattern3. The system takes in a video segment that records the entire
unlocking process. It produces a small number of candidate patterns to be tested on the target
device. Figure 2 depicts the ive key steps of our attack:

1 Video Filming and Preprocessing: The attack begins from ilming how the pattern is drawn.
This can be done at a distance of 2 ś 3 meters away from the user using a mobile phone rear camera.
After recording, our system can automatically cut out a video segment that contains the entire

3A simple variant method of the system can also break PIN-based passwords. This is demonstrated in Section 7.9.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:5

-60 -30 0 30 60

-60

-30

0

30

60

-60 -30 0 30 60

-60

-30

0

30

60

(a) Video footage

1 2

(b) Marked tracking areas (c) Fingertip trajectory
(camera’s perspective)

3

(d) Transformed trajectory
(user’s perspective)

4

(e) Candidate patterns

5

(f) Correct pattern

Attacker AttackerOur system

Fig. 2. Overview of the atack. Our system takes in a video segment that records the unlocking process

(a). The adversary first marks two areas of interest on the first video frame (b): one contains the fingertip

involved in patern drawing, and the other contains part of the device. Our system then tries to track the

fingertip’s location w.r.t. to the device. The tracking algorithm produces a fingertip movement trajectory from

the camera’s perspective (c) which is then transformed to the user’s perspective (d). Finally, the resulted

trajectory in (d) is mapped to several candidate paterns (e) to be tested on the target device (f).

unlocking process (Section 5.1). The attacker then need to mark two areas of interest from a video
frame: one area consists of the ingertip used to draw the pattern, and the other consists of part of
the device (see Figure 2 (b)).
2 Track Fingertip Locations: Once the areas of interest are highlighted, a computer vision
algorithm will be applied to locate the ingertip from each video frame (Section 5.2.2). The algorithm
aggregates the successfully tracked ingertip locations to produce a ingertip movement trajectory.
This is illustrated in Figure 2 (c). Keep in mind that at this stage the tracked trajectory is presented
from the camera’s perspective.
3 Filming Angle Transformation: This step transforms the tracked ingertip locations from the
camera’s perspective to the user’s. We use an edge detection algorithm to automatically calculate
the ilming angle which is then used to perform the transformation (Section 5.3). For example,
Figure 2 (c) will be transformed to Figure 2 (d) to obtain a ingertip movement trajectory from the
user’s perspective.
4 Identify and Rank Candidate Patterns: In this step, our software automatically maps the
tracked ingertip movement trajectory to a number of candidate patterns (Section 5.4). We rank
the candidate patterns based on a heuristic described in Section 5.4.2. For instance, the ingertip
movement trajectory in Figure 2 (d) could be mapped to a number of candidate patterns shown in
Figure 10. We show that our approach can reject most patterns to leave no more than ive candidate
patterns to be tried out on the target device.
5 Light Weight Trials: In this inal step, the attacker tries the candidate patterns one by one on
the target device.

5 IMPLEMENTATION DETAILS

5.1 Video preprocessing

This step aims to identify the unlocking process from the video footage. While all our participants
(see Section 6.1) consider this as a straightforward manual task, we developed a simple yet efective

heuristic to automatically detect the video segment in some typical scenarios. Our heuristic is
based on the following observations: (1) before or after unlocking, users often pause for a few
seconds; (2) two consecutive on-screen operations (e.g. swiping, zooming etc.) typically expose
some spatial-temporal motion characteristics.
In our initial test, we ind that there exists at least 1.5 seconds pause before or after pattern

drawing due to delay of the user or the device. We also found that identical on-screen activities
often follow closely. These consecutive on-screen operations have some spatial-temporal motion
characteristics that are diferent from pattern drawing. Figure 3 shows the spatial-temporal motion

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:6 Ye, G. et al

−40 −20 0 20 40
−20

−10

0

10

20

(a) a horizontal-
swiping
gesture

−50 −25 0 25 50
−30

−20

−10

0

10

20

(b) two
consecutively
horizontal-
swiping
gestures

−40 −20 0 20 40
−30

−15

0

15

30

(c) a zooming
gesture

−40 −20 0 20 40
30

15

0

−15

−30

(d) two
consecutive

zooming gestures

Fig. 3. Spatial-temporal characteristics for performing an on-screen gesture once (a, c) and twice (b, d).

Algorithm 1: Unlocking process identiication heuristic
Input:

IV : Video footage
f rameCount : Pause threshold before or after unlocking

Output:

<start,end>: Start and end of the unlocking video segment
1: f rames[]← дetV ideoFrames (IV)

2: LEN ← дetFramesLen(f rames[])
3: for i = 1 : LEN − f rameCount do

4: sL ← hasFinдertipChanдed (f rames[i : i + f rameCount])
5: if !sL then

6: sNo = i + f rameCount

7: for j = sNo : LEN do

8: if checkLoop (f rames[j : LEN]) then
9: eNo = i

10: break;
11: else if !hasFinдertipChanдed (f rames[j : j + f rameCount]) then
12: eNo = i

13: break;
14: end if

15: end for

16: break;
17: end if

18: end for

19: < start , end >← дetTarдetV ideo(f rames[], sNo, eNo)

structure for two gestures, swiping and zooming, when they are performed once (a, c) and twice
(b, d). This diagram indicates that the spatial-temporal motion of two identical on-sreen activities
contains one or more looping structures for which pattern drawing does not have.

Our heuristic for identifying the pattern drawing process is described in Algorithm 1. The input
to the algorithm is a video capturing the unlocking process, and the output of the algorithm is a
time-stamp tuple, <start, end>, which marks the start and the end of a video segment. To locate the
video segment, we irst ilter out on-screen activities where the ingertip location does not change
within a timeframe of 1.5 seconds (lines 4 and 11). This allows us to exclude some basic on-screen
activities such as clicking. Figure 4 shows that all our participants paused at least 1.5 seconds before
or after pattern drawing due to delay of the user or the device. We use the number of video frames,

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:7

1.5 1.6 1.7 1.8
0

0.2

0.4

0.6

0.8

1

The time interval (s)
C

D
F

Fig. 4. The cumulative distribution function (CDF) of the time interval between patern drawing and other

on-screen activities.

frameCount, as a proxy to estimate the time interval between two on-screen operations. Here, a
time interval of 1.5s translates to 45 frames or 90 frames when the video was shot at 30 or 60 frames
per second (FPS) respectively. We also use the spatial-temporal characteristics described above to
exclude two consecutive swiping or zooming gestures (line 8). Finally, we exploit the observation
that users typically paused at least 1.5s before or after unlocking to locate the start and end points
of pattern drawing (line 19).

Limitations. Our heuristic is not perfect. It is likely to fail if the user was typing using a Swype-
like method (i.e. entering words by sliding a inger from the irst letter of a word to its last letter)
during video recording. In this case, our method will identify multiple video segments of which
one may contain the pattern unlock process. If multiple segments are detected, the algorithm will
ask the user to conirm which video segment to use. In this scenario, the irst identiied segment is
likely to be the correct one. In practice, an experienced attacker would wait patiently to avoid this
complicated situation by inding the right time for ilming (e.g. for a screen lock, the time is just
after the device is retrieved). The attacker could also watch the video to manually cut it to ensure
to obtain the correct video segment.

5.2 Track fingertip locations

After cutting out the video segment of pattern drawing, we need to track the inger motions
from the video segment. We achieve this by employing a video tracking algorithm called Tracking-

Learning-Detection (TLD) [Kalal et al. 2011]. This algorithm automatically detects objects deined
by a boundary box. In our case, the objects to be tracked are the user’s ingertip and an area of the
device. These are supplied to the algorithm by simply highlighting two areas on the irst frame of
the video segment (see Figure 2 b). The algorithm tries to localize the ingertip from each video
frame and aggregates the successfully tracked locations to produce a ingertip movement trajectory
as an output (see Figure 2 c).

5.2.1 Generate The Fingertip Movement Trajectory. The TLD algorithm [Kalal et al. 2011] auto-
matically detects objects based on the examples seen from the irst frame. For each tracked object,
the algorithm generates a conidence between 0 and 1. A tracking is considered to be successful if
the conidence is greater than a threshold. We set this threshold to 0.5 which is found to give good
performance in our initial design experiments using 20 patterns4. TLD has three modules: (1) a
tracker that follows objects across consecutive frames under the assumption that the frame-to-frame
motion is limited and objects are visible; (2) a detector to fully scan each individual frame to localize
all appearances of the objects; and (3) a learner that estimates errors of the detector and updates
the detector to avoid these errors in future frames.

4To provide a fair evaluation, the patterns used in our initial test runs in the design phase are diferent from the ones used
later in evaluation.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:8 Ye, G. et al

x=265.00 y=364.00

x=156.00 y=454.00

∆x=109.00 ∆y= -90.00

(a) The irst video
frame

x=275.62 y=324.86

x=156.22 y=456.98

∆x= -119.40 ∆y=132.12

(b) A middle video
frame

x=310.70 y=278.00

x=157.40 y=437.94

∆x= -153.30 ∆y=159.94

(c) The last video
frame

-60 -30 0 30 60

-60

-30

0

30

60

(d) Fingertip
trajectory

Fig. 5. Tracking the fingertip movement trajectory. For each video frame, the system tracks two areas: one

surrounds the fingertip and the other covers the edge of the device. The fingertip position is determined by

computing the relative coordinates of the central points of the two areas. The red points highlighted in the

final results (d) are the touching points tracked from the three video frames.

In some speciic cases, the algorithm may fail to detect the objects in many video frames due
to poor selections of interesting areas. If this happens, our system will ask the user to re-select
the areas to track. We have also extended TLD to report when a ingertip position is seen on the
footage. This temporal information is recorded as the number of video frames seen with respect
to the irst frame of the video segment. This is used to separate two possibly overlapping line
segments described in Section 5.4.

