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Summary

A consistent linearisation has been carried out for a monolithic solution procedure

of a poroelastic medium with fluid-transporting fractures, including a comprehen-

sive assessment of the convergence behaviour. The fracture has been modelled using

a sub-grid scale model with a continuous pressure across the fracture. The contribu-

tions to the tangential stiffness matrix of the fracture have been investigated to assess

their impact on convergence. Simulations have been carried out for different interpo-

lation orders and for Non-Uniform Rational B-Splines as interpolants vs Lagrangian

polynomials. To increase the generality of the results, Newtonian as well as non-

Newtonian (power-law) fluids have been considered. Unsurprisingly, a consistent

linearisation invariably yields a quadratic convergence, but comes at the expense of

a loss of symmetry and recalculation of the contribution of the interface to the stiff-

ness matrix at each iteration. When using a linear line search however, the inclusion

of only those terms of the interface stiffness which result in a symmetric and con-

stant tangential stiffness matrix is sufficient to obtain a stable and convergent iterative

process.

KEYWORDS:

Poroelasticity, fracture, monolithic solvers, convergence, Newton-Raphson method

1 INTRODUCTION

The analysis of fluid flow in deformable, fractured porous media is of importance for a variety of applications: Hydraulic

fracturing, pollutant transport and geothermal energy in geomechanics, flow through filters in chemical engineering, and blood

flow through biological tissues in biomedical engineering, to name a few. These applications often require simulations of large

domains, with complex interactions between the fracture, the deformable porous medium, and the interstitial fluid inside this

porous medium. Commonly, behaviour of the fluid flow in the fracture is modelled using the cubic law1,2,3,4,5,6. This relation,

based on the Reynolds equation, provides a nonlinear relation between the total fluid transported inside the fracture and the

pressure gradient and opening height.

Instead of directly postulating the cubic law to describe the transport inside the fracture, the inflow and outflow of the fracture

can be used to include its effect on the surrounding porous medium7,8. This approach encompasses a discontinuous pressure

model, which allows for the inclusion of small-scale effects like boundary layers around the fracture9,10, but also continuous

pressure models for describing the fluid transport inside the fracture without requiring additional pressure degrees of free-

dom11,12,13. These models are intimately to approaches which are directly based on the use of Reynolds’ equation for the fluid

velocity profile inside the fracture, and do not explicitly require the simulation of fluid transport in the interior of the fracture.
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FIGURE 1 Overview of domain Ω with an internal discontinuity Γd and the locations of the boundaries Γp, Γq , Γt and Γu. The

local (s, n) coordinate system is used for the fracture with an aperture ℎ.

To solve the resulting system of equations for the fracture, the interstitial fluid pressure, and the deformations of the porous

medium, several schemes exist. Staggered and iterative schemes have been applied successfully for the simulation of poroelastic

problems14,15,16, allowing for the combination of separate solvers developed for the fluid problem and the resolution of the

displacements. Simulation of pressurised fractures in non-porous media has shown the ability of iterative schemes to yield

stable solutions in spite of large nonlinearities introduced by the fracture17,18. This was achieved by applying an undrained

hydraulic fracture split, taking into account the changes in the fluid pressure caused by the fracture opening while solving for

the displacements of the solid constituent. An iterative scheme in which the interstitial fluid and fracture pressures are solved

simultaneously, while iterating between these pressures and the displacements, has been used to simulate pressurised fracture

propagation in poroelastic media19,20.

Another approach is to solve simultaneously for the fluid pressure and the solid displacements, i.e. in a monolithic manner.

This method, commonly implemented using a Newton-Raphson scheme, is often applied when solving poroelastic prob-

lems which contain fractures. It has been combined successfully with interface elements2,6, the eXtended Finite Element

Method (XFEM)4,9,10,21,22, the phase-field approach23, and isogeometric formulations12,13. While monolithic schemes exhibit

an improved stability compared to staggered and iterative schemes, they normally result in a non-symmetric tangential stiffness

matrix, which needs to be recalculated for each Newton-Raphson iteration. For this reason, Réthoré et al.11,24 and Vignollet et

al.13 omitted most fracture-related terms in their formulation of the tangential stiffness matrix, and used a symmetric, constant

stiffness matrix. Similarly, Mohammadnejad and Khoei21 did not include inertial terms related to the fracture, and obtained a

symmetric tangential stiffness matrix by scaling the mass conservation equation.

In this contribution we set out to assess the performance of a monolithic approach for resolving fluid flow and deformation in

fractured porous media. To this end we will derive the contributions to the tangential stiffness matrix which relate to the fracture,

and augment the tangential stiffness matrix with these terms on a one by one basis. We will then highlight the importance of the

different contributions to the tangential stiffness matrix that stem from the discontinuity, in particular of those terms that are not

constant and destroy the symmetry. In many of the quoted application areas, the interstitial fluid is non-Newtonian, and we will

therefore extend our assessment also to these fluids. Furthermore, the effect of the increased inter-element continuity obtained

by Non-Uniform Rational B-Splines (NURBS) compared to conventional Lagrange interpolation functions will be analysed, as

well as the influence of the interpolation order of NURBS.

