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Abstract— Anticipating a human collaborator’s intention en-
ables a safe and efficient interaction between a human and
an autonomous system. Specifically in the context of semi-
autonomous driving, studies have revealed that correct and
timely prediction of driver’s intention needs to be an essential
part of Advanced Driver Assistance System (ADAS) design. To
this end, we propose a framework that exploits drivers’ time-
series gaze and fixation patterns to anticipate their real-time
intention over possible future actions, enabling a smart and
collaborative ADAS that can aid drivers to overcome safety-
critical situations. The method models human intention as the
latent states of a hidden Markov model and uses probabilistic
dynamic time warping distributions to capture the temporal
characteristics of the observation patterns of the drivers. The
method is evaluated on a data set collected in safety-critical
semi-autonomous driving experiments. The results illustrate the
efficacy of the framework, which correctly anticipated drivers’
intentions about 3 seconds beforehand with over 90% accuracy.

I. INTRODUCTION

The technology for fully-autonomous cars is rapidly im-

proving, but they are still far away from reality. Semi-

autonomous driving, though, is already here. Cars with

Advanced Driver Assistance Systems (ADAS) that provide

limited autonomous capabilities are currently available and

attracting a lot of attention. Examples include Tesla’s Au-

topilot and Ford’s Co-Pilot 360. These systems are designed

to ensure safety by alerting hazardous traffic conditions

or even taking over control to avert impending collisions.

Recent accidents, however, have revealed major safety issues

with ADAS such as late warning and wrong intervention.

These issues are mainly caused by lack of accounting for

the human driver’s mental state, specifically, intentions in

the design of ADAS. In fact, it is crucial to anticipate

the driver’s intentions in order to be able to safely assist

the driver in critical situations. Our goal is to address this

important challenge and design an ADAS that can anticipate

and take into account drivers’ intentions. In this work,

*Kwiatkowska, Lahijanian, and Ruan are supported by EPSRC Pro-
gramme Grant on Mobile Autonomy (EP/M019918/1). Huang is supported
by the DSTL project “Test Coverage Metrics for Artificial Intelligence”.
Wu is supported by the CSC-PAG Oxford Scholarship.

we focus on intention prediction in critical situations and

propose a method of anticipating a driver’s intended action

via analysing the driver’s observation of the surrounding

environment, and specifically, eye gaze.

Recent studies [1]–[3] show the importance of human

intention prediction in the context of semi-autonomous driv-

ing and ADAS design. They explain that it is necessary to

detect the driver intentions as early as possible to ensure that

information, warnings, and especially system interventions

by ADAS do not come into conflict with the driver intentions.

Otherwise, conflicting situations, where for instance the

intervention of the ADAS can interfere with the driver’s

intention of operation, can arise and jeopardise the safety

of the driver and the surrounding vehicles. Hence, correct

and timely prediction of driver’s intention needs to be an

essential part of ADAS design.

The concept of human intention can be defined as a

commitment to the execution of a particular action [4].

Whilst intention recognition can be achieved by utilising a

person’s physical status and/or the system’s measurements,

e.g., steering data after a driver has already started to ma-

noeuvre [5]–[7], intention anticipation is more challenging as

it is achieved before the actual movement. Recent works [1],

[2] showed that by relying on multiple sources including

inside-vehicle features, e.g., facial points and head motion,

together with outside-vehicle features, e.g., vehicle dynam-

ics, road conditions, street maps, it is possible to compute

the probability of different future driving manoeuvres with

high accuracy. In safety critical situations, however, all these

sources of data may not be available. In such cases, a method

that relies on an easily accessible feature is preferred.

Gaze has been identified as a revelation of human in-

tention by indicating the direction of attention and future

actions [8], [9]. In human-robot collaboration, it has been

shown that human gaze can be utilised to interpret human’s

intention [10]–[14]. For example, in a collaborative task [15],

gaze features are used to predict the participants’ intended

requests. Similarly, in shared autonomy [16], user’s gaze is

used to estimate the goals of the user. Gaze information is

also utilised in driving scenarios to understand the driver’s



distraction [17], [18].