5.2.2 Camera Shake Calibration. By default, the TLD algorithm reports the position of a tracked
object with respect to the top-left pixel of the video frame. However, videos recorded by a hand-held
device are not always perfectly steady due to camera shake. As a result, the top-left pixel of a video
frame may appear in a diferent location in later frames. This can drastically afect the precision of
ingertip localization, leading to misidentiication of patterns.
Our approach to cancel camera shake is to record the ingertip location with respect to a ixed

point of the target device. To do so, we track two areas from each video frame. One area is an edge
of the device and the other is the ingertip. Both areas are highlighted on the irst frame by the user.
The location of a successfully tracked ingertip is reported as the relative coordinates of the two
center points of the marked areas. This approach can also be used to calibrate the minor motions
of the target device during pattern drawing.
Example: To illustrate how our camera-shake calibration method works, consider Figure 5 where
two areas are irstly marked by two bounding boxes in subigure (a). Both areas will then be
automatically detected by the TLD algorithm in following video frames as shown in subigures (b)
and (c). The coordinates of the two center points of each box are the values of x and y, and their
relative positions are represented by △X and △Y . For each frame where both areas are successfully
tracked, we compute the relative coordinates, (△X , △Y), which are reported as the location of the
tracked ingertip.

5.3 Filming angle transformation

In practice, the ilming camera will not directly face the target device to avoid raising suspicion by
the target user. As a result, the ingertip movement trajectory generated by the tracking algorithm
will look diferent than the actual pattern. For example, for the pattern presented in Figure 2 (a),
if the video is ilmed from the attacker’s front-left to the target device (i.e. with a ilming angle
of approximate 45 degrees), we get the trajectory shown in Figure 2 (c). Using this trajectory
without any postprocessing will lead to misidentiication of candidate patterns. Therefore, we must
transform the resulting trajectory to the user’s view point. To do so, we need to estimate the angle
between the ilming camera and the target device. Our approach is described as follows.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:9

100 200 300 400

150

100

50

�

Fig. 6. Filming angle calculation. The filming angle, θ , is the angle between the edge line of the device and a

vertical line.

We use an edge detection algorithm called Line Segment Detector (LSD) [Grompone et al. 2010]
to detect the longer edge of the device. The ilming angle is the angle between the detected edge line
and a vertical line. This is illustrated in Figure 6. In Section 7.5, we show that a minor estimation
error of the ilming angle has little impact on the attacking success rate. By default, we assume
that the pattern grid is presented in the portrait mode5. If this is not the case, i.e. the pattern grid
is shown in the landscape mode, we need to use the shorter edge of the device to calculate the
ilming angle. We believe that an attacker interested in a particular target device would have some
knowledge of how the pattern grid is presented under diferent orientation modes and be able to
identify the device orientation by watching the video. There are also other methods to be used to
identify the ilming angle [Torralba and Oliva 2002].

Based on the estimated ilming angle, θ , we use the following formula to transform the tracked
ingertip movement trajectory from the camera’s view point to the user’s:

S = TS
′

, T =

[

cosθ − sinθ
sinθ cosθ

]

(1)

whereT is a Transformation ℧atrix, S
′
is the coordinate of a point of the tracked trajectory, and S is

the resulting coordinate after the transformation. For each video frame, our algorithm individually
calculates the ilming angle and perform the transformation, because the ilming angle may change
across video frames.

5.4 Identify and rank candidate paterns

In this step, the ingertip movement trajectory will be mapped to a number of candidate patterns
to be tested on the target device. Our goal in this step is to exclude as many patterns as possible
and only leave the most-likely patterns to be tried out on the target device. Our approach is to use
the geometry information of the ingertip movement trajectory, i.e. the length and direction of line
segments and the number of turning points, to reject patterns that do not satisfy certain criteria. In
this section, we irst describe how to identify overlapping line segments and extract length and
direction information before presenting how to use the extracted information to identify and rank
candidate patterns.

5.4.1 Extracting Structure Information. A pattern can be deined as a collection of line segments
where each line segment has two properties: the length of the line, l , and the direction of the
line, d . We deine a pattern, P , as a collection of line segment prosperities, P = {L,D}. Here
L = {l1, l2, · · · , ln } is a collection of the lengths of all line segments (that are numbered from 1 to
n) of the pattern, and D = {d1,d2, · · · ,dn } is the collection of directions for all line segments in L.
We extract the length and the direction of each line segment from the tracked ingertip movement
trajectory and store them into arrays L[] and D[] respectively.

5The pattern grid of the Android native pattern lock is always presented in the portrait mode regardless of the orientation
of the device.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:10 Ye, G. et al

-100 -50 0 50 100
-100

-50

0

50

100
A

BC

D

S

E

(a) tracked ingertips

� �

��

� �

(b) pattern
example

Fig. 7. The tracked fingertip movement trajectory

(a) of a patern (b).

-100 -50 0 50 100
-40

-20

0

20

40

Line 1

Line 2

Line 3

timeframes

(a) overlapping lines
90 100 110

24

25

26

Line 1 Line 2

1

8
11

1310

9

12

88888888888
111111

13100

9

12 14

(b) zoom-in view

Fig. 8. Separating two overlapping line segments.

Table 1. Mappings from line slopes and fingertip-horizontal movements to direction numbers

Direction No. 1 2 3 4 5 6 7 8
slope (L→ R) +∞ 2 1 1

2 0 − 1
2 −1 −2

Direction No. 9 10 11 12 13 14 15 16
slope (R→ L) −∞ 2 1 1

2 0 − 1
2 −1 −2

Identify Line Segments. The irst step of geometry information extraction is to identify individual
line segments from the trajectory. This can be achieved by inding turning points, the start and
the end points of the pattern, because two points deine a line segment. For example, turning
points, A and B, in Figure 7 deine a line segment, AB. We use a linear itting method [Kutner et al.
2004] to discover turning points. A speciic challenge here is how to separate two overlapping line
segments. It is to note that up to two lines can be overlapped on a pattern grid. The naive linear
itting algorithm would consider two overlapping segments to be a single line as their points stay
close to each other. We overcome this problem by using the temporal information (that is recorded
by the tracking algorithm) to separate two overlapping points.

Example: As an example, consider a ingertip movement trajectory shown in Figure 8 (a). The
red rectangle on the igure is a timeframe consisting of 20 tracked points. If we zoom in on the
timeframe, we get Figure 8 (b) where a point is labelled with a frame number according to when
the point was seen, starting from 1 for the earliest point. In this example, there are more than 6
overlapping points in the timeframe, which are marked by a green circle. We use the center point
(No.10) of the overlapping points as the turning point to separate the two line segments.

Extract the Line Length. The physical length of a line segment depends on the sizes of the screen
and the pattern grid, and the space between two touch dots. To ensure our approach is independent
of the device, we normalize the physical length of a line segment to the shortest line found on the
tracked trajectory. For the example as shown in Figure 7 (a), the line lengths for segments, SA,
AB, BC, CD, and DE, are 2ls , ls , 2ls , l , 2ls , respectively. Here segments AB and CD have the shortest
length, ls . The physical length of a line segment is calculated by computing the Euclidean distance
between the start and the end points of a segment.

Extract Direction Information. In addition to the line length, we also want to know to which
direction the inger moves. This information is useful for inferring which dots are selected to unlock
the pattern. Figure 9 (a) shows all possible 16 directions on a 3 × 3 pattern grid. The directions are
numbered from 1 to 16 in clockwise. For each line segment of the tracked trajectory, we calculate its
line slope and the horizontal movement of the inger (i.e. left→ right or vice versa). This information
will then be checked against Table 1 to determine the direction number of the line segment. The

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:11

16

114 3 4

5

67

8

11

13

15

12

2

10

9

(a) line direction number
-100 -50 0 50 100

-100

-50

0

50

150

9

5

13

1

9

S

A
B

CD

(b) numbering line segment

Fig. 9. All possible line directions (a) and an example trajectory (b).

horizontal movement of the ingertip is determined by irst using the temporal information to
ind out the start and the end points of the line and then comparing the horizontal coordinates of
the two points. The line slope is also computed based on the coordinates of the start and the end
points of the line segment. Figure 9 (b) gives the direction number of each tracked line segment of
a ingertip movement trajectory.

5.4.2 Map the Tracked Trajectory to Candidate Paterns. In this step, we use the extracted
geometry information to map the ingertip movement trajectory to a small number of candidate
patterns which will then be ranked using a heuristic.

Identify Candidate Patterns. Our implementation simply enumerates all possible patterns for
a given pattern grid to identify candidate patterns, starting from the top-left touch point. We
reject patterns that do not meet the requirements that the correct pattern is expected to have.
The requirements are the number of line segments (this is checked by counting the number of
turning points), and the length and the direction for each line segment. This is an automatic process
performed by our software system without any user involvement. We consider two line segments
having the same length and slope if the diference between them is less than a threshold. Speciically,
the relative length threshold, lenдthTh, is set to 1.12 and the slope threshold, directionTh, is set to
0.25. To determine the thresholds, we have evaluated a range of possible settings using 30 patterns
in our initial design experiments6. We found that our chosen thresholds lead to good performance
ś our attack only fails on 1 out of the 30 patterns due to blur motions of the video footage.

Example: We use the pattern depicted in Figure 2 as an example to describe our algorithm.
Figure 10 gives several possible mappings for the ingertip movement trajectory shown in Figure 2
(d). For this particular trajectory, the collections of lengths and directions are L = {l ,

√
2l , l } and

D = {5, 11, 5} respectively. Any pattern that does not meet L or D should not be considered as
a candidate pattern for this trajectory. For this reason, Figure 10 a(1)śa(9) will be rejected. Take
Figure 10 a(1) as an example, the line lengths and directions for all four line segments of this pattern

are {l ,
√
5
2 l , l } and {5, 12, 5} respectively.