In the remainder of this paper, we first briefly summarise the governing equations for the bulk and for the continuous pressure

sub-grid model. Next, attention is given to the discretisation of the governing equations in Section 3, and to the monolithic

Newton-Raphson scheme used to solve the discretised equations and the derivation of the resulting tangential stiffness matrices.

A typical boundary value problem containing a single fracture is simulated next, and the convergence behaviour is assessed,

including the effects of an increased inter-element continuity. Section 6 presents a more complicated case with three fractures.

Finally, a power-law fluid is used to investigate the effect of the interaction between the nonlinearities in the fracture and the bulk.
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2 GOVERNING EQUATIONS

We consider a domain Ω, with an internal discontinuity Γd , as shown in Figure 1. Across the internal discontinuity, the displace-

ments are C−1 continuous, while the interstitial fluid pressure is C0 continuous. This corresponds to the continuous pressure

model for fluid flow in fractured porous media8,25. In the remainder of this Section we will provide a succinct overview of this

model for Newtonian11,13,7 and for non-Newtonian (power-law)26 fluids.

2.1 Bulk material

We assume that the deformations of the porous material occur fast compared to the fluid flow and the pressure changes. This

allows the displacements in the domain Ω to be modelled as a quasi-static process by using the hydrostatic momentum balance:

( ⋅ � = 0 x ∈ Ω (1)

with � the total stress tensor, subject to the boundary conditions

u = u x ∈ Γu (2a)

n ⋅ � = t x ∈ Γt (2b)

nd ⋅ � = tΓd
x ∈ Γd (2c)

with u the displacements of the porous material, u the prescribed displacement on Γu, t the prescribed traction on the boundary

Γt with normal n, and tΓd
the traction at interior discontinuity Γd . The total stress � for a fully saturated porous material is

defined as:

� = �s − �pI (3)

with � the Biot coefficient, p the pressure of the interstitial fluid, and �s the effective stress. Using a linear-elastic stress-strain

relation for the solid, �s = D ∶ " with D the fourth-order elastic stiffness tensor and " = (
su the infinitesimal strain tensor, (s

denoting the symmetrised gradient operator, Eq. (3) can be recast as:

� = D ∶ " − �pI (4)

The pressure of the interstitial fluid is obtained from mass conservation of the fluid-solid mixture:

1

M

)p

)t
+ �( ⋅ u̇ + ( ⋅ q = 0 x ∈ Ω (5)

with the following boundary conditions:

p = p x ∈ Γp (6a)

n ⋅ q = q x ∈ Γq (6b)

nd ⋅ q = nd ⋅ qd x ∈ Γd (6c)

with M the Biot modulus, p the prescribed pressure on Γp, and q the prescribed fluid flux on Γq . The fluid flux due to the

presence of the internal discontinuity, qd will be detailed in Section 2.2.

For Newtonian fluids the fluid flux inside the porous medium is obtained from Darcy’s relation:

q = −
k

�
(p (7)

in which k is the intrinsic permeability of the porous material and � is the viscosity of the fluid. For non-Newtonian fluids the

fluid flux is obtained from :

q = −k∗
f
|(p| 1

n
−1

(p (8)

with n the non-Newtonian power law index, n < 1 indicating a shear-thinning fluid, n = 1 a Newtonian fluid (in which case the

expression degenerates to Eq. (7)), and n > 1 a shear-thickening fluid. The effective permeability is defined as:

k∗
f
=

n

3n + 1

(
50

3
k

) 1+n

2n (
2C�0

)− 1

n n
n−1

2n

f
(9)

with nf the porosity of the porous medium, �0 the base viscosity of the power-law fluid, and C a constant, normally taken as

C =
50

24
.



4 Hageman and de Borst

2.2 Fracture

The discontinuity is modelled using zero-thickness interface elements6,12,13,27,28, although this could equally well have been done

using an XFEM discretisation. The interface elements were a priori inserted for the fractured elements and for the non-fractured

elements in the extension of the fracture. The traction at the discontinuity is given by:

tΓd
= td − pnd (10)

with the traction component depending on the displacement jump JuK, as follows:

td = DdJuK (11)

with Dd the interface stiffness matrix. Herein we will consider interfaces which are either fully fractured, or non-fractured. In

the latter case, the interface stiffness matrix degenerates to:

Dd =

[
kn 0

0 ks

]
(12)

with kn and ks the stiffness values in the normal and the tangential directions, respectively, which are assigned a high value to

prevent non-physical crack opening. For the fully fractured interface elements the stiffness values are zero as no cohesive zone

model was used. To prevent negative fracture opening heights, the dummy stiffness kn was assigned to the fractured elements

when a negative opening occurred. Since this traction - relative displacement relation is given in the local (s, n) coordinate

system, it must be rotated to the global coordinate system using the rotation matrix R:

Dd = RTDdR (13)

For the flow inside the fracture it is assumed that the fluid is nearly incompressible. It is furthermore assumed that the fluid

inside the fracture reacts fast to changes in the pressure, compared to the interstitial fluid. This allows the use of Stokes’ equation

to describe the velocity inside the fracture. For a Newtonian fluid this results in a parabolic velocity profile11,13, yielding a

fracture inflow given by:

