

This is a repository copy of A systematic review of the global seasonality of infections caused by Acinetobacter species in hospitalized patients.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150948/

Version: Accepted Version

Article:

Kritsotakis, E. orcid.org/0000-0002-9526-3852 and Groves - Kozhageldiyeva, A. (2019) A systematic review of the global seasonality of infections caused by Acinetobacter species in hospitalized patients. Clinical Microbiology and Infection. ISSN 1198-743X

https://doi.org/10.1016/j.cmi.2019.09.020

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

A systematic review of the global seasonality of infections caused by Acinetobacter species in hospitalized patients

Journal:	Clinical Microbiology and Infection
Manuscript ID	CLM-19-15601.R1
Article Type:	Systematic Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Kritsotakis, Evangelos ; University of Crete, School of Medicine; University of Sheffield, School of Health and Related Research Groves-Kozhageldiyeva, Aigul; The University of Sheffield, School of Health and Related Research
Key Words:	Acinetobacter baumannii, Seasonality, Season, Climate, Healthcare associated infection, Epidemiology
Abstract:	Background: Acinetobacter is a leading multidrug resistant pathogen in hospitals worldwide that has been seen to exhibit periodic surges during summer months. However, winter peaks and lack of seasonality have also been noted. Objectives: To systematically collate and examine the evidence describing seasonal patterns in the incidence of Acinetobacter infection in hospitalized patients. Data sources: MEDLINE/Ovid, EMBASE, Scopus and Web of Science. Study eligibility criteria: Longitudinal observational studies investigating seasonal variation in the incidence of Acinetobacter infection. Participants: Patients receiving hospital care. Interventions: Routine hospital care. Methods: Systematic review with narrative evidence synthesis structured around clinical and methodological heterogeneity and internal validity of retrieved studies, seasonal patterns and risk factors detected, and stated hypotheses of mechanisms underlying seasonality. To examine consistency in reported seasonal patterns across different conditions, monthly incidence data were extracted, standardised, weighted and presented graphically. Results: Twenty-five studies reporting 37006 cases of Acinetobacter infection or colonization during 1954 months of follow-up were reviewed. Standardised monthly incidence data pooled across studies exhibited a global seasonal pattern with an incidence peak in summer/warmer months and a trough in winter/colder months. This seasonal pattern remained consistent under different weighting schemes accounting for study size, length of follow-up and overall quality assessment rating. Seasonality persisted in different clinical settings and for different types and sources of infection. Nine studies provided consistent evidence of temperature-associated variation in Acinetobacter incidence, while there were controversial findings regarding other environmental variables. No study detected patient-related or clinical practice-related seasonal

variation in Acinetobacter incidence. Conclusions: Despite substantial clinical and methodological heterogeneity in retrieved studies, a consistent global seasonal pattern in Acinetobacter infection incidence was evident in this review. This merits attention when designing or evaluating infection control interventions in hospitals. Future research should focus on elucidating driving mechanisms underlying the observed seasonality. SCHOLARONE" Manuscripts

1	Systematic Review
2	
3	A systematic review of the global seasonality of infections caused by
4	Acinetobacter species in hospitalized patients
5	
6	Evangelos I. KRITSOTAKIS ^{1,2,*} , Aigul GROVES KOZHAGELDIYEVA ²
7	
8	¹⁾ School of Medicine, University of Crete, Heraklion, Greece
9	²⁾ School of Health and Related Research, University of Sheffield, Sheffield, United
10	Kingdom
11	
12	<u>*Correspondence:</u>
13	Evangelos I. Kritsotakis
14	School of Medicine, University of Crete,
15	Voutes University Campus, 71003 Heraklion, Crete, Greece
16	Tel.: +30 2810 374619, Mob.: +30 6972 071823
17	E-mail: e.kritsotakis@sheffield.ac.uk
18	
19	Word count, abstract: 296, main manuscript: 3574.
20	<u>References</u> : 41, <u>Tables</u> : 2, <u>Figures</u> : 2,
21	Supplementary data files: 1 (3 appendices for methods and suppl. Tables).