Rank Patterns. Candidates patterns are then ranked using a simple heuristic. The heuristic
assumes a pattern starting from a left dot of the grid is more likely to be the correct pattern over a
pattern starting from a right dot. This assumption is supported by recent studies which show that
people tend to select a left dot as the starting point to construct a pattern [Lùge 2015; Uellenbeck
et al. 2013]. If two candidate patterns start from the same dot, we consider the pattern with a longer

6In most cases, our participants drew pass the centers of all dots when forming a line. We also use a threshold to determine
if two line segments are of the same length ś this allows us to handle situations where the draw of a line does not pass the
center of a dot.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:12 Ye, G. et al

a(1) a(2) a(3) a(4) a(5) a(6) a(7)

a(8) a(9) b(1) b(2) b(3) b(4) b(5)

Fig. 10. Possible mappings for the trajectory presented in Figure 2 (d).

total line length is more likely to be the correct pattern. We also considered other additional ranking
heuristics by giving a higher priority to patterns that starts from a left dot and has a longer line or
starting from the median dot and has shorter line. In total, we considered ive ranking heuristics
that give a higher priority to patterns of diferent starting dots and line lengths. Diferent ranking
heuristics would rank the candidate patterns in diferent order; and we found that our chosen
heuristic can lead to a successful attack using the least number of attempts on our test data. We
stress that since our attack generates no more than ive candidates on a 3 × 3 grid, the order of
which candidate patterns to be tested irst has negligible impact on the success rate. This is because
the Android system by default allows more than ive fail attempts and an attacker can test all the
ive patterns in a short period of time.

6 EXPERIMENTAL SETUP

6.1 Data Collection

The patterns used in our evaluation were collected from users who use at least one Android
device (a smartphone or a tablet) on a daily basis. Our participants include 95 females and 120
males who were undergraduate or postgraduate students in our institution. The majority of our
participants are in an age group of under 30.
To collect the patterns, we have conducted a ªpen-and-paper" survey by asking participants to

ill in an anonymized questionnaire. The questionnaire and survey were approved by the research
ethics board (REB) of the host institution. We have made sure that our survey complied with strict
privacy regulations. For example, we did not collect any personally identiiable information other
than the gender and age group of the participant. Our participants were well informed on the
purpose of the study and how the data will be managed and used. The survey forms were distributed
as voluntary homework so that the participants can take the survey form away to ill in. Users
were invited to return the survey form anonymously within three weeks to a dedicated, locked
mailbox, if they wish to participate in the study. To avoid a user submits multiple copies of the
same form, each survey form is given a unique, randomly generated 32-digital number.
We have distributed over 1,000 survey forms to be taken to ill at home, for which 220 forms

have been returned. The return rate of our questionnaires is in line with the standard survey return
rate of 20% [Fox et al. 1988]. By excluding 5 incomplete forms, we have obtained 215 valid forms.
These result in 120 unique patterns7.

Overall, 37.6% of our participants conirmed that they use pattern lock as the screen lock to
protect their Android devices on a daily basis; and 33% of those who do not use a pattern as their

7Available to be downloaded from: https:⁄⁄dx.doi.org⁄10.17635⁄lancaster⁄researchdata⁄113

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

https://dx.doi.org/10.17635/lancaster/researchdata/113

A Video-based Atack for Android Patern Lock 39:13

(a) Example patterns belong to the simple category.

(b) Example patterns belong to the median category.

(c) Example patterns belong to the complex category.

Fig. 11. Examples of paterns collected from our participants. Paterns are grouped into simple, median and

complex categories, according to their complexity scores.

screen lock said that they are often required to use a pattern for authentication by an application
like Alipay. Furthermore, 60% of our participants also indicated that the pattern they provided
is currently being used or have been used in the past by themselves. Other participants (often
those did not use a locking pattern on a daily basis) indicated that they have provided a pattern
which they would like to use if a locking pattern is required. While we cannot guarantee that the
self-reported patterns are actually used, most of participants conirm that the supplied patterns are
the ones that have been used in the past, are currently being used, or somethings they would like
to use for sensitive applications. Based on this information, we are conident that the patterns we
collected represent some of the real world patterns. Finally, all participants believe that a complex
pattern provides stronger protection than a simple counterpart.

6.2 Patern Complexity Classification

We quantify the complexity of a pattern using the complexity (strength) score proposed in [Sun
et al. 2014]. The complexity score, CSP , of a pattern, P , is deined as:

CSP = SP × log2 (LP + IP +OP) (2)

where SP is the number of connected dots, LP is the total length of all line segments that form
the pattern, IP is the number of intersections (which are also termed as "knight moves" in some
prior work [Von Zezschwitz et al. 2015]) and OP is the number of overlapping linear segments. To
calculate the line length, we assume the length between two horizontally or vertically adjunct dots
is one. Thus, our method is independent of the size of the screen and the grid.

Intuitively, the more connected dots (SP), line segments (LP), intersections (IP) and overlapping
line segments (OP) that a pattern has, the more complex it is. There are other methods to quantify
the complexity score of pattern locks, including the methods proposed by Song et al. [Song et al.
2015] and Andriotis et al. [Andriotis et al. 2014]. These methods in general suggest that patterns with
more connected dots and intersections are considered to provide stronger security strengths [Aviv
and Susanna 2016].

Pattern Grouping. Based the complexity score, we divide the collected patterns into three com-
plexity categories: simple, median and complex. A simple pattern has a score of less than 19, a

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:14 Ye, G. et al

6.34 13.08 19.82 26.56 33.30 40.04
0

2

4

6

8

N
u
m
b
e
r
o
f
p
a
tt
e
rn
lo
c
k
s

Complexity score

Fig. 12. The distribution of complexity scores for the collected paterns.

Table 2. Screen sizes for the test phones

Screen size MI4 Honor7 Note4

Height(cm)×Width(cm) 13.9 × 6.9 14.3 × 7.2 15.4 × 7.9

median complex pattern has a score between 19 and 33, and a complex pattern must have a score
greater than 33. This classiication gives us roughly 40 patterns per category. Figure 11 gives some
examples for each category while Figure 12 shows the distribution of these patterns according to
their complexity scores. Based on this deinition, the complexity scores of the patterns we collected
range from 6.4 to 46.8.

6.3 Video Recording and Preprocessing

Recording Devices. We used three smartphones for video recording: an Apple iPhone4S, a Xiaomi
℧I4 and a ℧eizu2. Each mobile phone was used to record 40 patterns with a 1080p HD resolution
of 30 FPS under diferent settings described as follows.

Video Recording Setup. By default, we used the Android 3×3 native pattern grid, but we evaluated
our approach using other pattern grids with diferent sizes in Section 7.6. We recorded each pattern
under three ilming angles, 45, 90 and 135 degrees, by placing the camera on the left-front, front,
and right-front of the target device respectively. By default, videos were recorded at a distance of 2
meters from the target device and we evaluated the impact of the ilming distance in Section 7.2.

Recording Participators. We recruited ten postgraduate students (ive male and ive female stu-
dents) from Northwest University to reproduce the 120 patterns and the 60 most complex patterns
(see Section 7.1) on three target mobile phones: a Xiaomi ℧I4, a Huawei Honor7 and a Samsung
Note4. Table 2 lists the screen size for each target mobile phone.

Video Filming and Pattern Drawing. Before recording, our participants were given the opportunity
to practice a pattern several times (on average, 10 trials), so that they can draw the pattern at
their natural speed. In the experiments, our participants could use any of their ingers for drawing,
and they could use more than one inger for drawing. ℧ost of our participants used their index
ingers for drawing, one user used his middle inger and one used index and middle ingers for
drawing. When drawing the pattern, some participants sat, while others stood, some hold the device
by hands, while others placed it on a table. Each pattern was drawn on three target devices and
recorded under three ilming angles. Thus, for the 120 patterns collected from users, we recorded
1,080 videos in total.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:15

We compare the drawing speed of our participants when they practiced a pattern for 10 times
against the speed when they practiced the same pattern for 50 times. We found that there is little
diference in the drawing speed. We have also asked our participants to draw ive locking patterns
used by ive diferent users, and compared the drawing speedup after 10 trails against the drawing
speed of the pattern owners. We found that 10 trails are suicient to achieve a similar drawing
speed.

Video Preprocessing. For each video stream, we used the algorithm described in Section 5.1 to cut
out the video segment of the unlocking process. We left around 200 to 300 milliseconds of the video
segment before and after the pattern unlocking process. To track the ingertip locations, we used
Windows ℧ovie ℧ake to highlight two areas of interest on the irst frame of the video segment:
one area surrounds the ingertip, and the other contains an edge of the phone (see Section 5.2.2).

Experimental Tools and Platform. Our prototyped attacking system built upon a TLD library [Kalal
[n. d.]]. The developed software ran on an Intel Core i5 PC with 8GB RA℧. The operating system
is Windows 10. Our implementation can be ported onto Android or Apple iOS systems, which is
our future work. On our evaluation platform, our software takes less than 30 seconds to process a
video to produce candidate patterns.

7 EXPERIMENTAL RESULTS

In this section, we irst present the overall success rate for cracking the 120 patterns collected
from our participants plus the top 60 most complex patterns on a 3×3 pattern grid. We then analyze
how the success rate is afected by various ilming conditions: the ilming distance and angle, the
camera shake efect, lighting, the screen size of the mobile device, and the ilming cameras. Next,
we conduct a limited study to understand how our attack performs when the video only captures
the user’s ingertip. Finally, we demonstrate that our video-based attack can also be used to crack
PIN-based passwords.
7.1 Overall Success Rate

Result 1:We can successfully crack over 95% of the patterns in ive attempts and complex patterns

are less secure compared to simple patterns under our attack.

In this experiment, videos were recorded from a distance of 2 meters away from the target device.
This mimics a scenario where the adversary sits at the next table to the user in a public space (e.g.
a restaurant). The smartphones used for ilming in this experiment were hand-held.

7.1.1 Evaluation using collected user paterns. Figure 13 shows the success rate for cracking
diferent types of patterns within 1, 2, 3, 4 and 5 attempts. We used the 120 patterns that have been
collected through our user studies in this experiment. For all the patterns used in this evaluation,
our approach does not generate more than ive candidate patterns. For complex patterns, we are
able to crack all except one (with a 97.5% success rate) in the irst attempt. For simple and median
patterns, the success rate increases with more tries. Using ive attempts, we are able to crack all
simple patterns and all but one median patterns. The reason that we failed on one median and
one complex patterns is because of some blur motions of the video footage (probably caused by
the video compressing algorithm), which leads to many tracking failures. But we are able to crack
the same pattern using a video ilmed by a diferent device. It is important to note that the native
Android system allows up to ive failed tries before locking the device [Egelman et al. 2014]. This
means, in practice, our approach is able to successfully crack most locking patterns.