JwKf =
1

12

ℎ3

�

)2p

)s
2
+

1

4

ℎ2

�

)ℎ

)s

)p

)s
− ℎ

)vf

)s
(14)

with ℎ the height of the fracture and vf the velocity of the fluid inside the porous medium at the walls of the crack (assuming a

no-slip boundary condition). The expression closely resembles Reynolds’ equation for the flow of a thin layer of fluid between

two walls, and corresponds to the cubic law often used to model fluid flow inside fractures1,2,3,4,5,6. It can be extended to non-

Newtonian fluids26 and then takes the form:

JwKf =
2

2n + 1

(
ℎ

2

) 1

n
+2

�
−

1

n

0

||||
)p

)s

||||
1

n
−1 )2p

)s
2
+
(
ℎ

2

) 1

n
+1

�
−

1

n

0

||||
)p

)s

||||
1

n
−1

)ℎ

)s

)p

)s
− ℎ

)vf

)s
(15)

Clearly, the expression for a Newtonian fluid is retrieved for n = 1.

From local mass conservation we obtain the boundary condition for the fluid absorbed in the discontinuity:

nd ⋅ qd =
1

2

(
Jwf K − JwsK

)
(16)

where the jump in solid velocity is given by:

JwsK =
)ℎ

)t
(17)

This boundary condition is applied to the top and bottom of the interface elements. Since an interface model is used in which

the pressure is continuous across the fracture, the pressure at the top and bottom corresponds to the same degree of freedom.

Therefore, the boundary condition is only integrated along the bottom of the interface, and applied twice to the single pressure

degree of freedom at the discontinuity.

3 DISCRETISATION

The weak forms are derived using a standard Bubnov-Galerkin method. Equation (1) is multiplied with the test function �. Using

Eq. (3) this results in:

∫
Ω

(� ∶ (�s − �pI)dΩ − ∫
Γd

� ⋅
(
td − pnd

)
dΓ = ∫

Γt

� ⋅ t dΓ (18)
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Similarly, the mass conservation equation, Eq. (5), is multiplied with the test function for the fluid � . Combined with the non-

Newtonian fluid flux, Eq. (8) this results in:

∫
Ω

��( ⋅ u̇ dΩ + ∫
Ω

k∗
f
|(p|1∕n−1 (� ⋅ (p dΩ + ∫

Ω

1

M
�ṗ dΩ + ∫

Γd

�nd ⋅ qd dΓ = −∫
Γq

�q dΓ (19)

The spatial discretisation of the weak forms of Eqs (18) and (19) has been performed using Lagrange shape functions, com-

monly used in finite element methods (FEM), and also with Non-Uniform Rational B-Splines (NURBS), which are used in

isogeometric analysis (IGA). The advantage of using NURBS over Lagrange shape functions is the increased inter-element

continuity, with NURBS of order p having a Cp−1 inter-element continuity, whereas Lagrange shape functions have a C0 inter-

element continuity independent of the order of the shape functions used. It has been shown that this increased continuity is

required in order to obtain accurate results based on the continuous pressure model used for the fracture26.

In order to use the Lagrange and NURBS shape functions in a similar manner, Bézier extraction has been used to cast the

NURBS shape functions into a standard finite element data-structure29. This allows for the evaluation of the internal forces on

a per-element basis, while retaining the higher order inter-element continuity. Denoting the element shape functions used for

the solid displacement with N s and the interstitial fluid pressure shape functions with Nf , the pressures and displacements are

discretised as:

u =

nel∑
e=1

N el

s
uel (20)

p =

nel∑
e=1

N el

f
pel (21)

The formulation for the fracture inflow, Eq. (16), requires first and second spatial gradients of the pressure. Therefore, at least

quadratic shape functions have to be used for the fluid in order to evaluate this term, while the use of cubic NURBS will assure

a continuous fracture inflow. If, instead of including the fluid transport inside the fracture by the fracture inflow model, the

fluid flow inside the fracture had directly been simulated by, for instance, the cubic law, quadratic NURBS would have sufficed

to obtain continuous results for the fluid transported. In order to prevent possible oscillations, the inf-sup condition has to be

fulfilled30. This can be achieved by using shape functions for the displacement of the solid which are an order higher than those

for the fluid, thus using quartic shape functions for the displacement of the solid. In this paper, several combinations of solid

and fluid shape functions have been used: Quartic NURBS for the displacement with cubic NURBS for the pressure (hereafter

refered to as 4×3 IGA), cubic NURBS for both the displacement and pressure (3×3 IGA), quadratic NURBS for both the solid

and fluid (2 × 2 IGA) and quadratic Lagrange elements for both the fluid and solid (2 × 2 FEM). While the equal order shape

functions do not fulfil the inf-sup condition, no spurious pressure oscillations were observed in the converged solutions unless

mentioned otherwise.

Using the discretisations of Eqs (20) and (21), the weak form of the momentum balance from Eq. (18) is written as:

f ext − f int − f d = 0 (22)

with the external force defined in a standard manner as:

f ext = ∫
Γt

NT

s
tdΓ (23)

while the internal force for the interior of the domain Ω is given by:

f int = ∫
Ω

BT�s dΩ − ∫
Ω

�BTmNfp
el dΩ (24)

with m = [1 1 0]T , and the strain-nodal displacement operator B used to map the element displacements at the control points

to the strain in the integration points, defined as:

"el = Buel (25)

To obtain the jump in displacement over the fracture, the matrix Nd is introduced:

JuKel = Ndu
el (26)
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which relate the displacements uel to the crack opening via ℎ = nT
Γd
Ndu

el. Use of this mapping allows the internal forces due

to the discontinuity to be given by:

f d = ∫
Γd

NT

d
RTDdRNdu

el dΓ − ∫
Γd

NT

d
nΓd

Nfp
el dΓ (27)

To prevent traction oscillations for non-fractured elements at the discontinuity, the first terms of Eq. (27) are evaluated using

lumped integration28.