22	ABSTRACT
23	
24	Background: Acinetobacter is a leading multidrug resistant pathogen in hospitals
25	worldwide that has been seen to exhibit periodic surges during summer months.
26	However, winter peaks and lack of seasonality have also been noted.
27	Objectives: To systematically collate and examine the evidence describing seasonal
28	patterns in the incidence of Acinetobacter infection in hospitalized patients.
29	Data sources: MEDLINE/Ovid, EMBASE, Scopus and Web of Science.
30	Study eligibility criteria: Longitudinal observational studies investigating seasonal
31	variation in the incidence of Acinetobacter infection.
32	Participants: Patients receiving hospital care.
33	Interventions: Routine hospital care.
34	Methods: Systematic review with narrative evidence synthesis structured around clinical
35	and methodological heterogeneity and internal validity of retrieved studies, seasonal
36	patterns and risk factors detected, and stated hypotheses of mechanisms underlying
37	seasonality. To examine consistency in reported seasonal patterns across different
38	conditions, monthly incidence data were extracted, standardised, weighted and
39	presented graphically.
40	Results: Twenty-five studies reporting 37006 cases of Acinetobacter infection or
41	colonization during 1954 months of follow-up were reviewed. Standardised monthly
42	incidence data pooled across studies exhibited a global seasonal pattern with an
43	incidence peak in summer/warmer months and a trough in winter/colder months. This

2
3
4
5
6
0
7
8
9
10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
29
29
30
31
32
34
35
36
27
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

44	seasonal pattern remained consistent under different weighting schemes accounting for
45	study size, length of follow-up and overall quality assessment rating. Seasonality
46	persisted in different clinical settings and for different types and sources of infection.
47	Nine studies provided consistent evidence of temperature-associated variation in
48	Acinetobacter incidence, while there were controversial findings regarding other
49	environmental variables. No study detected patient-related or clinical practice-related
50	seasonal variation in Acinetobacter incidence.
51	Conclusions: Despite substantial clinical and methodological heterogeneity in retrieved
52	studies, a consistent global seasonal pattern in Acinetobacter infection incidence was
53	evident in this review. This merits attention when designing or evaluating infection
54	control interventions in hospitals. Future research should focus on elucidating driving
55	mechanisms underlying the observed seasonality.
56	
57	Key words:

Acinetobacter baumannii; Seasonality; Season; Climate; Healthcare associated infection;
Epidemiology.

60 Introduction

Acinetobacter species, particularly Acinetobacter baumannii is a leading multidrug resistant microorganism in hospitals worldwide causing severe nosocomial infections such as bloodstream infections and ventilator-associated pneumonia [1–3]. The abilities of the organism to survive in inanimate environments for long times, rapidly develop antibiotic resistance and spread clonally potentiate the persistence and transmission of the species in healthcare settings [3,4]. Acinetobacter is also one of the first nosocomial pathogens that has been reported to exhibit periodic peaks in its incidence during the summer or warmer months [5]. However, opposite seasonal occurrence with peaks during winter and lack of seasonality have also been reported [6,7]. The reasons for this variability remain poorly understood [8]. This study aims to systematically collate and evaluate the existing evidence describing seasonal patterns in the incidence of Acinetobacter infection in hospitalized patients. Moreover, factors found to be associated with seasonal variation and hypotheses of mechanisms underlying seasonality were recorded. Methods used to assess seasonality, internal validity and clinical heterogeneity of retrieved studies were examined. Methods

Clinical Microbiology and Infection

Page 6 of 76

81	This systematic review is PROSPERO-registered (registration number:
82	CRD42018114547) and complies with the Preferred Reporting Items for Systematic
83	Reviews and Meta-Analyses (PRISMA) statement [9].
84	
85	Search strategy
86	MEDLINE/Ovid, EMBASE, Scopus and Web of Science were searched up until 23
87	October 2018 for longitudinal observational studies investigating seasonal variation in
88	the incidence of infections caused by Acinetobacter spp. in hospital settings. The search
89	was restricted to research articles written in English and published in peer-reviewed
90	journals. Different combinations of the keywords "Acinetobacter", "Acinetobacter
91	baumannii", "Acinetobacter infections", "seasonal pattern" and "season*" were used to
92	retrieve the articles (detailed in Supplementary <u>Appendix A</u>). Manual checking of
93	reference lists and citation tracking of included papers in Scopus and Web of Science
94	were performed.
95	
96	Screening and eligibility
97	Duplicate records were removed using the Mendeley reference managing software.
98	A two-step screening process for eligibility was undertaken. First, one author (AGK)
99	excluded ineligible studies by screening titles and abstracts. Then, both authors
100	reviewed independently the full texts of potentially eligible studies for inclusion in the
101	review. Disagreements were resolved through discussion and consensus. Eligibility was