Our goal is to design an ADAS that can predict driver

intentions and provide safety assistance accordingly in crit-

ical situations. As the first step towards this goal, we focus

on human intention anticipation solely based on gaze in

safety-critical driving situations since it is a reliable source

in such cases. In other words, we are interested in utilising

real-time gaze observations to anticipate driver’s intention

indicated by subsequent actions in an autonomous driving

scenario. This is an important yet challenging problem. On

one hand, gaze cues, which include head pose implicitly [19],

can discriminate between adjacent zones such as front wind-

screen and speedometer by subtle eye movements [17]. On

the other hand, it is difficult to efficiently use gaze be-

cause recorded gaze data may potentially contain noise from

sensors, and the temporal dependencies of gaze sequence

should be considered. More importantly, individual drivers

can exhibit different gaze patterns, and therefore, analysis of

the similarity between different gaze patterns under certain

actions is necessary.

In this work, we propose a probabilistic Dynamic Time

Warping - Hidden Markov Model (pDTW-HMM) architec-

ture to anticipate intention over future manoeuvres based

on the gaze pattern. We model human intention as the

latent states of an HMM and use gaze sequence as the

observations of the states of the HMM. We employ recursive

Bayesian estimation to iteratively infer real-time intention.

Within this framework, we use DTW to capture the temporal

characteristics of the gaze pattern and construct a pDTW

distribution to reflect the similarity of gaze patterns under

distinct manoeuvres. Finally, we combine these two aspects

together by importing the pDTW distribution into the mea-

surement likelihood during the update procedure of inferring

the latent states.

The main contribution of this work is the first framework

for driver’s intention anticipation over driving manoeuvres

that relies solely on gaze pattern to the best of our knowl-

edge. Another novelty of the work is probabilistic extension

of DTW and applying it to the domain of gaze pattern

recognition. Finally, the evaluation of the framework on a

driving data set with 124 cases from 75 drivers, collected

in a safety critical semi-autonomous driving scenario when

the drivers were supposed to take certain manoeuvres to

avoid collision. We demonstrate that our approach anticipates

intention 3.64 seconds before a real action was carried out

with 93.5% accuracy.

A. Related Work

Some previous works focused on lane change recognition

based on various data sources. For example, Kuge et al. [5]

developed a Hidden Markov Model (HMM) using steering

behaviour to recognise emergency and normal lane change

as well as lane keeping. Kim et al. [3] employed a Support

Vector Machine (SVM) predictor fed with on-board sensor

measures along with vehicle state and road condition learnt

from an Artificial Neural Network (ANN) to detect a driver’s

intention of lane change with high accuracy.

Fig. 1: Schematic representation of the driving scenario.

Later on, researchers tried to predict lane change be-

haviours slightly beforehand. Salvucci et al. [20] demon-

strated that a cognitive model - Adaptive Control of Thought-

Rational (ACT-R) - could detect intention of lane change,

achieving 90% accuracy within 1 second, using steering-

wheel angle, accelerator depression, along with environmen-

tal data (lateral position and time headway). Kumar et al. [21]

combined SVM and Bayesian filter together, i.e., Relevance

Vector Machine (RVM), to predict lane change 1.3 seconds

in advance, using lane trajectory from a tracker.

Recently, anticipating future driving manoeuvres a few

seconds before has been studied. In particular, Jain et

al. [1] proposed an Autoregressive Input-Output HMM (AIO-

HMM), which captures context from inside and outside the

vehicle, to anticipate manoeuvres 3.5 seconds beforehand

with over 80% F1-score. Moreover, they also used Recur-

rent Neural Networks (RNN) combined with Long Short-

Term Memory (LSTM) to anticipate manoeuvres, increasing

precision to 90.5% [2].

Further, gaze has been studied to reveal intention in

different contexts. For instance, in a collaborative sandwich-

making task, Huang et al. [15] developed a SVM based

model solely using gaze features to predict the participants’

intended requests of ingredients. In an autonomous driving

scenario, Jiang et al. [19] proposed a Dynamic Interest

Point Detection (DIPD) methodology, which combines a

dynamic random Markov field with an energy function, to

infer driver’s points of interest (e.g., shop signs) using gaze

tracking data.

II. PROBLEM STATEMENT

In this section, we explain the considered safety-critical

driving scenario and formulate the intention anticipation

problem.

A. Driving Scenario

We consider a driving scenario given in Fig. 1, where a

semi-autonomous vehicle is following a lead vehicle in a

highway at 70mph while in autonomous mode. Suddenly,

the semi-autonomous vehicle detects a swift deceleration of

5m/s2 of the lead vehicle, at which point (time instant (b)) it

sends out an “uncertainty alert” to the driver to take control.