The temporal discretisation has been carried out using a backward Euler integration scheme. This requires all terms of Eq.

(22) to be evaluated at t + Δt. The weak form of the mass conservation from Eq. (19) then reads:

qext − qint − qℎ − qp = 0 (28)

with the external flux given by:

qext = Δt∫
Γq

NT

f
qdΓ (29)

and the internal fluid flux given by:

qint = −∫
Ω

�NT

f
mTB

(
ut+Δt − ut

)
dΩ − ∫

Ω

Δtk∗
f

|||(Nfp
t+Δt|||

1

n
−1 (

(Nf

)T
(Nfp

t+Δt dΩ − ∫
Ω

1

M
NT

f
Nf

(
pt+Δt − pt

)
dΩ

(30)

In a discrete format the L2 norm of the pressure gradient then reads:

|||(Nfp
t+Δt||| =

((
(1p

t+Δt
)2

+
(
(2p

t+Δt
)2) 1

2
(31)

with (1 and (2 the gradient operators in the Cartesian directions. The fluid flux due to the fracture opening, resulting from JwsK

in Eq. (16), is given by:

qℎ = −∫
Γd

NT

f
nT
Γd
Nd

(
ut+Δt − ut

)
dΩ (32)

and the fluid flux due to changes of the pressure-driven flow profile inside the fracture, JwKf in Eq. (16), is given by:

qp = ∫
Γd

ΔtNT

f

(
2

2n + 1
�
−

1

n

0

(
1

2
nT
Γd
Ndu

t+Δt
) 1

n
+2 ||(pt+Δt||

1

n
−1

(
2Nfp

t+Δt

+ �
−

1

n

0

(
1

2
nT
Γd
Ndu

t+Δt
) 1

n
+1 ||(pt+Δt||

1

n
−1

nT
Γd
(Ndu

t+Δt
(Nfp

t+Δt

)
dΩ (33)

which is valid for both Newtonian (n=1) and non-Newtonian fluids. The wall velocity terms are neglected since these are assumed

to be small compared to the fluid velocity inside the fracture. All the forces and fluxes have been integrated in an element-wise

manner using a Gauss integration scheme, requiring the values of the shape functions and their derivatives to only be evaluated

in the interior of the elements.

4 SOLUTION PROCEDURE

The system of discretised equations is solved in a monolithic manner using a Newton-Raphson algorithm. For this, the linearised

system is written as:
([
K int

]
+
[
Kd

]) [du
dp

]

i+1

=

[
f ext

qext

]
−

[
f int + f d

qint + qp + qℎ

]

i

(34)

with the tangential stiffness matrix related to the internal forces and fluxes given by:

K int =

[
K Q

QT C +H

]
(35)
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The sub-matrix related to the stresses caused by the deformations in Ω is given by:

K =
)f int

)u
= ∫

Ω

BTDBdΩ (36)

The sub-matrix related to the coupling between the solid and the fluid, caused by the interstitial fluid pressure acting on the solid

material and the deformations of the solid compressing the interstitial fluid, is given by:

Q =
)f int

)p
=

(
)qint

)u

)T

= −∫
Ω

�BTmNfdΩ (37)

The tangential stiffness sub-matrix related to the pressure capacity term of the internal fluxes reads:

C =
)qc,int

)p
= −∫

Ω

1

M
NT

f
NfdΩ (38)

and, for a non-Newtonian fluid, the sub-matrix related to the fluid diffusion can be derived as:

H =
)qd,int

)p
= −∫

Ω

k∗
f
Δt

|||(Nfp
|||
1

n
−1 (

(Nf

)T
(NfdΩ

− ∫
Ω

k∗
f
Δt

(
1

n
− 1

) |||(Nfp
|||
1

n
−3 (

(Nf

)T (
(Nfp

)( (
(1Nfp

)
(1Nf +

(
(2Nfp

)
(2Nf

)
dΩ (39)

For a Newtonian fluid, n = 1, the latter sub-matrix can be simplified to yield:

H = −∫
Ω

kΔt

�

(
(Nf

)T
(NfdΩ (40)

As can be seen from Eqs (36) - (40), all the tangential stiffness terms related to the domain Ω are linear in the case of a

Newtonian fluid. This indicates that the fluxes and forces will be exactly resolved in one iteration in the absence of discontinuities.

When a discontinuity is present, the nonlinear behaviour of the system is thus solely determined by the tangential stiffness terms

related to the discontinuity:

Kd =

⎡⎢⎢⎣

)f d

)u

)f d

)p

)qℎ

)u
+

)qp

)u

)qp

)p

⎤⎥⎥⎦
(41)

In what follows, the sub-matrices of Eq. (41) will be added one by one, in order to show the effect of including certain phenomena

in the tangential stiffness matrix on the convergence of the total system.