1		
2 3 4	102	assessed by applying the PICOS (population, intervention, comparators/controls,
5 6 7	103	outcomes and study design) question format [9], as follows:
7 8 9	104	 Population: Patients receiving hospital care.
10 11	105	 Intervention: Experimental studies and outbreak reports were excluded from
12 13 14	106	the review because of possible interference that interventions might have on
15 16	107	transmission dynamics of Acinetobacter spp in routine care settings.
17 18 19	108	 Comparators/controls: Presence of a control group was not a requirement
20 21	109	for study inclusion.
22 23 24	110	 Outcomes: The outcome of interest was the incidence (expressed as count,
24 25 26	111	proportion or rate) of hospital-acquired or community-acquired infection, at
27 28	112	any site, that was caused by Acinetobacter species in hospitalized patients.
29 30 31	113	Studies not distinguishing colonization from infection were included.
32 33	114	 Study design: Observational longitudinal studies reporting the incidence of
34 35 36	115	Acinetobacter spp. infections, with at least 12 consecutive months of follow-
37 38	116	up to cover all seasons, were included.
39 40 41	117	Studies that did not fulfil the eligibility criteria were excluded and reasons stated
42 43	118	(Supplementary <u>Appendix B</u>).
44 45 46	119	
40 47 48	120	Data extraction
49 50	121	Information extracted from retrieved studies included: identification data (first
51 52 53	122	author, title and year of publication); study design, length of follow-up; geographical
54 55	123	location and data source; type or specialty of patients; total number of infections;
56 57 58		6
59 60		0
1		

source of infection (community- or hospital- acquired); type/site of infection; and member of the Acinetobacter species. Additionally, factors found to be associated with and factors found not to be associated with seasonal variation, and hypotheses on mechanisms of seasonality (argued for or against by the authors) were recorded. Where available, monthly or quarterly incidence counts, proportions or rates of Acinetobacter infection were extracted. Data presented in graphical format were retrieved using Plot Digitizer version 2.6.6 (http://plotdigitizer.sourceforge.net/). Data were summarized in a Google spreadsheet by one author (AGK) and crosschecked by the other author (EIK). **Evidence** synthesis Findings were summarised in a narrative synthesis structured around clinical heterogeneity, methodological characteristics and quality assessment of retrieved studies, seasonal patterns detected, risk factors and hypotheses of mechanisms underlying seasonality. To describe and assess consistency in reported seasonal patterns, monthly infection incidence data were standardised using z-scores on a study-

139 by-study basis to bring different units of measurement into one common scale across

140 studies. Data from studies in the southern hemisphere were adjusted by six months. The

141 average of standardised monthly incidence data across all studies was then plotted.

142 Different weighting schemes were used to account for length of follow-up, study size

and overall quality rating. Stratified graphs of standardized data were used to examine

144 consistency in seasonality for different types and sources of infection and between

145 different clinical settings.

146	
147	Quality appraisal
148	Internal validity of each study was assessed by one author (EIK) based on the
.49	Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies [10].
150	Appendix C details how this assessment was carried out. We also assessed
L51	methodological heterogeneity in relation to whether studies were performed with the
152	specific objective of assessing seasonality, what their scale and coverage were, and
153	which statistical methods were used to assess seasonality. For the latter, the statistical
154	method was classified into one of four distinct types [11]: (a) graphical inspection of
155	incidence data over time; (b) direct comparison of incidence between discrete calendar
156	periods; (c) geometrical model assuming a sinusoidal cyclic pattern, and (d) generalised
157	linear and/or time series regression model.
158	
L59	Results
L60	
161	Setting and clinical heterogeneity of retrieved studies
162	The search identified 294 non-duplicate publications, of which 25 met the
163	eligibility criteria and were reviewed (Figure 1). Main characteristics of the studies are
164	summarised in Table I. The studies were published from 1979 to 2018 and 15 (60%)
165	appeared over the last 10 years. Most studies (n=18; 72%) were conducted in countries
166	in the Northern Hemisphere (8 in North America, 6 in Europe and 4 in Asia), and only a
167	quarter (n=6; 24%) were in the Southern Hemisphere (5 in Brazil and 1 in Australia). One
	8
	C

Page 10 of 76

study was multi-national and included countries in both North and South America. Most
(n=19; 76%) were performed at a single institution, while 6 (24%) were multi-centre
studies. The majority of studies (n=20; 80%) were conducted hospital-wide, while a fifth
of the investigations (n=5; 20%) were restricted in ICUs. There was no age restriction in
11 (44%) studies, 3 (12%) studies examined only adult patients and 11 (44%) studies did
not report patient demographics.