Another interesting observation is that in contrast to many people’s intuition, complex patterns
do not provide stronger protection under our attack ś as can be seen by the fact that most of the
complex patterns can be cracked in one attempt. This is because although complex patterns can

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:16 Ye, G. et al

Simple Median Complex
0%

20%

40%

60%

80%

100%

C
ra
ck
in
g
su
cc
es
s
ra
te

The complexity of pattern locks

1 attempt

2 attempts

3 attempts

4 attempts

5 attempts

Fig. 13. For each patern category, the figure

shows the success rate using no more than

1, 2, 3, 4 and 5 atempts.

1 2 3 4 5
0

10

20

30

40

N
u

m
b

e
r

o
f

p
a
tt

e
rn

s

Number of candidate patterns

Simple

Median

Complex

Fig. 14. The distribution of candidate pat-

terns for each category.

complexity
score:
43.8

complexity
score:
44.7

complexity
score:
46.8

Fig. 15. Three most complex paterns on a 3 × 3 grid based on Equation 2.

better protect the user against direct observation techniques like shoulder suring [Rogers 2007],
their unique graphical structures help our algorithms to narrow the possible options down. This
is conirmed by Figure 14. It shows that for most median and all complex patterns, our system
produces one candidate pattern ś the correct one for most of our test cases.

7.1.2 Evaluation on the most complex paterns. We also evaluated our approach using the top 60
most complex patterns (according to Equation 2) on a 3 × 3 grid. To evaluate our approach on a
wide range of patterns, we exclude patterns that are simply a rotation to an already chosen pattern.
Figure 15 illustrates three highly complex patterns which have a complexity score between 43.8
and 46.8. The three patterns use all the nine dots of the grid and have a larger number of line
segments, intersections and overlapping lines when compared to simpler patterns. Because of their
complex graphical structures, remembering these patterns using direct observation techniques
would be diicult. In this experiment, we can crack all the complex patterns in one attempt. This
result reinforces our claim that complex patterns are less secure under video-based attacks.

7.1.3 Evaluation using alternative security metric. In addition to using the complexity metric
deined by Equation 2, we also evaluate our attack based on how likely a pattern will be used by
users. For this purpose, we use the guessing probability proposed in [Aviv and Susanna 2016].
This metric measures the pattern’s strength by considering how likely a pattern is to be guessed.
The guessing probability is the likelihood estimation from the hidden ℧arkov model trained on
collected, real-world data [Uellenbeck et al. 2013]. The larger the likelihood, the more likely the
pattern would have been selected by a user. We choose this metric because a similar security metric
based on statistical analysis of real-world passwords haven been widely used in prior studies of
text-based passwords [Bonneau 2012; Kelley et al. 2012].

To translate the guessing probability to a frequency score, we irst sort all the 120 testing patterns
used in this experiment in ascending order, based on their guessing probabilities. By doing so,

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:17

High Median Low
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Likelihood of patterns to be used

1 attempts

2 attempts

3 attempts

4 attempts

5 attempts

Fig. 16. The success rate when grouping pat-

terns based on Equation 3.

1 1.5 2 2.5 3 3.5
0%

20%

40%

60%

80%

100%

Distance (Meter)

C
ra

c
k

in
g

 s
u

c
c
e
s
s
 r

a
te

1 attempt

2 attempts

3 attempts

4 attempts

5 attempts

Fig. 17. Impact of the filming distance.

Table 3. % of identical paterns in each category using Equations 2 vs 3

Group simple v.s. high median v.s. median complex v.s. low

% of overlap 72.5% 67.5% 80%

patterns with a higher probability (i.e. more commonly used patterns) will appear after those with
a lower probability (less commonly used patterns) on the sorted list. Next, we give each pattern a
numeric number (termed guessing number), starting from 1 for the irst pattern of the sorted list,
and we increase the number by 1 as we move down to next (more commonly used) pattern on the
sorted list. We then use the following formula to calculate the frequency score, fP , of a pattern, P :

fP = log10GP (3)

where GP is the guessing number of pattern P .
Less commonly used patterns have a smaller guessing number and thus will have a lower

frequency score using Equation 3. With this metric in place, we divide our 120 patterns collected
from our participants into three groups: low, median and high. Patterns in the high group are
more likely to be used by users than the patterns in the low group. The high group has a value of
less than 4.2, the median group has a score between 4.2 and 5.1, and the low group must have a
score greater than 5.1. Using this partition strategy, each group has around 40 patterns. Table 3
counts the percentage of identical patterns for each group classiied using Equations 2 and 3
respectively. As can be seen from the diagram, while there is a signiicant degree of overlap, the
resulted categorizations are not identical using the two diferent metrics.

Figure 16 illustrates the cracking success rate for diferent categories under numbers of attempts.
As can be seen from the diagram, the success rate with one attempt for the patterns in the high
group is 42.5%. This success rate is lower than patterns in other groups. This is because the patterns
in the high frequently used group are typically simple and symmetry patterns, for which our
tracking algorithm produces more than one candidate pattern. This is in line with our observation
using the complexity metric deined in Equation 2. Nonetheless, our attack can successfully crack
over 90% of the pattern of each group. This conirms that the video-side channel is a real threat for
the Android locking pattern.

7.2 Impact of Filming Distances

Result 2: We can crack over 80% of the patterns in ive attempts, if the video was ilmed using a

smartphone within a distance of 2.5 meters away from the target.

To illustrate how the ilming distance afects the attacking success rate, we used all the 120
collected patterns andwe varied the ilming distance from 1meter to 3.5meters. Figure 17 shows how
the cracking success rate changes as the ilming distance increases. There are minor discrepancies

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:18 Ye, G. et al

Table 4. Tracking precision vs filming distance

Distance 1 m 2 m 3 m 3.5 m

ingertip 100% 98.7% 80.9% 68%
device edge 100% 99.4% 90.6% 69%

in the success rate between this diagram and Figure 13 because we used less patterns in this
experiment. When the ilming distance is less than 2 meters, our approach can crack all patterns
in ive attempts. The success rate drops signiicantly when the ilming distance is greater than
2.5 meters. Beyond this point, the quality of the video ilmed by a mobile phone tends to drop
signiicantly with many object deformations. The degradation of the video quality makes it diicult
for the TLD algorithm to successfully track objects across video frames. This is conirmed by
Table 4 which shows that the tracking precision for the ingertip and the device edge drops from
around 99% to 68% when the ilming distance increases from 2 meters to 3.5 meters. The increased
tracking failures result in an increased number of missing points on the tracked trajectory, leading
to a deteriorative performance in identifying candidate patterns. Nonetheless, our approach can
achieve a high success rate when the ilming distance is within 2.5 meters. Such a distance allows
an attacker to record the video without raising suspicions in many day-to-day scenarios.
We also evaluated our approach on videos ilmed using a entry-level single-lens relex (SLR)

camera, Nikon D90, with a low-end 105mm lens. The SLR camera was placed from a distance
of 9 meters away from the target device. For this set of videos, we are able to achieve the same
performance when compared to using videos ilmed by a mobile phone camera with a 2-meter
ilming distance. Therefore, in practice, an attacker can also use a professional video recording
device to launch the attack from a further distance.

7.3 Impact of Camera Shake

Result 3: Our method can tolerate a certain degree of camera shake in the hand-held mode.

In this experiment, we used an IPhone4S smartphone to record how a pattern is drawn on a
Huawei Honor7 phone. This experiment was carried out under three settings: ixed, hand-held and
shaky, where the ilming device was respectively ixed using a tripod, hand-held, and hand-held
but with constant movements of approximate 2cm in the horizontal or the vertical directions. The
recording device was placed on the left-front, front, and right-front of the target device. In the
experiment, we aixed the target device on a table using double-sided tapes.

We use a reference point to quantify camera shake. The point is the center position of an area of
the target device. The area is marked by a boundary box on the irst frame (see Figure 5).We calculate
the diference (in terms of pixels) for where the reference point was seen in two consecutive video
frames. We then use the diference to measure the degree of camera shake. Figure 18 shows the
cumulative distribution function (CDF) of camera shake under the three diferent ilming settings.
Here, the wider the distribution is, the less steady the ilming is. The shaky mode is least stable
where the diference of the reference point between two video frames can be up to 250 pixels.

Figure 19 shows that our approach has the same performance under the hand-held and the ixed
modes. The modest camera shake under the hand-held mode has little impact on performance
thanks to our camera-shake calibration method. We observe deteriorative performance under the
shaky mode, but the performance degradation is modest (80% vs 97% in 5 attempts). In reality, an
attacker would avoid drastic camera shake by irmly holding the video recording device.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:19

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

The distance between video frames

C
D

F

fixed

hand−held

shaky

Fig. 18. CDF for diferent video recording

modes.

1 2 3 4 5
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

The number of successful attempts

shaky hand-held fixed

Fig. 19. Impact of camera shake.

Table 5. Lighting Conditions

Scenarios Indoor Indoor Indoor Outdoor

Time nighttime nighttime daytime daytime
Light Source warm LED white luorescent sunlight sunlight
Light Intensity (Lux) 55 − 70 70 − 100 150ś240 500ś9500

7.4 Impact of Lighting Conditions

Result 4: Low-light has a negative impact on the success rate of the attack

In this experiment, videos were recorded under diferent lighting conditions both indoor and
outdoor. The experimental settings are given in Table 5. For each setting, we tested all the 120
patterns on a Xiaomi ℧I4 phone and used an iPhone4S phone to record the video. The ilming
camera was placed on the left-front, front, and the right-front of the target device from a distance
of 2 meters. Figure 20 shows that the success rate increases when video ilming was performed in a
brighter lighting condition as the light intensity changes from 55 lux to 9500 lux. This is expected as
low-light leads to increased video noise, blurred motions and poor focus, which all have a negative
impact on the TLD algorithm. Nonetheless, our attack can still crack over 70% of the patterns in
a ilming environment of low light. We stress that the impact of the lighting conditions are also
camera-dependent where some cameras can better tolerate low-lights than others.

7.5 Impact of Filming Angle Estimation

Result 5: Our attack performs well when the error of ilming angle estimation is less than 5 degrees.