The first term, present in all cases, is the contribution due to the interface stiffness:

)f d

)u
= ∫

Γd

NT

d
RTDdRNddΓ (42)

This term must be present in all simulations since it constrains the non-fractured elements from opening, thereby preventing

free-body motion in part of the domain. Since this is the only complete term that can be included without rendering the tangential

stiffness matrix non-symmetric, this was the only term included in the tangential stiffness matrix in earlier simulations with the

continuous pressure model11,13. The next term is related to the force which results from the pressure inside the fracture:

)f d

)p
= −∫

Γd

NT

d
nΓd

NfdΓ (43)

Since this term is linear, its inclusion will result in the exact values of the displacements after each iteration based on the newly

obtained pressures. Including the terms from Eqs (42) and (43) corresponds to an iterative scheme in which the fracture inflow is

calculated based on the old displacements and pressures. This inflow is then assumed constant, and the new displacements and

interstitial fluid pressures are calculated. In the case of an impermeable porous medium, this corresponds to the P → W /drained

hydraulic fracturing split17,18.
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Next, we add the sub-matrix which is related to the fluid absorbed from the surrounding porous medium due to opening of

the fracture:
)qℎ

)u
= −∫

Γd

NT

f
nT
Γd
NddΓ =

(
)f d

)p

)T

(44)

Since this sub-matrix is the transpose of Eq. (43), inclusion of these matrices preserves symmetry, with the concomitant advan-

tages in computational efficiency and storage. It is also important to note that for a Newtonian fluid, these terms as well as the

terms related to the interior of the domain are constant, and therefore only require to be calculated once. Since Eq. (44) is linear,

it exactly accounts for the pressure changes caused by fluid being absorbed due to the opening of the fracture. This is comparable

to the undrained hydraulic fracturing split, which has improved convergence and stability compared to the drained split18.

Finally, terms are added related to the fluid which is absorbed from the porous medium due to changes in velocity profile

inside the fracture:

)qp

)p
= ∫

Γd

2Δt

2n + 1
�
−

1

n

0

(
1

2
nT
Γd
Ndu

) 1

n
+2 |||(Nfp

|||
1

n
−1

NT

f
(
2NfdΓ

+ ∫
Γd

2Δt

2n + 1

(
1

n
− 1

)
�
−

1

n

0

(
1

2
nT
Γd
Ndu

) 1

n
+2 |||(Nfp

|||
1

n
−2

(
2NfpNf

T
(Nf ⋅ sgn

(
(Nfp

)
dΓ

+ ∫
Γd

Δt

n
�
−

1

n

0

|||(Nfp
|||
1

n
−1 (1

2
nT
Γd
Ndu

) 1

n
+1 (

nT
Γd
(Ndu

)
Nf

T
(NfdΓ (45)

and

)qp

)u
= ∫

Γd

Δt

n
�
−

1

n

0

|||(Nfp
|||
1

n
−1

(
2Nfp

(
1

2
nT
Γd
Ndu

) 1

n
+1

NT

f
nT
Γd
NddΓd

+ ∫
Γd

Δt�
−

1

n

0

|||(Nfp
|||
1

n
−1
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(
1

2
nT
Γd
Ndu

) 1

n
+1

NT

f
nT
Γd
(NddΓ

+ ∫
Γ

Δt

2

(
1

n
+ 1

)
�
−

1

n

0

|||(Nfp
|||
1

n
−1

(Nfp
(
1

2
nT
Γd
Ndu

) 1

n (
nΓd

(Ndu
)
NT

f
nT
Γd
NddΓ (46)

with sgn(⋅) the signum function. Including the latter two terms results in a complete and consistently linearised tangential

stiffness matrix. Different from the previous terms, these two contributions are strongly dependent on the displacements and

the pressure, and therefore need to be recalculated for each Newton-Raphson iteration, also for Newtonian fluids. Furthermore,

including the )qp∕)u term results in a non-symmetric tangential stiffness matrix. For a Newtonian fluid Eqs (45) and (46) can

be simplified to yield:

)qp

)p
= ∫

Γd

Δt

12�

(
nT
Γd
Ndu

)3

NT

f
(
2NfdΓ + ∫

Γd

Δt

4�

(
nT
Γd
Ndu

)2 (
nT
Γd
(Ndu

)
Nf

T
(NfdΓ (47)

)qp

)u
= ∫

Γd

Δt

4�
(
2Nfp

(
nT
Γd
Ndu

)2

NT

f
nT
Γd
NddΓd + ∫

Γd

Δt

4�
(Nfp

(
nT
Γd
Ndu

)2

NT

f
nT
Γd
(NddΓ

+ ∫
Γ

Δt

2�
(Nfp

(
nT
Γd
Ndu

) (
nΓd

(Ndu
)
NT

f
nT
Γd
NddΓ (48)

The order in which these terms have been added was chosen such that after adding the second term, the solid is resolved

exactly. By adding the third term, a symmetric matrix is re-obtained. The terms related to the fluid flow were added last due to

their complexity and because these are the only nonlinear terms for a Newtonian fluid, therefore being computationally more

expensive to include. The pressure derivative was added before the displacement derivative to preserve a symmetric matrix with

only one of these two terms added.
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FIGURE 2 Overview of the single fracture case

To improve the convergence, a linear line search has been used in the past31,32. In a fluid-saturated porous medium, the factor

� with which the incremental solution factor is multiplied, is determined from:

0 = (1 − �)

[
f ext − f int − f d

qext − qint − qp − qℎ

]

i

⋅

[
du

dp

]

i+1

+ �

[
f ext − f int − f d

qext − qint − qp − qℎ

]

i+1

⋅

[
du

dp

]

i+1

(49)

with an upper and lower limit, 0.05 < � < 1.0.