Overall, 37006 cases of Acinetobacter infection during 1954 months of follow-up were reported. Colonization was not distinguished from infection in 11 (44%) reports, while 13 (52%) studies reported infection only and 1 (4%) study examined colonization only. Hospital-acquired cases were not distinguished from community-onset cases in 12 (48%) occasions, while 10 (40%) studies examined hospital-acquired cases only, 1 (4%) included community-onset cases only and 2 (8%) studies contrasted between hospitalacquired and community-onset cases. In relation to infection type, 13 studies (52%) reported all types of infections combined, while 11 (44%) studies looked at bacteraemia only and 1 (4%) investigated pneumonia only.

184 Methodological characteristics and quality assessment

Retrieved studies were case-series (16/25; 64%) or cohort studies (9/25; 36%) that examined longitudinally the incidence of *Acinetobacter* infection based on routine clinical cultures. Most studies collected data retrospectively (n=15; 60%). There were 15 (60%) studies performed with the specific objective of assessing seasonality and the remaining 10 studies (40%) assessed seasonal occurrence as a secondary objective. To

2		
3		
4		
5		
6		
5 6 7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24 25		
25		
20		
26 27 28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

203

secondary objective.

190 assess seasonality, the authors relied mostly on graphical inspections of disease 191 incidence over time (n=9; 36%) or direct comparison of incidence data between discrete 192 calendar periods (n=11; 44%). One study used a geometrical model and 4 (16%) studies utilized a generalised linear model. Using the Quality Assessment Tool for Observational 193 194 Studies, the average quality score of included studies was 79% (SD 13.8%; range 45%-195 100%) and only 4 studies (16%) obtained a rating below 70% (Table C2, supplementary 196 Appendix C). 197 Global seasonal patterns 198 Seasonal variation in Acinetobacter infections was reported in 18/25 (72%) studies; 199 200 whereas 4 (16%) concluded absence of seasonality and 3 (12%) studies were 201 inconclusive. Seasonality was concluded in 13 of the 15 (87%) studies that assessed it as a primary objective and in 5 of the 10 studies (50%) that looked at seasonality as a 202

All but four studies [8,12–14] reported monthly incidence data in tables and/or 204 graphs and we extracted 27 series of monthly incidence data from 21/25 (84%) studies 205 206 (Table II). Extracted monthly incidence of Acinetobacter infections peaked in the 207 summer in 12/21 (57.1%) studies, spring in 2/21 (9.5%) studies, autumn in 2/21 (9.5%) studies, and in the winter in 1/21 (4.8%) study. Differential seasonal variation was noted 208 209 in 4/21 (19%) studies in relation to source of infection (summer peak for communityonset infections vs. winter peak for hospital-acquired infections) [15], antimicrobial 210 211 resistance (summer peak for non-MDR isolates vs. winter peak for MDR) [7], clinical

Clinical Microbiology and Infection

Page 12 of 76

	212	setting (summer peak in wards vs. autumn peak in ICUs) [16], or location (winter peak in
	213	Latin America vs autumn peak in Canada and USA) [17].
	214	When monthly incidence data were standardised and pooled across studies, a
1	215	clear seasonal pattern in Acinetobacter incidence with a peak in summer/warmer
	216	months and a trough in winter/colder months was evident. This remained consistent
1	217	under different weights to account for length of follow-up, number of infections and
	218	quality rating of the studies (Figure 2, panel a). The same seasonal pattern persisted
1	219	when we examined pooled standardised data in relation to seasonality objective
	220	(primary v. secondary), clinical setting (hospital-wide v. ICU), continent where the
	221	studies were performed, infection origin (hospital-acquired v. community-onset),
	222	infection type (any infection v. bacteraemia only), infection status (colonization or
1	223	infection v. infection only), and Acinetobacter group (Figure 2, panels b-h).
	224	
	225	Factors associated with seasonal variation
	226	Ten (40%) studies examined the relation to weather parameters (ambient
	227	temperature, relative humidity and precipitation or rainfall) [7,8,12,13,15,18–22]. Three
	228	of these additionally looked at or controlled for patient-related risk factors and/or
	229	clinical practice indicators [12,21,22]. To this end, most studies (7/10; 70%) relied on
	230	multivariable generalized linear models (Poisson [8,13,19,20], negative binomial [22] or
	231	logistic [12,21] regression), while the remaining 3 studies used bivariate correlation
	232	coefficients [7,15,18].