Recall that our attack needs to transform the ingertip movement trajectory to the user’s perspec-
tive based on an estimation of the ilming angle (Section 5.3). Because our ilming angle estimation
algorithm gives highly accurate results, we did not ind the estimation error to be an issue in our
experiments. Nonetheless, it is worth studying how the estimation error afects the success rate
of our attack. To do so, we deliberately added an error of 5-10 degrees to the estimation in this
experiment.
Figure 21 shows the results of this experiment. When the error is less than ±5 degrees, there is

little impact on complex patterns and no impact at all on simple and median patterns. However,
an estimation error of more than 10 degrees can signiicantly afect the success rate. Given such
errors, the resulting trajectory after transformations will be signiicantly diferent from the correct
pattern. For example, when the estimation error is 10 degrees from the true value, on average, 0.8,
2.6 and 4.2 line segments per pattern respectively will be incorrectly labelled for simple, median

and complex patterns. This explains why the success rate for complex patterns drops signiicantly
when the ilming angle estimation error is greater or equal to 10 degrees.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:20 Ye, G. et al

55 70 150-240 500-9500
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Different light conditions (Lux)

Simple Median Complex

Fig. 20. The cracking success rate within

five atempts under diferent lighting condi-

tions.

0 degree 5 degrees 10 degrees

20%

40%

60%

80%

100%

0%

Estimation errors of filming angles

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple Median Complex

Fig. 21. Impact of estimation errors of film-

ing angles.

Simple Median Complex

60%

80%

100%

0%

20%

40%

C
ra

ck
in

g
 s

u
cc

e
ss

 r
a

te

4*4 5*5 6*6

(a) success rate for diferent locking grids

1 attempt 5 attempts 20 attempts
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Ours Aviv's

(b) success rate for a 4 × 4 locking grid

Fig. 22. Success rates for diferent locking grids.

7.6 Evaluation on Other Patern Grids

Result 6: A pattern grid with more dots provides stronger protection but our attack can still crack

most of the patterns.

There are a few applications (such as CyanLock) and customized RO℧s available to increase
the size of the pattern grid from 3 × 3 to 4 × 4, 5 × 5, and 6 × 6. Although a 3 × 3 grid remains a
popular choice (as it is supported by the native Android OS), it is worth studying whether having
more touch dots on a pattern grid leads to stronger security. In this experiment, we irst ranked all
possible patterns for each grid setting in ascending order according to their complexity scores. We
then equally divided the patterns into three groups, simple, medium and complex, and asked our
participants to randomly select 20 patterns from each group for evaluation. We report the success
rate of our attack within ive attempts. In the experiments, we have adapted our algorithms for
each grid setting by adjusting the algorithm parameters (such as the line direction numbers).

Figure 22 (a) shows the success rate of our attack for diferent grids. Similar to a 3 × 3 grid, our
approach achieves a higher success rate for complex patterns over simple ones. On average, we can
crack 90% of the complex patterns. We observed that a grid with more dots does provide stronger
protection. For complex patterns, the success rate of our attack drops from 95% on a 4 × 4 grid
to 87% on a 6 × 6 grid. For simple patterns, the success rate of our attack drops from 85% on a
4 × 4 grid to 75% on a 6 × 6 grid. This is because a ingertip trajectory in general could be mapped
to a larger number of candidates on a grid with more dots. For instance, the pattern shown in
Figure 2 (f) can be mapped to 55 candidate patterns on a 6 × 6 grid as opposite to 5 on a 3 × 3 grid.
Overall, our attack can crack over 75% (up to 95%) of the patterns within ive attempts. One of
the purposes of introducing pattern grids with more dots is to allow users to use more complex
patterns. However, this experiment suggests that complex patterns remain less security on these
grids under our attack.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:21

1 2 3 4 5
0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

MI4 Vivo X7 Note4 IPhone6 Nikon

(a) camera brands

1 2 3 4 5
0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Canon Nikon iPhone8 iPhone7

(b) iPhones and SLR cameras

Fig. 23. The cracking success rate for diferent target screen sizes and filming cameras.

Table 6. Filming camera specs

Parameters Nikon D90 Canon XC10 iPhone8 iPhone7 IPhone6 Vivo X7 MI4 Note4

Frame Rate (fps) 24 30 30 30 30 30 30 30
Pixels 12.3mp 12mp 12mp 12mp 8mp 13mp 13mp 16mp
Focus (mm) 8 10 5 5 4.15 4 4 4.2
Sensitivity (ISO) 400 500 2500 2500 3200 3200 3000 5000

We also compared our attack against the guessing based attack presented by Aviv et al. [Aviv
et al. 2015]. This experiment is conducted on a 4× 4 locking grid using 30 patterns from the dataset
used in [Aviv et al. 2015]. The result is shown in Figure 22 (b). Our attack achieves a success rate
of over 80% (up to 97%), while the attacking mechanism proposed by Aviv et al. gives a success
rate of under 20%. It is to note that our attack fails to reconstruct one pattern using 20 attempts
because our approach produces more than 20 candidate patterns to be tested. Nonetheless, our
attack signiicantly outperforms the attack described in [Aviv et al. 2015] by efectively exploiting
the visual information of pattern structures.

7.7 Impact of Diferent Camera Brands

Result 7: The diference in cameras has little impact on the success rate.

Intuitively, the efectiveness of our attack can be afected by the video-quality of the ilming
camera. To understand the impact of the ilming camera, we asked 10 participants to draw 90
randomly chosen patterns (30 patterns per pattern category). We record the drawing using eight
devices, including two SLR cameras and six mobile phones. Table 6 gives these recording devices
and their main performance specs. In this experiment, our target device is a Huawei Honor7 mobile
phone. The ilming distance is 2 and 9 meters from target device when using a mobile phone and a
SLR respectively.

Figure 23 (a) shows that our method can reconstruct all patterns within ive trials when using a
Nikon SLR, an iPhone6 and a Note4 phone as the recording device. Furthermore, our attack remains
efective when using other mobile cameras by giving a success rate of over 97% under ive attempts.
Figure 23 (b) compares the success rate of our attack when using two other generations of iPhones
and diferent SLR cameras. Again, our method can crack all the testing patterns within ive attempts
regardless of which ilming device is used, albeit a more recent mobile camera does help to achieve
a slightly higher success rate using less trials. The experimental results show that our attacking
method can work efectively on mainstream mobile phones and SLR cameras.

7.8 Guessing Paterns with Eyes

Result 8: Our attacking methodology is more likely to succeed compared to direct observation tech-

niques.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:22 Ye, G. et al

1 2 3 4 5

0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple
Median
Complex

(a) video watching

1 2 3 4 5

0%

20%

40%

60%

80%

100%

Number of attempts

C
ra

ck
in

g
su

cc
es

s
ra

te

Simple
Median
Complex

(b) direct observations

Fig. 24. Success rates of guessing paterns through watching the video (a) or direct observations (b).

In this experiment, we investigate whether an attacker can infer the pattern by simply watching
the video or through direct observations. To answer this question, we asked each of our 10 partici-
pants to watch 60 videos (where a pattern was drawn by other participants) to guess the pattern.
We only played the video segment during which a pattern is drawn to the participant (around 3
seconds per video). To familiarize participants with the process, we played ive sample videos and
showed the correct patterns at the end of each video to our participants before the experiment.
Each participant then had 10 minutes to watch a video and ive chances to guess a pattern. They
could adjust the playing speed and replay the video multiple times as they wished.
Figure 24 (a) shows the success rate of pattern guessing with bare eyes. Our participants cor-

rectly guessed for nearly half of the simple patterns in ive attempts. However, they found that
it is diicult to infer complex patterns with many line segments, overlapping lines and intersec-
tions [Von Zezschwitz et al. 2015]. The success rate of guessing complex patterns is less than 10%
in ive attempts. This is not a surprising result because although it is possible to correctly guess
patterns with simple structures by watching the video, doing so for patterns with more complex
structures is much harder.

In accordance with attacking setup, we also asked participants to directly observe how a pattern
was drawn from a distance of two meters away from the target device. The intuition behind this
evaluation is that human eyes can catch richer information over a digital video camera. The results
of this experiment are shown in Figure 24 (b). As can be seen from the diagram, although the
success rate is improved compared to directly watching the video, the chances for guessing the
correct pattern in 5 attempts are quite low. In fact, the success rates are 48.3%, 38.3% and 11.7%
respectively for simple, median and complex patterns.

Note that the success rate of shoulder suring attacks is relatively low because we asked partic-
ipants to stand at the same direction as our ilming camera faces (the left-front corner from the
target device). The observation angle and distance afect the success rate. In practice, an attacker
will need to stay much closer to launch the attack, but doing so is more likely to raise suspicion.

7.9 Atacking PIN-based Passwords

Result 9: PIN-based passwords are also vulnerable under our video-side channel attack. We can

break over 85% of the pin-based passwords within ive attempts using a variant method based on our

approach.

An interesting question to ask is, could this method be used to attack PIN-based passwords?
To answer this question, we apply our attacking method on 30 4-digital passwords. Among these
passwords, 12 of them are most common used passwords (given by a PIN analysis survey conducted
by Berry [Berry 2012]). The remaining passwords are randomly selected. For each password, we
ask our participants to type in the password on a Xiaomi ℧I4 phone. Table 7 lists all PIN-based
passwords considered in this experiment. In this experiment, we used an Sony 6X phone to record

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:23

Table 7. PIN-based passwords used in our experiments

Category PIN-based Passwords

1234 1111 1212 1004 2000
6969 4321 1122 2001 2580Commonly used PINs
1357 2468
1205 3570 0729 3719 9867
5946 3451 7403 2209 3560
1043 4628 5372 2830 7102

Randomly generated PINs

6193 2941 3471

−20 −10 0 10 20
−15

−7.5

0

7.5

15

(a) password: 1234
−20 −10 0 10 20

−30

−15

0

15

30

(b) password: 3570

Fig. 25. Examples of tracked fingertip trajectory comprised of touching points. The red circle represents the

touching points.

the video from three angles of the target device: the left-front, front and right-front. The ilming
distance is 2 meters.