It is finally noted that the convergence of the iterative procedure is checked based on an energy criterion, with the error after

iteration i defined as:

�i =

[
f int + f d

qint + qp + qℎ

]

i+1

⋅

[
du

dp

]

i+1

(50)

This energy-based criterion allocates an equal importance to the convergence of the solid deformations and the fluid pressure.

While the deformations are in the order of mm ((10−3)), the pressures are in the order of MPa ((106)). By multiplying the

deformations with the forces (MPa, (106)) and the pressures with the fluid flow (fluid flux times step size, mm (10−3)), both

the momentum and mass balance convergence criteria obtain a similar magnitude. The error was normalised with the error after

the first iteration, resulting in the relative error against which convergence is checked:

errori =
�i

�1
(51)

The simulations are considered as converged when errori < 10−6. If this criterion is not met after 200 iterations, the iterations

are terminated when error200 < 1.

5 CASE STUDY: A SINGLE FRACTURE

To show the effect of including the tangential stiffness terms a typical boundary-value problem is simulated13,26. The problem

consists of a rectangular domain of 10 m × 10 m, with a discontinuity through the centre at a 30o angle, as shown in Figure 2.

The centre 4 m of the discontinuity represents a fully open crack, which is not allowed to propagate. The bottom of the domain

is constrained in the vertical direction, while the left-hand and the right-hand sides are constrained horizontally. A pressure

difference of 0.5 MPa is applied between the bottom and top boundaries.

Simulations have been carried out using the following material parameters: Young’s modulus E = 9 GPa, Poisson ratio

� = 0.4, porosity nf = 0.3, intrinsic permeability k = 10−12 m2, Biot modulus M = 1018 MPa, Biot coefficient � = 1.0, and a

Newtonian fluid (n = 1.0) with a viscosity � = 1 mPa ⋅ s. kn = ks = 102 GPa have been used as values for the stiffnesses in the
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FIGURE 3 Number of iterations per time step for the case of a single fracture (4 × 3 IGA).

non-fractured interface elements. The domain has been discretised using 40 × 40 (Bézier extracted) elements, and a time-step

size Δt = 1 s has been used. This mesh has been shown to be sufficiently fine to accurately resolve the influence of the fracture

on the displacement and on the interstitial fluid pressure for both the isogeometric and the standard finite element analyses26.

The tangential stiffness sub-matrices of Eq. (42) - (46) have been added on a one by one basis in the order they were introduced

in Section 4 to investigate their effect on the convergence rate. Simulations have been carried out using quartic NURBS for

the displacement with cubic NURBS for the interstitial pressure (4 × 3 IGA), cubic × cubic NURBS (3 × 3 IGA), quadratic ×

quadratic NURBS (2 × 2 IGA), and quadratic × quadratic Lagrangian finite elements (2 × 2 FEM). This allows comparing the

effect of the order of the shape functions, and the effect of the increased inter-element continuity by comparing the 2 × 2 IGA

results with the 2× 2 FEM results. Even though most of the combinations of solid and fluid shape function orders do not satisfy

the inf-sup condition, no spurious oscillations were observed.

5.1 Influence of the tangential stiffness terms at the interface

We first consider a discretisation using quartic NURBS for the displacements and cubic NURBS for the pressures (4 × 3 IGA).

Figure 3a shows the number of iterations for each time step, where the contributions to the interface tangential stiffness matrix

have been added on a one by one basis.

When only the contribution of the stiffness is included, divergence occurs in the third time step. Inclusion of the sub-matrix

related to the pressure which acts on the walls inside the fracture, )f d∕)p, results in convergence for all time-steps, but with

a very large number of iterations (70-100) per time step. When we include the contribution that represents the fluid which is

absorbed by the fracture, )qℎ∕)u the number of iterations remains below 70 iterations, in some time steps even well below, but

divergence occurs at time step 13. Inclusion of the remaining two terms yields a major improvement and consistently keeps the

number of iterations below 3.

The convergence behaviour at time step 3 is shown in Figure 4. Even though all simulations converge, the oscillations in

the error that occur for the )f d∕)u case result in the simulation diverging after having reached a minimum error of 2 ⋅ 10−2

in the 23th iteration. This behaviour is similar to convergence observed in iteratively coupled fluid-structure interaction33,34. In

contrast, by including the )f d∕)p term, no oscillations occur and a linear convergence rate is obtained. Including the next term

result in faster convergence. However, the rate of convergence decreases and it appears to stagnate around the used convergence

criterion. This behaviour has also been observed in literature for the iterative undrained hydraulic fracturing split18. Adding the

final two terms further enhances the rate of convergence. While in both cases only three iterations were required, it can be seen
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FIGURE 4 Convergence behaviour at time step 3 (4x3 IGA).
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FIGURE 5 Convergence behaviour at time step 3 (4x3 IGA), with the use of a line search.

that when all the tangential stiffness sub-matrices are included the error decreases significantly faster. However, in both cases,

quadratic convergence is obtained.