	233	All nine studies that examined ambient temperature found a positive association
	234	with Acinetobacter incidence [7,8,12,13,15,19–22]. Of note, one study was conducted
	235	exclusively in ICUs [22] and another found that temperature-associated variation in
)	236	Acinetobacter infections persisted in the subgroup of patients admitted to ICUs [21],
: ; ;	237	which were units with climate control. In contrast, of the 5 studies examining relative
	238	humidity, 4 did not find an association with Acinetobacter incidence [8,13,19,21] and 1
	239	noted a negative association [12]. Results were more variable regarding precipitation,
)	240	which was examined in 3 studies and was seen to exhibit negative [8], positive [18] or
<u>}</u>	241	no correlation [19] with Acinetobacter incidence.
- - - -	242	All three studies that examined patient-related and/or clinical practice-related
, }	243	risk factors noted lack of association with Acinetobacter incidence. Factors studied were
)	244	patient age and sex [12], ICU admission [12,21], Charslon comorbidity index [21], length
<u>-</u>	245	of stay or time at risk [12,22], device utilization indices [22], size and type of ICU or
	246	hospital [22], and number of pathogens isolated in the previous month [22]. In addition,
, }	247	Acinetobacter occurrence was measured as an incidence density rate in 4 studies, using
)	248	patient-days [22–24] or device-days [25] in the denominator thereby controlling for
2	249	fluctuations in admissions, length of stay and intensity of device use. Moreover, one
 	250	study examined the molecular heterogeneity of isolates and established that the
, , ;	251	seasonal increase in A. baumannii was not due to clonal dissemination of a single strain
)	252	[26].
2	253	
 	254	Hypotheses of underlying mechanisms

255	Reviewed studies considered several explanatory hypotheses of mechanisms
256	underlying the seasonality of Acinetobacter infections. Several authors raised the
257	possibility of community-associated origins related to increased bacterial growth
258	[15,19,27] and/or survival in environmental reservoirs [8,12,13,21] outside the hospital
259	setting in higher temperatures. These, in turn, was hypothesized to lead to increased
260	colonization of humans and increased inflow of Acinetobacter carried by patients and
261	healthcare workers into hospitals during warmer months [8,12,13,19].
262	The possibility that higher temperatures may modulate the virulence of
263	Acinetobacter via regulating the lipid A moiety of lipopolysaccharide in its outer
264	membrane, thereby contributing to increases in infection occurrence in warmer periods,
265	was also considered [19]. Others suggested that increased ambient temperature may
266	promote a biofilm "bloom" of Acinetobacter species in hospital tap water which,
267	similarly to Pseudomonas aeruginosa, may be related to increased isolation from
268	standing tap water in patient rooms and higher fecal carriage of healthy adults during
269	the summer months [20,25]. Another suggestion was that the photoperiod (dark-light
270	cycles) and not temperature per se might contribute to seasonality because host
271	susceptibility may depend on the photoperiod and mediated by the length of daily
272	melatonin pulse and a range of other physiologic parameters [22].
273	Stated hypotheses also acknowledged a potential role of non-weather-related
274	seasonal factors including understaffing due to summer vacations that may lead to
275	higher workload and/or lower adherence to infection control measures [8,27], intern