Variant Methodology. Because the diferences between the PIN-based password and the pattern
lock, we need to adapt our method. The two main diferences are summarized as follow: (1) the
number of the touch dots is diferent; and (2) each dot on the PIN pad can be visited multiple
times, while each dot can only be visited once on pattern lock. The later diference requires us
to identify dots that have been visited multiple times. Our preliminary experiments suggest that
we can reconstruct the trajectory of PIN-based password by connecting the touching points8.
We can obtain the location of touching point by tracking the up-and-down motion direction of
the ingertip. This is inspired by the prior work conducted by Shukla et al. [Shukla et al. 2014].
To reconstruct PIN-based passwords, our attacking method records some additional geometric
information, including the direction and length information. Figure 25 shows the tracked ingertip
trajectory using the new attacking method.

Figure 26 compares our method against the attack proposed by Shukla et al [Shukla et al. 2014].
With the irst attempt, the success rate of our approach is around 52% because most of evaluated
passwords have two or more candidates, which is slightly lower compared to the 62% accuracy
given by Shukla’s. However, both approaches achieve a comparable accuracy when using more
than three attempts. This shows that our indings are in line with prior studies on video-based
side-channel for PIN-based passwords.

8Touching points are the points that are tracked when the user’s ingertip touches the screen.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:24 Ye, G. et al

0 5 101
0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Number of attempts

Shukla's Ours

Fig. 26. The success rate of cracking PIN-based

passwords with diferent number of atempts.

1 2 3 4 5

0%

20%

40%

60%

80%

100%

C
ra

ck
in

g
su

cc
es

s
ra

te

Number of attempts

only fingertip

only hand movements

Fig. 27. The cracking success rate drops signifi-

cantly when the video footage only captures the

user’s fingertip or hand movements.

7.10 Limited Study

Our attacking method requires the user’s ingertip and part of the device to be seen in the
video footage. As described in Section 5.2.2, this is essential for calculating the coordinates of the
ingertip and for camera shake calibration. An interesting question to ask is that: ªcan we relax
this requirement?" That is, will the attack still be efective if the video footage only captures the
user’s ingertip or hand movements. If our indings suggest that the success of the attack requires
seeing part of the device, a potential countermeasure is to educate users to cover their devices when
entering their patterns. To conduct this limited study, we ensure that the video only captures the
user’s ingertip or hand movements during recording. This experiment is performed on 20 patterns
randomly selected by our participants.

Figure 27 shows the success rate of our attacking method is low when the device is not seen in the
video footage. The success rate is even lower when the camera only captures the hand movements
but not the ingertips. With only the ingertip or the hand location, our attack fails to cancel the
camera shake efect, leading to a low-quality ingertip movement trajectory. This leads to a worse
success rate (less than 50%, 30% and 20% for simple, medium and complex patterns respectively).

8 COUNTERMEASURES

In this section, we irst analyze the dominating factors of our attack. According to these factors,
we illustrate the reasons that some possible countermeasures approved by the public are also
vulnerable. At last, we propose a possible remedy, a variant of pattern lock mechanism, which can
efectively protect the mobile phone from the video-based attacks.

8.1 Possible Countermeasures

The success of our attack depends on the following three factors: (1) knowledge of the pattern
grid; (2) a decent quality video footage allowing the algorithm to track the ingertip movement; (3)
successfully identifying a video segment that captures the entire process of pattern drawing.
For the irst factor, the attacker can obtain the relevant information by simply looking at the

pattern grid of the target operating system or application. Randomization techniques such as
randomized pictures [Biddle et al. 2012; Schneegass et al. 2014; Siadati et al. 2015; Zezschwitz et al.
2013], which randomly shule the location of touch points each time, could be a solution. However,
randomization-based solutions often come at the cost of poorer usability. This can prevent them to
be used at a large scale. Regarding the second factor, there are ways, such as KALEIDO [Zhang et al.
2015], to prevent unauthorized videotaping by dynamically changing the colour and brightness
of the screen to confuse the ilming camera. A non-technical solution for this aspect would be to
educate users to fully cover their ingers when drawing a pattern. But doing this on a large-screen
device could be awkward especially when the device is held by one hand. However, changing users’
behavior is non-trivial [Chimalakonda and Nori 2013].

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:25

(a) (b) (c)
−90 −45 0 45 90

−100

−50

0

50

100

(d)

−90 −45 0 45 90
−100

−50

0

50

100

(e)
−90 −45 0 45 90

−100

−50

0

50

100

(f)

Fig. 28. Examples of our new patern lock mechanism. A true patern of solid lines is shown in (a). We propose

to make two changes to form a patern. Our first change allows the user to skip some dots when creating a

patern. For example, in (a) the central dot in the first line is skipped. Our second change requires the user

to draw a given random patern structure (e.g. the dash lines in b and c) before or ater drawing the true

patern. The tracked fingertip trajectories of a, b, and c are shown in d, e, f respectively. The first change

makes it dificult for the tracking algorithm to identify which dots are skipped, and the second change forces

the atacker to use multiple video recordings to identify the true patern. As a result, this new patern lock

mechanism decreases the efectiveness of the video-based atack.

For the third factor, the attacker’s solution depends on the type of the pattern. For a screen lock,
pattern drawing is the irst activity (except for receiving a phone call or making an emergency
call) when the device is retrieved. Therefore, identifying the video segment is straightforward.
When the pattern is used by applications, we have observed that users typically pause for a few
seconds before or after entering the pattern. Therefore, an experienced attacker should also be
able to identify the video segment in case our automatic algorithm (presented in Section 5.1) fails
to do so. A potential countermeasure is to mix pattern unlocking with other on-screen activities.
For examples, before and after pattern drawing, the system can ask the user to type in a sentence
using a Swype-like method or to draw some graphical shapes. The problem of this approach is it
may annoy users by asking them to do more, especially for screen unlocking ś an activity that is
performed many times a day.

8.2 A Feasible Remedy

We propose a countermeasure to make it diicult to obtain a meaningful video footage. When
designing the approach, we try to ind a balance between the usability and the security. Our
approach requires making two changes to the pattern lock: (1) when forming a pattern the user
can skip some of the dots in a vertical, horizontal, or diagonal line (e.g. the central dot of the top
line is skipped in Figure 28 (a)); (2) before or after drawing the correct pattern, the user is asked to
draw a given random pattern to confuse the attacker (e.g. sub-igures (b) and (c) in Figure 28). For
the second change, we relax the rules for creating a pattern to allow a touching dot to be visited
multiple times (e.g. the bottom-left dot at Figure 28 (c) is visited twice). Further, for purpose of
increasing the number of candidate patterns, we also change the rule that a previously unvisited
dot can be bypassed if it is part of a horizontal, vertical or diagonal line segment of the pattern.

The two changes mentioned above can signiicantly decrease the efectiveness of the attack. Our
irst change allows the user to skip some dots, which makes it diicult for the tracking algorithm
to identify which dots are skipped (because the video-camera is not able to precisely capture depth
information). The second change makes it harder for the attacker to identify which part of the track
pattern is the true pattern. Figures 28 (d) - (f) respectively show the tracked ingertip trajectory
of the patterns shown in Figures 28 (a) - (c). As can be seen from the tracked trajectories, using a
pattern that is directly mapped from the trajectory will lead to a failed attempt. Because each time
the system will ask the user to draw a random pattern structure, directly use the tracked pattern
(ignore the skipping dots) will not be accepted by the system.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:26 Ye, G. et al

5

8

4

10

10

13

10

15

9

8

9

4

5

1

5

1

1

2

5

8

4

10

10

13

10

15

9

8

9

4

5

1

5

1

1

2

Change 1

Change 2

Both

Android pattern

0% 20% 40% 60% 80% 100%

0 1 2 3 4 5

Fig. 29. The usability of our countermea-

sure has litle negative efect comparing to

Android patern lock.

0.967

0.033 0.067
0

Android Pattern Change 1 Change 2 Both
0%

20%

40%

60%

80%

100%

Fig. 30. The cracking success rate drops sig-

nificantly when using our countermeasure.

8.3 Usability Study of the Proposed Countermeasure

To understand the usability of our countermeasures, we conduct a user study. We ask each of
our 30 volunteers to apply the countermeasure to three randomly assigned Android patterns (90
unique patterns in total). Among the three revised patterns came up by a participant, two must
contain one of the changes we proposed, and the other one must contain both changes. We ask
our participants to draw their revised patterns 10 times. We then ask our participants to rate their
experience on using the revised patterns. The rating is based on a score ranging between 0 and 5 ś
where 5 means there is a signiicant impact on their experience and 0 means there is no impact on
their experience.

Figure 29 shows that comparing to the original pattern lock mechanism, our proposed changes
have little impact on the user experience. On average, it takes 2.5 seconds for a user to draw a new
pattern. This is slightly longer than drawing an standard Android pattern, which takes 2 seconds
on average. Nevertheless, 21 out of our 30 participants consider the increased time to be negligible
and think there is no impact on their experience; and other 7 users think the changes are acceptable.
There are two users who speciically see two patterns that combine both changes to be a poor
design, and one of them also rates a pattern that contains the irst change to result in poor user
experience. However, these two users also consider one of the original patterns to be diicult to
draw, because the pattern has a complex structure; therefore, we think the poor user experience is
largely due to the complexity of the original pattern. We also ask our participants whether they
want to use our proposed changes. Among 30 participants, 25 and 27 participants like change 1
and change 2, respectively, and 23 participants are happy with both changes. Based on the user
study, we conclude that our countermeasure does not signiicantly afect the user experience for
most of our participants.

To evaluate the strength of our countermeasure, we applied our attacking method to reconstruct
the revised and the original patterns. Figure 30 shows that our countermeasure signiicantly reduces
the success rate of the attack. The attack can successfully crack 96.7% of the original patterns.
However, it can only successfully reconstruct two of the revised patterns, leading to a success rate
of less than 7%. After having a close look at the two successful cracked revised patterns, we found
that little changes have been introduced to the original patterns. In other words, better changes
could be introduced by the users to increase the strength of the revised patterns. This experiment
conirms that randomness can improve the security of pattern lock under our attack.
We stress that our countermeasure is not a panacea. In fact, inding a balance between the

usability and security for graphical passwords remains an open problem [Abdullah et al. 2008].
Even with our countermeasure, an attacker can still use multiple videos that record the same user
when doing pattern drawing to ind the common pattern structure (which will likely to be the
true pattern). Therefore, while our countermeasure is simple to implement and can increase the

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:27

overhead for performing the attack, an experienced adversary could still successfully launch the
attack.