The driver has about 3 s to react to the safety-critical situation



(a) Outside. (b) Inside.

(c) Windscreen (Yaw, Pitch). (d) Human-Machine Interface.

Fig. 2: The Jaguar S-Type Driving Simulator.

to avoid collision, e.g., Brake in time, turn Right or Left to

another lane.

We have in fact collected data for this study as part of

the EU-funded AdaptIVe project [22]–[24]. The experiments

were performed at the University of Leeds Driving Simulator,

presented in Fig. 2, which consists of a Jaguar S-Type cab

within a 4m spherical projection dome (Fig. 2(a) and 2(b)),

with a 300◦ field-of-view projection system over two dimen-

sions Yaw (horizontal) and Pitch (vertical) as a windscreen

(Fig. 2(c)). Drivers’ eye movements were recorded by a

v4.5 Seeing Machines faceLAB eye-tracker at 60Hz. When

in safety-critical condition, the Automation Status symbol

(Fig. 2(d)) flashes yellow, acting as an “uncertainty alert”, to

invite driver’s intervention to deactivate automation.

B. Problem Formulation

We are interested in anticipating the driver’s intention at

each time step by analysing the observation data from time

instant (b) until the moment the driver takes a manoeuvre.

The definition of intention is in Definition 1, and we for-

malise the problem in Problem 1.

Definition 1: Given a set of driving manoeuvres M, a

driver’s intention is a probability distribution P over M such

that
∑

I∈M P (I) = 1. We let argmaxI∈M P (I) be the

intended manoeuvre.

Whereas M may include many possible driving manoeu-

vres, for illustration purpose, we focus on three manoeuvres

Brake, Right, and Left that suit the scenario.

Problem 1: A driver’s time-series observation, or obser-

vation history, is a sequence OT = (o1, . . . , oT ), where

ot = (Yawt,Pitcht) for 1 ≤ t ≤ T is an observation point on

the Yaw-Pitch plane. Given a prefix Ot = (o1, . . . , ot) of the

observation history, a real-time history dependent intention

strategy δ on time t is a conditional probability P (It | Ot)
such that

∑
It∈M P (It | Ot) = 1. Then, given OT , the

intention anticipation problem is to find an intention strategy

δ to minimise the safety risk.

III. GAZE-BASED INTENTION ANTICIPATION

FRAMEWORK

To approach Problem 1, we design a framework that

uses HMMs to model human intention, pDTW to capture

Fig. 3: The HMM graphical model representing real-time

history dependent intention, where It ∈ M denotes an

intended manoeuvre in a latent state, and ot an observation

point in an observed state.

observation pattern, and Bayesian estimation to compute

intention strategy.

A. Modelling Intention with HMM

For each driver, an HMM is constructed representing real-

time history dependent intention over driving manoeuvres, as

exhibited in Fig. 3. At each time step t, a driver’s intention

is a probability distribution over manoeuvres M. We exploit

recursive Bayesian estimation [25] to compute P (It | Ot).
It comprises two steps, Prediction and Update, which are

explained below.

Prediction: Given a sequence of time-series historical ob-

servations Ot−1 = (o1, . . . , ot−1), we predict manoeuvre at

the next time step It by

P (It | Ot−1) =

∫
P (It | It−1) · P (It−1 | Ot−1)dIt−1.

(1)

We assume that, when a driver’s observation is available up

to time instant t−1, the driver’s intention remains unchanged

from t − 1 to t until a new observation point ot comes in.

That is, when Ot−1 is available but ot is not yet, we have

It = It−1, which implies P (It | It−1) = 1. Intuitively,

since driver’s gaze was recorded at 60Hz, i.e., every 1/60 s,
we assume the driver’s intention did not change until a new

gaze point was recorded.

Update: The update of the intention when a new observation

point ot comes, i.e., from Ot−1 to Ot, is

P (It | Ot) =
P (It | Ot−1) · P (ot | It,Ot−1)

P (ot | Ot−1)
, (2)

where P (It | Ot−1) is the predicted intention from Equa-

tion (1), and P (ot | It,Ot−1) is the measurement likelihood.

The latter intuitively means that an observation point is de-

pendent on the current intention and historical observations,

shown as the emission probabilities in Fig. 3.