5.2 Line search

We now study the effect of inclusion of a line search and show the number of iterations for each time step in 3b. With only

the stiffness contribution to the tangential stiffness matrix, more than 100 iterations were needed without line search, with

divergence after time step 3. The use of line searches reduces this markedly, for instance to 47 at time step 10 and 32 at time step

20. It underlines the large benefits of using line searches when using an incomplete tangential stiffness matrix. Adding the term

)f d∕)p, and thereby solving for the displacements exactly, reduces the number of iterations. Adding the sub-matrix )qℎ∕)u

does not significantly change the situation. However, adding the last two sub-matrices again leads to a very fast convergence,

with just 2 iterations at the later time steps. This is even better than results without using a line search, although the difference is
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FIGURE 6 Convergence behaviour at time step 3 for 2x2 NURBS and 2x2 Lagrangian interpolations.

rather marginal, underlining that the benefits of using a line searches mainly show up when using an incomplete or inconsistent

tangent operator in the Newton-Raphson process. This is also underlined in Figure 5, which shows the convergence behaviour

at time step 3 when a line search is used, leading to the conclusion that the inclusion of line searches is nearly always beneficial,

and can make the difference between divergence and slow convergence.

5.3 Shape function order

A comparison of the convergence behaviour has also been carried out for different orders of interpolation, in particular between

a quartic interpolation for the displacements and a cubic interpolation for the pressures, and a quadratic interpolation for both

variables, using NURBS in all cases. Just small differences were found, with slightly better results for lower-order interpolations

in case of an incomplete tangential stiffness matrix, but these differences vanished when all terms were included in the stiffness

matrix. A similar conclusion was reached for the results with a line search.

5.4 Interelement continuity

To investigate the possible effect of the higher interelement continuity of NURBS compared to standard Lagrange shape func-

tions, a comparison is shown in Figure 6 when quadratic interpolations are used both for the displacements and for the pressure.

While only insignificant differences are observed when only the first two sub-matrices are included, large differences occur when

more terms are included, particularly when a complete or nearly complete tangential stiffness matrix is used. Using NURBS,

a quadratic convergence is obtained when including the final two terms, but this is not the case when standard Lagrange inter-

polants are used. This indicates that the increase from aC0 to aC1 interelement continuity significantly improves the convergence

rate, by more accurately predicting and representing the tangential stiffness terms which contain the first and the second-order

derivatives of the pressure and the displacements.

Figure 7 shows the convergence when a linear line search is used. Similar to the results without line search, no difference in

convergence occurs when only the f d terms are added. When the qℎ term is added, however, this changes rapidly. Including

all terms again results in marked differences in convergence rate between the NURBS and the Lagrange interpolants, again

indicating the beneficial effect of the enhanced interelement continuity.
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FIGURE 7 Convergence behaviour at time step 3 for 2x2 NURBS and 2x2 Lagrangian interpolations, but including the use of

line searches.
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FIGURE 8 The case with three fractures.

6 CASE WITH THREE FRACTURES

We now investigate whether the conclusions drawn before also hold for more complex cases. To this end two additional fractures

are introduced, as shown in Figure 8a. The fractures are placed at a 15o angle, with a horizontal length of 3 m for the bottom

fracture, and 4 m for the top fracture. In order to generate Bézier extracted NURBS meshes for this geometry, a C0 continuity

line is introduced through the centre of the domain. This allows for the sharp change in mesh direction in Figure 8b. The mesh
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FIGURE 9 Number of iterations per time step for the case with three fractures, Δp = 0.25 MPa.

has 40 × 40 elements, similar to the case of a single fracture. The simulations have been carried out using the same properties

of the solid and fluid as for the previous case, see Section 5. A constant time step size Δt = 1 s has been used and the pressure

difference Δp = 0.25 MPa.

The number of iterations for the discretisation with quartic NURBS for the displacements and cubic NURBS for the pressure

(4 × 3 IGA) is shown in Figure 9a. Both the simulation with only the )f d∕)u sub-matrix included and the simulation including

the )f d∕)p term require 100+ iterations for all time steps. Inclusion of the sub-matrix )qℎ∕)u drastically reduces the number of

iterations to four, which is less than for the case of a single fracture. Including the term )qp∕)p reduces the number of iterations

to three, like in the single fracture case, and including the last term reduces the number of iterations to two for later time steps.

The number of iterations with the inclusion of a line search is shown in Figure 9b. The results are qualitatively the same as

for the case of a single fracture: when only the first, constant and symmetry-preserving terms at the interface are included in

the tangential stiffness matrix, a significant improvement of the convergence behaviour is observed. However, for a consistently

linearised tangent stiffness operator, hardly any benefits are found, and the slight gain in number of iterations may be outweighed

by the added computational costs per iteration due to the line search.