9 IMPLICATIONS

While pattern lock is preferable by many users [Bruggen 2014], this work shows that it is
vulnerable under video-based attacks. Our attack is able to break most patterns in ive attempts.
Considering Android allows ive failed attempts before automatically locking the device, our work
shows that this default threshold is unsafe. We demonstrated that, in contrast to many users’
perception, complex patterns actually do not provide stronger protection over simple patterns
under our attack.
It is worth mentioning that our approach is only one of the many attacking methods that

researchers have demonstrated. Examples of these attacks include video-based attacks on keystroke-
based authentication [Shukla et al. 2014; Yue et al. 2014], sensor-based attacks for pattern lock [Zhang
et al. 2016]. Authentication methods that combine diferent authentication methods [Ling et al.
2016; Luca et al. 2012; ℧annan and van Oorschot 2007; Stefan et al. 2012] to constantly check the
user’s identity could be a solution.

10 RELATED WORK

Our work lies at the intersection between computer vision based attacks and cracking graphical-
and touch-based authentication methods. This work brings together techniques developed in the
domain of computer vision and motion tracking to develop a new attack. Our work is the irst
attempt of reconstructing a locking pattern from a video footage without capturing the content
displayed on the screen.

Computer Vision-based Attacks. No work has targeted using video footage to crack Android
pattern lock and this is the irst to do so. Our work is inspired by the work presented by Shukla et
al. [Shukla et al. 2014] on video-based attacks of PIN-based passwords. In addition to addressing the
new challenges highlighted in Section 1, our work difers to their approach in two ways. Firstly, we
target a diferent authentication method, i.e. graphical-based passwords are fundamentally diferent
from PIN-based passwords. Secondly, our approach does not require knowledge of the size of the
screen or the grid. Other work in the area including [Yue et al. 2014] which attacks PIN-based
passwords by analyzing how the screen brightness changes when entering a password. But the
subtle changes of the screen brightness can be dramatically afected by the lighting condition. This
restricts the application of their approach. There is a body of work using relections to recover
information typed by the user [Backes et al. 2009; Kuhn 2002; Raguram et al. 2011; Xu et al. 2013].
These schemes require having a clear vision of the content displayed on the screen while our
approach does not have such a requirement.

Attacks on Touch-based Authentication. Ballard et al. implemented a forgery attack on handwriting
authentication [Ballard et al. 2007]. Using a small number of training examples, they achieve a high
success rate for this attack. ℧ore recently, Serwadda et al. show that a simple robot can achieve
high penetration rates against touch-based authentication systems by analyzing on-screen gestures
including swiping and zooming [Serwadda and Phoha 2013]. ℧aggi et al. present a fast, automatic
shoulder suring attack against touchscreen keyboards [℧aggi et al. 2011]. In this article, we present
a new, video-based attack for graphical-based passwords. Research in this area all demonstrates
the need for a closer look at the security risks of touch-based authentication.

Cracking Graphical-based Passwords. Aviv et al. demonstrated that it is possible to reconstruct a
locking pattern by analyzing the oily residues left on the screen [Aviv et al. 2010]. This method is

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

39:28 Ye, G. et al

highly restricted as oily residues can be messed up by any on-screen activities after pattern drawing.
Abedlrahman et al. explored the fact that PINs or patterns are likely to be recognized by tracking
the heat left on the screen [Abdelrahman et al. 2017]. Likewise, their approach is signiicantly
disrupted by other on-screen operations after drawing the PIN or pattern. Zhang et al. exploit the
WiFi signal interferences caused by inger motions to recover patterns [Zhang et al. 2016]. Their
method requires a complex setup and is highly sensitive to moving objects of the environment
because the WiFi signal can be disrupted by a moving object.

Study of Android Pattern Lock. Uellebenk et al. study how people use Android pattern lock on a
daily basis [Uellenbeck et al. 2013]. They found that although there is a large number of Android
patterns, in practice many people only use a small set of them due to users’ bias in generating
patterns. Lùge explored the correlation between human’s characteristics (e.g. ages and genders)
and the choice of patterns [Lùge 2015]. Her study shows that users have a bias in selecting the
starting dot to form a pattern and people tend to use complex patterns for sensitive applications.
Aviv et al. conducted a large user study to understand the security of the Android graphical
based passwords [Aviv and Fichter 2014]. They analyzed the security and usability preference of
users, using six visual features of the pattern lock including pattern length, number of crosses, etc.
After conducting a larger user study, they developed a brutal-force algorithm to crack the pattern
lock [Aviv et al. 2015]. Their results show that 15% and 20% of the patterns generated on a grid of
3 × 3 and 4 × 4 dots respectively can be cracked within 20 guesses.

Motion Tracking. In addition to TLD, there are other methods proposed in the past for tracking
object motions. Some of them apply image analysis to track the hand and gesture motions from
video footage [Beh et al. 2014; Stenger et al. 2006; Yang et al. 2002]. In this article we do not seek
to advance the ield of motion tracking. Instead we demonstrate that a new attack can be built
using classical motion tracking algorithms. We show that the attack presented in this work can be
a serious threat for Android pattern lock. This has never been attempted in prior work on motion
tracking.

11 CONCLUSIONS

This article has presented a novel video-based side-channel attacking method for Android pattern
lock. The proposed method is able to successfully break most locking patterns in ive attempts,
based on the video footage of the entire unlocking process, ilmed a distance of 2 ś 3 meters away
from the target device using a mobile phone rear camera. The attack is achieved by employing a
computer vision algorithm to track the ingertip movement from the video, and then using the
geometry information of the ingertip movement trajectory to identify the most likely patterns to
be tested on the target device. Our approach was evaluated using 120 unique patterns collected
from 215 independent users and some of the most complex patterns. The experimental results show
that our approach is able to successfully crack over 95% of the patterns in ive attempts. We show
that, in contrast to many people’s belief, complex pattern actually provides weaker protection over
simple patterns under our attack. Our study demonstrate that Android pattern lock is vulnerable
to video-based side-channel attacks and redesigning of pattern-based authentication is needed to
ofer stronger security guarantee. In order to remit this attack, we analyze the successful factors
of our attack and propose to a variant of the Android pattern lock mechanism. We show that our
countermeasure can efectively protect mobile devices from video-based attacks.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

A Video-based Atack for Android Patern Lock 39:29

12 ACKNOWLEDGEMENT

This work was partly supported by the National Natural Science Foundation of China (NSFC)
through grant agreements 61672427, 61672428 and 61572402; the China Computer Federation-
NSFOCUS Kunpeng Grant (CCF-NSFOCUS2017009); the UK Engineering and Physical Sciences
Research Council (EPSRC) through grant agreements EP⁄℧01567X⁄1 (SANDeRs) and EP⁄℧015793⁄1
(DIVIDEND); and the Royal Society International Collaboration Grant (IE161012). The user patterns
used to evaluate this work are openly available from the Lancaster University data archive at
https:⁄⁄dx.doi.org⁄10.17635⁄lancaster⁄researchdata⁄113.

REFERENCES

Yomna Abdelrahman, ℧ohamed Khamis, Stefan Schneegass, and Florian Alt. 2017. Stay cool! understanding thermal attacks
on mobile-based user authentication. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
AC℧, 3751ś3763.

℧uhammad Daniel Haiz Abdullah, Abdul Hanan Abdullah, Noraida Ithnin, and Hazinah Kutty ℧ammi. 2008. Towards
Identifying Usability and Security Features of Graphical Password in Knowledge Based Authentication Technique. In
Second Asia International Conference on Modelling & Simulation. 396ś403.

Panagiotis Andriotis, Theo Tryfonas, and George Oikonomou. 2014. Complexity Metrics and User Strength Perceptions of the

Pattern-Lock Graphical Authentication Method. 115ś126 pages.
Adam J Aviv, Devon Budzitowski, and Ravi Kuber. 2015. Is Bigger Better? Comparing User-Generated Passwords on 3x3 vs.

4x4 Grid Sizes for Android’s Pattern Unlock. In Computer Security Applications Conference. 301ś310.
Adam J Aviv and Dane Fichter. 2014. Understanding visual perceptions of usability and security of Android’s graphical

password pattern. In Computer Security Applications Conference. 286ś295.
Adam J. Aviv, Katherine Gibson, Evan ℧ossop, ℧att Blaze, and Jonathan ℧. Smith. 2010. Smudge attacks on smartphone

touch screens. In Proceedings of the 4th USENIX conference on Ofensive technologies. 1ś7.
Adam J. Aviv and Heidt Susanna. 2016. Reining Graphical Password Strength ℧eters for Android Phones. In USENIX

Twelfth Symposium on Usable Privacy and Security (SOUPS).
℧ichael Backes, Tongbo Chen, ℧arkus Duermuth, Hendrik P. A Lensch, and ℧artin Welk. 2009. Tempest in a Teapot:

Compromising Relections Revisited. In Security and Privacy, 2009 IEEE Symposium on. 315ś327.
Lucas Ballard, Daniel Lopresti, and Fabian ℧onrose. 2007. Forgery Quality and Its Implications for Behavioral Biometric

Security. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man &

Cybernetics Society 37, 5 (2007), 1107ś1118.
Davide Balzarotti, ℧arco Cova, and Giovanni Vigna. 2008. ClearShot: Eavesdropping on Keyboard Input from Video. In

IEEE Symposium on Security and Privacy. 170ś183.
Jounghoon Beh, David Han, and Hanseok Ko. 2014. Rule-based trajectory segmentation for modeling hand motion trajectory.

Elsevier Science Inc. 1586âĂŞ1601 pages.
Nick Berry. 2012. PIN analysis. Available: http:⁄⁄www.datagenetics.com⁄blog⁄september32012⁄index.html. (2012).
Robert Biddle, Sonia Chiasson, and P C Van Oorschot. 2012. Graphical passwords: Learning from the irst twelve years.