Combining these two steps together, the value of P (It |
Ot) can be computed via Lemma 1.



Lemma 1: Given a driver’s time-series observation OT =
(o1, . . . , oT ), through modelling intention as an HMM, the

driver’s real-time history dependent intention strategy δ over

a possible manoeuvre It ∈ M can be computed by

P (It | Ot) =
P (I0)

∏t

i=1
P (oi | Ii,Oi−1)∏t

i=1
P (oi | Oi−1)

, (3)

where P (I0) is the prior distribution. As
∑

It∈M P (It |
Ot) = 1, the denominator acts as a normalisation constant

thus does not need to be calculated.

Proof: By combining Equations (1) and (2) recursively,

when P (It | It−1) = 1, we have P (It | Ot)

=
P (It−1 | Ot−1) · P (ot | It,Ot−1)

P (ot | Ot−1)
(4)

=
P (It−2 | Ot−2) · P (ot−1 | It−1,Ot−2) · P (ot | It,Ot−1)

P (ot−1 | Ot−2) · P (ot | Ot−1)
(5)

= . . . . . . (6)

=
P (I0 | O0)

∏t

i=1
P (oi | Ii,Oi−1)∏t

i=1
P (oi | Oi−1)

, (7)

where P (I0 | O0) = P (I0) when there is no observation.

Therefore, the problem of intention anticipation based on

observation is reduced to the construction of the measure-

ment likelihood P (ot | It,Ot−1), which essentially captures

temporal characteristics of observation patterns under distinct

driving manoeuvres.

B. Capturing Observation Pattern with pDTW

Dynamic time warping (DTW) [26] measures similar-

ity between two time-dependent sequences via finding an

optimal alignment under certain restrictions, and has been

applied in speech pattern comparison in automatic speech

recognition [27], as well as information retrieval for music

and motion [28].

In this work, we extend DTW to probabilistic DTW,

or pDTW, to capture driver’s observation pattern and fit

that into the HMM model to anticipate intention. To be

more specific, for a new driver whose intentions are to

be predicted, at each time step t, we compute a distance

measure DTWt
M from a set of experimental drivers whose

observation sequences and ultimate manoeuvres have been

recorded in Section IV, then extract a probability distribution

over the distance measure pDTWt
M and let P (ot | It,Ot−1)

be the conditional probability of observing ot under the

condition of taking the manoeuvre It.
We first introduce DTW distance below.

Definition 2: Given two time-dependent sequences X =
(x1, . . . , xM ) and Y = (y1, . . . , yN ) of respective lengths

M,N ∈ N
+, a warping path is a sequence p = (p1, . . . , pL)

such that pl = (ml, nl) ∈ [1,M ] × [1, N ] for l ∈ [1, L]
subject to constraints:

1) Boundary condition: p1 = (1, 1) and pL = (M,N).
2) Continuity: pl+1 − pl ∈ {(1, 1), (1, 0), (0, 1)} for l ∈

[1, L− 1].

Fig. 4: Optimal alignment of two time-dependent sequences

via DTW. Darker area denotes shorter distance in the accu-

mulated distance matrix.

3) Monotonicity: m1 ≤ . . . ≤ mL and n1 ≤ . . . ≤ nL.

Let F be a feature space such that xm, yn ∈ F for m ∈
[1,M ], n ∈ [1, N ], and d : F × F 7→ R≥0 be the local

distance, then the total distance dp(X,Y ) of a warping path

p is dp(X,Y ) =
∑L

l=1
d(xml

, ynl
). DTW distance, denoted

by DTW(X,Y ), is the minimal total distance among all

possible warping paths P . That is,

DTW(X,Y ) = min
p∈P

dp(X,Y ). (8)

In this work, DTW(X,Y ) computes the minimal Euclidean

distance of X and Y , each of which denotes an observation

sequence. See graphical illustration of the optimal warping

path of two sequences of scalars in Fig. 4.

The construction of a minimal DTW distance measure is

in Definition 3.

Definition 3: Given a set of experimental drivers Dtotal,

in which each D = (OI
T , I), I ∈ M denotes that every

driver has a recorded observation sequence O
I
T and a cor-

responding manoeuvre I. Let Dnew denote a new driver

with observations OT = (o1, . . . , oT ), then a minimal DTW

distance measure w.r.t manoeuvres M at time step t, denoted

by DTWt
M, is defined as

DTWt
M = d

t

I∈M (9)

such that in the vector each

dtI∈M = min{DTW(Ot,O
I
T ) | O

I
T ∈ Dtotal} (10)

where Ot � OT is a prefix.