7 NON-NEWTONIAN FLUIDS

To investigate the interaction between the tangential stiffness sub-matrices related to the fracture, and nonlinearities inside the

bulk, a non-Newtonian fluid has now been considered for the geometry of Figure 8. Use of a non-Newtonian fluid yields a

nonlinear behaviour also in Ω as a consequence of the nonlinear character of Equation 8. The linearisation of this relation for the

fluid flux, Equation 39, has invariably been included in the tangential stiffness matrix. Simulations have been carried out for a

shear-thinning fluid (n = 0.8), a shear-thickening fluid (n = 1.2), while a baseline simulation for a Newtonian fluid (n = 1.0) has

also been included in the comparison. A base viscosity �0 = 1 mPa ⋅ sn has been used and a pressure difference Δp = 0.5 MPa

The other material parameters properties have been taken as before, see Section 5. While no oscillations occur for n = 1.0 and

n = 1.2 when equal-order interpolations are used, they emerge when a shear-thinning fluid (n = 0.8) is used. Hence, only the

simulations with quartic NURBS for the displacements and cubic iterpolations for the pressure (4 × 3 IGA) will be compared

below.

A comparison of the convergence is given in Figure 10. As for the Newtonian fluid, the simulations for the shear-thinning fluid

diverge before time step 3 when the sub-matrix )f d∕)p is omitted. In contrast, the shear-thickening fluid shows an oscillatory
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FIGURE 10 Convergence at time step 3 for two non-Newtonian fluids and a Newtonian fluid on the geometry with 3 fractures.

behaviour, but does not diverge. Similar oscillations occur for the n = 1.0 and n = 1.2 simulations with this term added, while

the error for n = 0.8 remains fairly constant (not shown).

Adding the sub-matrix which is related to the aperture makes these oscillations disappear and improves convergence for the

shear-thickening fluid. However, none of the simulations, i.e. for neither non-Newtonian fluid, and also not for the Newtonian

fluid, converged. Inclusion of the last two terms results in a quadratic convergence, just like for the Newtonian fluid.

It is noted that for a consistent linearisation the simulation with the Newtonian fluid converges slightly faster compared to

the non-Newtonian fluids, whereas with the last term excluded the simulation with the shear-thickening fluid converges slightly

faster. These differences are small, however, indicating that the added nonlinearity does not significantly alter the convergence

when all tangential stiffness sub-matrices are included. Furthermore, since the same number of iterations is required as for the

Newtonian fluid, the non-Newtonian fluid behaviour can be included in the simulations without an increase in the number of

iterations when all the sub-matrices are included.

A comparison between the use of NURBS and Lagrangian (quadratic equal-order) interpolations for the shear-thickening

fluid (n = 1.2) shows that, when all sub-matrices are included, the simulations with NURBS converge significantly faster than

the simulations with standard Lagrangian polynomials. This confirms that the increased inter-element connectivity of NURBS

is also beneficial for the convergence rate when other nonlinearities are present.

Finally, results for shear-thinning and shear-thickening fluids using a line search are shown in Figure 11. Now, all simulations

converge, but there are marked differences in convergence behaviour between both cases.

8 CONCLUDING REMARKS

The effect of a consistent linearisation of a sub-grid model for fluid flow in fractures on the convergence of the non-linear,

monolithic solver has been investigated. The sub-grid flow model is closely related to the Reynolds lubrication equation. By

adding the various contributions to the tangential stiffness matrix on a one by one basis the importance of the individual terms

on the convergence rate and the effect on oscillations in the convergence has been assessed. Simulations have been carried for

a Newtonian fluid and for non-Newtonian fluids, yielding the same conclusions. To verify the generality of the conclusions,

different geometries, including multiple fractures, were investigated.

Omitting all interface terms tends to result in divergence of the Newton-Raphson process, while a consistent linearisation,

i.e. inclusion of all terms consistently yielded quadratic convergence. However, since the fracture inflow due to changes in the

pressure-driven flow profile is nonlinear, this requires computing the tangential stiffness matrix at every iteration.
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FIGURE 11 Convergence at time step 3 for a non-Newtonian fluid (n=0.8 and n=1.2) using a linear line search.

When the fracture has a relatively small influence on the interstitial pressure of the surrounding fluid, recomputing the full

interface tangential stiffness matrix can be avoided by only including the effects of the interface stiffness, of the pressure acting

on the walls of the fracture, and of the fluid absorbed by the terms related to the fracture opening. While this does not result

in quadratic convergence, it normally yields a converging process, and preserves a symmetric and constant tangential stiffness

matrix. For fracture-dominated cases, inclusion of all the tangential stiffness sub-matrices appears necessary to obtain a stable

scheme if no line search is used. The use of a linear line search relaxes this requirement to the inclusion of the sub-matrices

related to the momentum balance in order to obtain a stable scheme.

A comparison between simulations using quartic NURBS for the solid displacements and cubic NURBS for the interstitial

fluid pressure on one hand, with simulations using quadratic NURBS for the displacements and the pressure shows that the

increased order of the shape functions has near to no effect on the convergence rate. In contrast, a comparison between simu-

lations using NURBS and standard Lagrangian shape functions shows that the increased inter-element continuity of NURBS

significantly improves the convergence rate when the tangential stiffness terms contain gradients of the pressure and the fracture

opening. This improved convergence of isogeometric shape functions compared to Lagrangian shape functions is irrespective

whether the simulations are carried out with or without line search.
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