1		
2 3 4	276	inexperience with infection control methods and obtaining clinical cultures at different
5 6 7	277	frequencies in summer [19].
7 8 9	278	
10 11 12	279	Discussion
13 14 15	280	
16 17	281	Our evidence synthesis suggests that the incidence of Acinetobacter infection in
18 19 20	282	hospitalised patients is characterised by a global seasonal pattern with a peak in
20 21 22	283	summer/warmer months and a trough in winter/colder months. In our descriptive
23 24	284	graphical assessment, the seasonal pattern remained robust when we gave more weight
25 26 27	285	to studies with greater follow-up times (as repetition over several years is more likely to
28 29	286	reflect true seasonality), those with larger effective sample size (which avoid potential
30 31 32	287	masking of temporal patterns because of recording few infections) or those with higher
33 34	288	quality ratings. Moreover, the same seasonal pattern was seen irrespective of whether
35 36 37	289	the studies addressed seasonality as primary or secondary objective, whether infection
38 39	290	onset was hospital-associated or community-associated, whether the investigation was
40 41 42	291	performed in ICUs or hospital-wide, whether reporting was restricted to infections or
42 43 44	292	included colonizations, and whether studies reported A. baumannii or other members of
45 46	293	the species. Therefore, the phenomenon of seasonality in the occurrence of
47 48 49	294	Acinetobacter infection in hospitalized patients appears to be a robust finding that
50 51	295	merits attention when designing or evaluating strategies for infection prevention and
52 53 54 55	296	control in hospitals.

297	This global seasonal pattern does not seem to relate simply to seasonal variation
298	in admission times or hospital crowding or susceptibility of the patient population, and
299	our results show that the mechanisms underlying seasonality remain largely obscure.
300	We identified consistent evidence of temperature-associated variation in Acinetobacter
301	incidence in all studies that examined this possibility by incorporating measurements of
302	ambient temperature in their analysis [7,8,12,13,15,19–22]; whereas we noted
303	inconsistent findings regarding other weather parameters. Consequently, temperature-
304	driven considerations pointing mostly to community-associated origins of the seasonal
305	surges in Acinetobacter infections within hospitals were most dominant in forming
306	hypotheses on mechanisms for seasonality in reviewed studies.
307	The most common causal hypothesis proposed that higher temperature
308	promotes bacterial growth, environmental reservoirs, virulence and/or biofilm
309	formation in Acinetobacter outside healthcare settings, which somehow increase the
310	inflow of carriers into hospitals. This hypothesis is supported by increasing evidence that
311	traits such as antibiotic resistance, biofilm formation and twitching motility can be
312	thermoregulated in Acinetobacter [28,29]. The organism also adapts rapidly to
313	temperature shift (from room temperature to 37ºC) and to availability of nutrients
314	(from starvation to food availability), conditions easily found in new patients [30]. The
315	community-associated (rather than healthcare-associated) origins of the increased
316	incidence of Acinetobacter during summer or warmer months is supported by our
317	finding of a persisting seasonal pattern when we looked at data from studies performed
318	solely in ICUs, where climate conditions are largely artificial and stable. An investigation

2		
3 4	319	in 73 German ICUs revealed temperature-associated variation in Acinetobacter
5 6 7	320	incidence despite that 83% of the units were air-conditioned during the entire study
8 9	321	period [22]. The hypothesis of community-associated origins may be supported further
10 11 12	322	by observations of polyclonal increase in Acinetobacter in summer/warmer months;
12 13 14	323	however, we identified only one study that provided relevant evidence by examining the
15 16	324	molecular heterogeneity of the isolates [26].
17 18 19	325	On the other hand, strictly community origins of incidence peaks in
20 21	326	Acinetobacter infections are difficult to justify in light of our findings. We were able to
22 23 24	327	extract 27 series of monthly data from reviewed studies, which produced a similar
24 25 26	328	seasonal pattern irrespective of whether the origin of infections was associated with the
27 28	329	community (n=3), the hospital (n=11) or a mixture of the two (n=13). Moreover,
29 30 31	330	Acinetobacter is characterised by multidrug resistance, which is highly clonal in nature
32 33	331	and a proxy of nosocomial origin. Only two studies attempted to examine seasonal
34 35 36	332	variation in relation to the antimicrobial susceptibility of Acinetobacter isolates and
37 38	333	produced conflicting results. In a single-centre study in the USA, significantly more non-
39 40 41	334	MDR A. baumannii cases were identified in warm months than in cold months, but a
42 43	335	similar pattern was not observed for MDR cases [7]. In contrast, a single-centre in Brazil
44 45	336	noted a stronger association of temperature with imipenem-resistant than with
46 47 48	337	imipenem-susceptible strains of A. baumannii [8]. The possibility of differential variation
49 50	338	depending on antimicrobial susceptibility should be addressed in future studies. Future
51 52 53	339	research should also consider competing explanations based on non-weather-related
54 55	340	seasonal factors such as understaffing associated with summer vacations, changes in
56 57		