Essentially, the minimal DTW distance DTWt
M is a simi-

larity measure that discovers the closest observation patterns

between a new observation sequence Ot and observations

in each manoeuvre category. Note that there is a negative

correlation between the distance value dtI and probability

P (It | Ot). Intuitively, if dtI increases, then the observation

pattern Ot is less similar to these labelled with manoeuvre

I, i.e., the driver Dnew is less likely to take manoeuvre I,

thus P (It | Ot) decreases.

Now we introduce how to extract a probability distribu-

tion over the distance measure, taking the above-mentioned

negative correlation into consideration.



Definition 4: Given a new driver Dnew with observations

OT = (o1, . . . , oT ), and this driver’s minimal DTW distance

measure DTWt
M = d

t

I∈M, t ∈ [1, T ], let rtI be the reward

of choosing manoeuvre I, and ctI be the cost, then the reward

Rt(M) is defined as vector

Rt(M) = r
t

I∈M = c
t

¬I∈M =
∑

I′∈M\I

c
t

I′ (11)

where ctI =
dtI∑

I∈M dtI
. Subsequently, by using softmax, the

probability distribution over minimal DTW distance measure,

denoted by pDTWt
M, is

pDTWt
M =

exp(Rt(I)/T )∑
I∈M exp(Rt(I)/T )

, (12)

where temperature T is a real constant.

In the above definition, we define reward rtI and cost ctI
to reflect the negative correlation. Intuitively, the reward of

carrying out an intended manoeuvre I is the cost of not

taking I, i.e., ¬I, which is the sum of the costs of choosing

the other manoeuvres. Therefore, if a driver’s observation

pattern Ot is closer to these labelled as manoeuvre I, then

the minimal DTW distance dtI is smaller, the cost ctI is

smaller, the reward rtI is comparatively greater, and the

probability value pDTWt
I is greater, i.e., the driver is more

likely to carry out this manoeuvre.

C. pDTW-HMM Intention Anticipation

Now we combine the pDTW distribution, which essen-

tially reflects the characteristics of the observation patterns

under particular manoeuvres (Section III-B), as the emission

distribution in the Update procedure of the previous HMM

modelling intention (Section III-A), so that a driver’s inten-

tion is predicted and updated at each time step whenever a

new observation point comes.

The proposed pDTW-HMM framework is presented in

Algorithm 1. Here we assume an uninformative uniform prior

over the driving manoeuvres.

Algorithm 1 Intention Anticipation

1: Input: A set of possible driving manoeuvres M;

2: A set of experimental drivers Dtotal.

3: Output: Intention strategy δ. (Problem 1)

4: procedure PDTW-HMM

5: Initialise prior distribution P (I0);
6: for t = 1 : a manoeuvre is taken do

7: Record observation point ot;
8: Compute pDTWt

M; (Definition 4)

9: Let P (ot | It,Ot−1) = pDTWt
I∈M;

10: Infer and normalise P (It | Ot); (Lemma 1)

11: Send dist(M) to ADAS;

12: t = t+ 1.

13: end for

Remark. In this work, we let observation denote both a

driver’s gaze and fixation, as each of which can be regarded

TABLE I: Participant demographics. Following ethical ap-

proval from the University’s Research Ethics Committee

(Reference Number: LTTRAN-054), 5 groups of 15 drivers

(75 in total, 41 male, 34 female) were recruited.

Age Driving License Annual Mileage

(years) (years) (miles)

36.16± 12.38 16.22± 12.92 8290.46± 6723.08

(a) G4P15T2 - 3D. (b) G4P15T2 - 2D.

(c) G5P2T2 - 3D. (d) G5P2T2 - 2D.

Fig. 5: Illustration of driver’s gaze pattern. Left: gaze points

in Yaw-Pitch-Time space; Right: separation of Yaw and

Pitch degrees on time steps.

as an aspect of observation, while the former normally

contains noise and the latter performs as a filtration. Note

that the proposed framework works for both as shown in the

experimental results.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results of anticipat-

ing driver’s real-time intention over future manoeuvres based

on past observations.