ACM Computing Surveys (CSUR) (2012).
Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Corpus of 70 ℧illion Passwords. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy (SP ’12). 538ś552.
Dirk Van Bruggen. 2014. Studying the Impact of Security Awareness Eforts on User Behavior. Ph.D. Dissertation. University

of Notre Dame.
Sridhar Chimalakonda and Kesav V. Nori. 2013. What makes it hard to teach software engineering to end users? some

directions from adaptive and personalized learning. 128, 6 (2013), 324ś328.
Antonella De Angeli, Lynne Coventry, Graham Johnson, and Karen Renaud. 2005. Is a picture really worth a thousand

words? Exploring the feasibility of graphical authentication systems. International Journal of Human-Computer Studies

63, 1âĂŞ2 (2005), 128ś152.
Serge Egelman, Sakshi Jain, Rebecca S Portnof, Kerwell Liao, Sunny Consolvo, and David Wagner. 2014. Are You Ready to

Lock?. In ACM Sigsac Conference on Computer and Communications Security. 750ś761.
℧alin Eiband, ℧ohamed Khamis, Emanuel Von Zezschwitz, Heinrich Hussmann, and Florian Alt. 2017. Understanding

Shoulder Suring in the Wild: Stories from Users and Observers. In CHI Conference on Human Factors in Computing

Systems.
Richard J. Fox, ℧elvin R. Crask, and Jonghoon Kim. 1988. ℧AIL SURVEY RESPONSE RATE A ℧ETA-ANALYSIS OF

SELECTED TECHNIQUES FOR INDUCING RESPONSE. Public Opinion Quarterly 52, 4 (1988), 467ś491.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

https://dx.doi.org/10.17635/lancaster/researchdata/113
http://www.datagenetics.com/blog/september32012/index.html

39:30 Ye, G. et al

von Gioi R Grompone, J Jakubowicz, J. ℧. ℧orel, and G Randall. 2010. LSD: a fast line segment detector with a false detection
control. IEEE Transactions on Pattern Analysis & Machine Intelligence 32, 4 (2010), 722ś32.

Zdenek Kalal. [n. d.]. TLD: Tracking-Learning-Detection. Available: http:⁄⁄kahlan.eps.surrey.ac.uk⁄featurespace⁄tld⁄. ([n.
d.]).

Zdenek Kalal, ℧ikolajczyk K, and ℧atas J. 2011. Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis &

Machine Intelligence 34, 7 (2011), 1409ś22.
Patrick Gage Kelley, Saranga Komanduri, ℧ichelle L. ℧azurek, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin,

Lorrie Faith Cranor, and Julio Lopez. 2012. Guess Again (and Again and Again): ℧easuring Password Strength by
Simulating Password-Cracking Algorithms. In Proceedings of the 2012 IEEE Symposium on Security and Privacy (SP ’12).
523ś537.

℧arkus Guenther Kuhn. 2002. Compromising emanations: eavesdropping risks of computer displays. Ph.D. Dissertation.
University of Cambridge.

℧ichael H. Kutner, Christopher J. Nachtsheim, and John Neter. 2004. Applied Linear Regression ℧odels (5th Ed.). Techno-
metrics 26, 4 (2004).

Zhen Ling, Junzhou Luo, Qi Chen, Qinggang Yue, ℧ing Yang, Wei Yu, and Xinwen Fu. 2016. Secure ingertip mouse for
mobile devices. In IEEE INFOCOM 2016 - the IEEE International Conference on Computer Communications. 1ś9.

℧arte Dybevik Lùge. 2015. Tell Me Who You Are and I Will Tell You Your Unlock Pattern. ℧aster’s thesis. Norwegian
University of Science and Technology.

Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Hussmann. 2012. Touch me once and
i know it’s you!: implicit authentication based on touch screen patterns. In Sigchi Conference on Human Factors in

Computing Systems. 987ś996.
Federico ℧aggi, Alberto Volpatto, Simone Gasparini, Giacomo Boracchi, and Stefano Zanero. 2011. Poster: fast, automatic

iPhone shoulder suring. In ACM Conference on Computer and Communications Security. 805ś808.
℧ohammad ℧annan and Paul C van Oorschot. 2007. Using a personal device to strengthen password authentication from

an untrusted computer. In Financial Cryptography and Data Security. Springer, 88ś103.
℧ichelle L. ℧azurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Patrick Gage

Kelley, Richard Shay, and Blase Ur. 2013. ℧easuring Password Guessability for an Entire University. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security. AC℧, 173ś186.
Rahul Raguram, Andrew℧.White, Dibyendusekhar Goswami, Fabian℧onrose, and Jan℧ichael Frahm. 2011. iSpy:automatic

reconstruction of typed input from compromising relections. In ACM Conference on Computer and Communications

Security. 527ś536.
J Rogers. 2007. Please enter your four-digit pin. Financial Services Technology (2007).
Stefan Schneegass, Frank Steimle, Andreas Bulling, Florian Alt, and Albrecht Schmidt. 2014. SmudgeSafe: geometric

image transformations for smudge-resistant user authentication. In ACM International Joint Conference on Pervasive and

Ubiquitous Computing. 775ś786.
Abdul Serwadda and Vir V. Phoha. 2013. When kids’ toys breach mobile phone security. In ACM Sigsac Conference on

Computer & Communications Security. 599ś610.
Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V Phoha. 2014. Beware, Your Hands Reveal Your Secrets!. In ACM

CCS. 904ś917.
Hossein Siadati, Payas Gupta, Sarah Smith, Nasir ℧emon, and ℧ustaque Ahamad. 2015. Fortifying Android Patterns using

Persuasive Security Framework. In UBICOMM 2015, The Ninth International Conference on Mobile Ubiquitous Computing,

Systems, Services and Technologies.
Youngbae Song, Geumhwan Cho, Seongyeol Oh, Hyoungshick Kim, and Jun Ho Huh. 2015. On the Efectiveness of Pattern

Lock Strength ℧eters:℧easuring the Strength of Real World Pattern Locks. In ACM Conference on Human Factors in

Computing Systems. 2343ś2352.
Lionel Standing, Jerry Conezio, and Ralph Norman Haber. 1970. Perception and memory for pictures: Single-trial learning

of 2500 visual stimuli. Psychonomic Science 19, 2 (1970), 73ś74.
Deian Stefan, Xiaokui Shu, and Danfeng Yao. 2012. Robustness of keystroke-dynamics based biometrics against synthetic

forgeries. Computers & Security 31, 1 (2012), 109ś121.
B Stenger, A Thayananthan, P. H. Torr, and R Cipolla. 2006. ℧odel-based hand tracking using a hierarchical Bayesian ilter.

IEEE Transactions on Pattern Analysis & Machine Intelligence 28, 9 (2006), 1372ś84.
Chen Sun, Yang Wang, and Jun Zheng. 2014. Dissecting pattern unlock: The efect of pattern strength meter on pattern

selection. Journal of Information Security & Applications 19, 4âĂŞ5 (2014), 308ś320.
Antonio Torralba and Aude Oliva. 2002. Depth Estimation from Image Structure. Pattern Analysis & Machine Intelligence

IEEE Transactions on 24, 9 (2002), 1226ś1238.
Sebastian Uellenbeck, Christopher Wolf, and Thorsten Holz. 2013. Quantifying the security of graphical passwords:the case

of android unlock patterns. In ACM Sigsac Conference on Computer & Communications Security. 161ś172.

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

http://kahlan.eps.surrey.ac.uk/featurespace/tld/

A Video-based Atack for Android Patern Lock 39:31

Emanuel Von Zezschwitz, Alexander De Luca, Philipp Janssen, and Heinrich Hussmann. 2015. Easy to Draw, but Hard
to Trace?: On the Observability of Grid-based (Un)lock Patterns. In ACM Conference on Human Factors in Computing

Systems. 2339ś2342.
Roman Weiss and Alexander De Luca. 2008. PassShapes: utilizing stroke based authentication to increase password

memorability. In Nordic Conference on Human-Computer Interaction: Building Bridges. 383ś392.
Yi Xu, Jared Heinly, Andrew ℧ White, Fabian ℧onrose, and Jan ℧ichael Frahm. 2013. Seeing Double: Reconstructing

Obscured Typed Input from ℧ultiple Compromising Relections, Around the Corner. In ACM Conference on Computer

and Communications Security. 1063ś1074.
℧ing Hsuan Yang, Narendra Ahuja, and ℧ark Tabb. 2002. Extraction of 2D ℧otion Trajectories and Its Application to Hand

Gesture Recognition. (2002), 1061ś1074.
Guixin Ye, Zhanyong Tang, Dingyi Fang, Xiaojiang Chen, Kwang In Kim, Ben Taylor, and Zheng Wang. 2017. Cracking

Android pattern lock in ive attempts. In The Network and Distributed System Security Symposium (NDSS).
Qinggang Yue, Zhen Ling, Benyuan Liu, Xinwen Fu, and Wei Zhao. 2014. Blind Recognition of Touched Keys: Attack and

Countermeasures. Computer Science (2014).
Emanuel Von Zezschwitz, Anton Koslow, Alexander De Luca, and Heinrich Hussmann. 2013. ℧aking graphic-based

authentication secure against smudge attacks. (2013), 277ś286.
Jie Zhang, Xiaolong Zheng, Zhanyong Tang, Tianzhang Xing, Xiaojiang Chen, Dingyi Fang, Rong Li, Xiaoqing Gong, and

Feng Chen. 2016. Privacy Leakage in ℧obile Sensing: Your Unlock Passwords Can Be Leaked through Wireless Hotspot
Functionality. Mobile Information Systems 2016, 2 (2016), 1ś14.

Lan Zhang, Cheng Bo, Jiahui Hou, Xiang Yang Li, Yu Wang, Kebin Liu, and Yunhao Liu. 2015. Kaleido: You Can Watch It
But Cannot Record It. In International Conference on Mobile Computing and NETWORKING. 372ś385.

Received October 2017; revised January 2018; accepted June 2018

AC℧ Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: ℧arch 2018.