Page 18 of 76

341	adherence to isolation precautions, or obtaining clinical cultures at different frequencies
342	in summer. Empirical evidence for such associations is limited but appears to suggest
343	that understaffing and bed occupancy rates correlate with the spread of hospital-
344	acquired infections [31]. Therefore, different mechanisms might explain the seasonal
345	flow of Acinetobacter inside and outside the hospital and future explanatory studies
346	should emphasize on clearly distinguishing between hospital-acquired and community-
347	acquired cases.
348	We did not identify different seasonality between studies that included all types
349	of infections combined and those that included Acinetobacter bacteraemia only.
350	However, the current literature has not examined other infection types and we cannot
351	exclude the possibility that seasonal variation might depend on the site of infection. It is
352	not unreasonable, for example, to expect that pneumonias might peak during the colder
353	months. Similarly, we did not identify differences between studies that examined
354	colonization in conjunction with infection and those that examined infection only.
355	However, only one study assessed colonization only and we cannot exclude the
356	possibility of a difference in seasonal variation between Acinetobacter infections and
357	colonizations. This would provide further insight into potential mechanisms underlying
358	seasonality [32]. A time lag between seasonal peaks in colonization compared to
359	infection would support the role of seasonal factors on Acinetobacter transmission and
360	colonization. Seasonality in infection but not colonization would indicate that seasonal
361	factors somehow affect host susceptibility to progression from colonization to infection
362	[32]. These scenarios require validation in future studies.

363	In common with other reviews of the seasonality of infectious diseases
364	[11,32,33], we identified that the bulk of the literature on the topic lacks robust
365	statistical methodology. Graphical inspection or direct numerical comparison of
366	Acinetobacter incidence over discrete calendar seasons were dominant approaches in
367	assessing seasonality. However, aggregation of cases by calendar season may result in
368	loss of information if infection occurrences have other periodicity (e.g. biannual) [11,33].
369	Direct comparison between discrete time intervals is limited by the inability to compare
370	more than two intervals at once [11]. The geometrical model is outperformed by
	Poisson regression when estimating the magnitude of seasonal variation [34]. Therefore,
	time-series regression models should be preferred when studying the seasonality of
372	time-series regression models should be preferred when studying the seasonality of
373	infectious diseases [11,33]. However, appropriate regression modelling was utilized in
374	only 4 (16%) of reviewed studies and this should be kept in mind when interpreting
375	results from individual studies.
376	The potential for publication bias should be considered because 40% of the
377	reviewed studies were not performed with the primary objective of assessing
378	seasonality. We should thus assess the possibility of a bias towards reporting results
379	whenever seasonality was observed and not reporting them when no such seasonal
380	variation was seen [32]. Our findings oppose this possibility because seasonality was
381	reported in the great majority (13/15; 87%) of studies that assessed it as a primary
382	objective, compared with half (5/10; 50%) of those that included seasonality as a non-
383	specific objective. Moreover, the seasonal pattern in Acinetobacter incidence remained
384	consistent when we examined pooled standardised data in relation to seasonality
	18
	364 365 366 367 368 369 370 371 372 373 374 375 376 375 376 377 378 377 378 379 380 381 381 382

objective (primary v. secondary) and persisted under different data weights accounting
for study size and overall quality rating.

Individual studies reported Acinetobacter incidence with different metrics and we utilized z-scores to standardize the data across studies. This enabled us to examine consistency or robustness of the same seasonal pattern under different conditions by graphically comparing standardized data pooled across distinct subgroups. However, standardization masks the amplitude between the peak and the trough in disease incidence. Moreover, we did not attempt to estimate the magnitude or intensity of the seasonal effect that may vary substantially in different settings. Therefore, our analysis supports global consistency in the seasonal pattern of Acinetobacter, not a global magnitude of the seasonal effect. Another important consideration in interpreting our findings is that most data come from North America and Europe – regions with temperate climate and similar income level and health care infrastructure. Fewer studies were from tropical or sub-tropical zones in the southern hemisphere, almost all South American studies were done in Brazil and there was no data from Africa, which is a considerable gap in available information from those regions.