We have 124 valid experimental cases from two trials

of the scenario - 61 in Trial 1, and 63 in Trial 2. The

demographics of participants are given in Table I. We use

GxPyTz to mark Participant y of Group x in Trial z, where

x ∈ {1..5}, y ∈ {1..15}, z ∈ {1..2}.

A. Gaze and Fixation

We consider two forms of observations - gaze and fixations

- to anticipate driver’s real-time intention over possible

manoeuvres. (Min: add eye-tracking algorithm citation) See

examples of gaze patterns in Fig. 5.

We define fixation as a driver’s gaze maintaining on a

fixed area for a certain period of time, e.g., 0.2 s. Fig. 6

illustrates fixation extraction from a driver’s gaze sequence.

Take G2P9T1 as an example, from Fig. 6(a) we observe

that 27 fixations were formed from a sequence of 411 gaze

points. Although a few gaze points somewhat scattered to

the right, all fixations were formed at the centre region

of the windscreen, i.e., [−1◦ : 1◦, 0◦ : 2◦], where the lead

vehicle was decelerating or probably stopping ahead. This

corresponds to the situation where manoeuvre Brake is taken



(a) G2P9T1 - Brake. (b) G1P12T1 - Right.

Fig. 6: Extraction of fixations from a sequence of gaze points.

Plot on Yaw-Pitch plane for illustration of where the driver

was looking at on the windscreen. (frequency ν = 60Hz,

duration ∆ = 0.2 s, fixation range f = 2◦.)

Fig. 7: Comparison of gaze patterns using DTW. Top row:

original (a) and aligned (b) gaze sequences of G4P15T2;

Middle row: that of G5P2T2; Bottom row: overlaid gaze

sequences of both.

as the driver needed to focus on the conditions ahead in order

to brake in time to avoid collision.

B. Intention Anticipation over Driving Manoeuvres

Now we present intention anticipation over driving ma-

noeuvres from both gaze and fixation.

Comparison between gaze or fixation patterns is achieved

by generating a pDTW distribution (Section III-B). Fig. 7

describes the computation of the Euclidean distance between

gaze sequences of two arbitrary drivers. The capability

of DTW to capture the gaze pattern is shown via the

close match between G2P15T2’s Original Gaze (Fig. 7(a))

and 2D plot (Fig. 5(b)), as well as G5P2T2’s Original

Gaze (Fig. 7(c)) and 2D plot (Fig. 5(d)). Intuitively, once

an optimal alignment between the gaze patterns is found,

as shown in the Overlaid Aligned Gazes (Fig. 7(f)), the

shortest warping distance can be computed. In this case,

DTW(G4P15T2,G5P2T2) = 1021.62.

A driver’s real-time intention strategy generated from

gaze sequence and extracted fixations for the same duration

is illustrated in Fig. 8 for comparison. We remark the

discrepancies between intention anticipation from gaze and

fixation. On one hand, the advantage of inferring from gaze

points directly is that the strategy can be obtained at each

time step almost simultaneously while the gaze point being

recorded. Nevertheless, the disadvantage is that the strategy

(a) G3P14T1’s intention from gaze.

(b) G2P14T1’s intention from fixation.

Fig. 8: Real-time intention strategy over three driving ma-

noeuvres Brake, Right, and Left from gaze (a) and fixation

(b), respectively. (Leave-one-out cross-validation, tempera-

ture T = 1/10.)

may change drastically at some time instants, and thus

exhibits instability. On the other hand, if extracting fixation

points before inferring intention, the strategy tends to be

more robust, i.e., fewer or no drastic reversals, though in

this case the strategy is only available at each fixation point,

i.e., every 0.2 s when fixation forms.

C. Accuracy Validation

We validate the proposed framework through statistically

analysing how accurate the anticipation is, by comparing the

predicted manoeuvre to the real manoeuvre that was taken

by individual drivers.

For both trials, we separate the total number of drivers

randomly into a training set and a test set. Formally, the

separation algorithm is as follows. A total set Dtotal[1, N ]
is classified into three manoeuvre categories DBrake[1, B],
DRight[1, R], and DLeft[1, L], such that B + R + L = N
and N,B,R,L ∈ N

+. Let γ ∈ (0, 1) be a train ratio, then a

training set is Dtrain[1, α] = γ∗DBrake∪γ∗DRight∪γ∗DLeft,

where α = ⌈γB⌉+⌈γR⌉+⌈γL⌉, ∗ denotes random selection,

and ⌈x⌉ retrieves the nearest integer greater than or equal to

x. A test set is the complement Dtest[1, β] = Dtotal \Dtrain

such that β = N − α.

The general accuracy of intention anticipation from gaze

and fixation in both trials is illustrated in Fig. 9. In terms

of mean accuracy (Fig. 9(a)), as the train ratio increases

from 85% to 95%, the correct anticipation rate increases.

Fig. 9(b) describes the box plot of the anticipation accuracy

from fixation in Trial 2, corresponding to the purple bars in

Fig. 9(a). It shows that, after 500 iterations of the experiment

to potentially enlarge the training and test sets, when train

ratio is 95%, the correct rate almost reaches 1.0. We believe

that the outliers are due to the size of the test set (small in

each iteration), and do not compromise the overall result as

the mean value is 93.5%.



(a) Mean accuracy from gaze and fixation after 500 iterations.

(b) Box plot of accuracy from fixation in Trial 2, corresponding to
the purple bars in Fig. 9(a).

Fig. 9: Accuracy of intention anticipation from gaze and

fixation, respectively, in Trial 1 and Trial 2. (γ = 80% ∼
95%, T = 1/10, ν = 60Hz, ∆ = 0.2 s, f = 2◦.)

The proposed framework pDTW-HMM’s advantage over

baseline methods is presented in Table II. We observe that it

achieves higher mean accuracy rate (Pr) and longer correct

anticipation time before actual manoeuvre (tb). Specifically,

it exhibits that intention anticipation from fixation outper-

forms that from gaze, e.g., 13.8% higher in Trial 1 and 7.5%
higher in Trial 2. Furthermore, it demonstrates that intention

anticipation in Trial 2 is more accurate than that in Trial 1,

regardless of gaze (9% higher) or fixation (2.7% higher).

We also evaluate tb, which means the time duration when

the correctly predicted manoeuvre remains unchanged until

a driver starts to take actual action, e.g., 128th ∼ 202nd

time steps in Fig. 8(a), and 2nd ∼ 10th fixation points

in Fig. 8(b). In experiments, tb is formatted into seconds.

Trial 2 shows slightly shorter durations than Trial 1, e.g.,

0.18 s shorter from fixation. Combining with the fact that,

in Trial 2, none of the drivers (0/63) crashed whilst 15/61
crashes occurred in Trial 1, the reason may be that, after

familiarising themselves with the safety-critical scenario and

operation of the autonomous vehicle, the drivers were able

to be more focused on the environment, thus forming more

reasonable (i.e., less distracted), not necessarily faster but

more precautious, gaze and fixations patterns. This makes

intention easier to anticipate, and eventually leads to suc-

cessful collision avoidance.

V. CONCLUSION

In this paper, we propose a pDTW-HMM framework,

by analysing the gaze and fixation patterns of the driver,

especially taking the temporal characteristics of them into

consideration. We show in our experiments that it can antic-

ipate a driver’s real-time intention over future manoeuvres

around 3 s beforehand with over 90% accuracy. Future work

aims to perform strategy synthesis or adaptation to assist

drivers in safety-critical situations when resuming control of

the vehicle from the autonomous mode. We also intend to

study the influence of driver distraction on the predictions.

TABLE II: Comparison of two baseline methods HMM and DTW with our pDTW-HMM framework, in terms of mean

accuracy rate (Pr) and correct anticipation time before actual manoeuvre (tb). (γ = 95%, T = 1/10, ν = 60Hz, ∆ = 0.2 s,
f = 2◦.)

Methodology

Trial 1 Trial 2

Gaze Fixation Gaze Fixation

Pr tb Pr tb Pr tb Pr tb

HMM 73.30% 3.40± 1.58 s 72.00% 2.92± 1.70 s 56.60% 2.89± 1.40 s 47.30% 2.91± 1.43 s

DTW 75.00% 2.91± 1.71 s 79.50% 2.69± 1.37 s 70.10% 2.72± 1.47 s 78.00% 2.73± 1.41 s

pDTW-HMM 77.00% 3.71± 1.85 s 90.80% 3.82± 1.27 s 86.00% 3.67± 1.32 s 93.50% 3.64± 1.09 s
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