402 Conclusions

This systematic assessment of the literature suggests that the occurrence of *Acinetobacter* infections in hospitalised patients is characterised by a robust global seasonal pattern with an incidence peak in summer/warmer months and an incidence

References

	421			
)	422	[1]	Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: Evolution of a globa	ıl
2	423		pathogen. Pathog Dis 2014;71:292–301. doi:10.1111/2049-632X.12125.	
} 	424	[2]	Tsioutis C, Kritsotakis EI, Karageorgos SA, Stratakou S, Psarologakis C, Kokkini S,	et
, , ,	425		al. Clinical epidemiology, treatment and prognostic factors of extensively drug-	
3	426		resistant Acinetobacter baumannii ventilator-associated pneumonia in critically	′ ill
<u>,</u>	427		patients. Int J Antimicrob Agents 2016;48:492–7.	
} -	428		doi:10.1016/j.ijantimicag.2016.07.007.	
)) 7	429	[3]	European Centre for Disease Prevention and Control. Carbapenem-resistant	
3	430		Acinetobacter baumannii in healthcare settings. Stockholm: 2016.	
)	431	[4]	Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a	
- 5 -	432		successful pathogen. Clin Microbiol Rev 2008;21:538–82.	
; ;	433		doi:10.1128/CMR.00058-07.	
3	434	[5]	Richet H. Seasonality in Gram-negative and healthcare-associated infections. Cl	in
)	435		Microbiol Infect 2012;18:934–40. doi:10.1111/j.1469-0691.2012.03954.x.	
<u>/</u> } -	436	[6]	Wisplinghoff H, Edmond MB, Pfaller MA, Jones RN, Wenzel RP, Seifert H.	
5	437		Nosocomial bloodstream infections caused by Acinetobacter species in United	
, })	438		States hospitals: clinical features, molecular epidemiology, and antimicrobial	
)	439		susceptibility. Clin Infect Dis 2000;31:690–7. doi:10.1086/314040.	
<u>)</u> }	440	[7]	Fukuta Y, Clarke LG, Shields RK, Wagener MM, Pasculle AW, Doi Y. Lack of	
	441		seasonality in the occurrence of multidrug-resistant Acinectobacter baumannii	
7 3				21
,				

2				
3 4	442		complex. Infect Control Hosp Epidemiol 2012;33:1051–2. doi:10.1086/667741.	
5 6 7	443	[8]	da Silveira M, da Silva LP, de Oliveira Emídio ZP, Fortaleza CMCB. Weather,	
8 9	444		climate control, and imipenem-resistance in Acinetobacter baumannii: an	
10 11 12	445		ecological approach. Infect Control Hosp Epidemiol 2018;39:1133–5.	
12 13 14	446		doi:10.1017/ice.2018.171.	
15 16	447	[9]	Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting	
17 18 19	448		items for systematic reviews and meta-analyses: the PRISMA statement. J Clin	
20 21	449		Epidemiol 2009;62:1006–12. doi:10.1016/j.jclinepi.2009.06.005.	
22 23 24	450	[10]	U.S. Department of Health & Human Services. Quality Assessment Tool for	
25 26	451		Observational Cohort and Cross-Sectional Studies n.d.	
27 28 29	452		https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools	
30 31	453		(accessed January 28, 2019).	
32 33	454	[11]	Christiansen CF, Pedersen L, Sørensen HT, Rothman KJ. Methods to assess	
34 35 36	455		seasonal effects in epidemiological studies of infectious diseasesexemplified b	y
37 38	456		application to the occurrence of meningococcal disease. Clin Microbiol Infect	
39 40 41	457		2012;18:963–9. doi:10.1111/j.1469-0691.2012.03966.x.	
42 43	458	[12]	Caldeira SM, Cunha AR da, Akazawa RT, Moreira RG, Souza L do R de, Fortaleza	
44 45 46	459		CMCB. Weather parameters and nosocomial bloodstream infection: a case-	
47 48	460		referent study. Rev Saude Publica 2015;49:19. doi:10.1590/S0034-	
49 50	461		8910.2015049005438.	
51 52 53	462	[13]	Fortaleza CMCB, Caldeira SM, Moreira RG, Akazawa RT, Corrente JE, de Souza L	
54 55	463		do R, et al. Tropical healthcare epidemiology: weather determinants of the	
56 57 58				22
59 60				

Page 24 of 76

1 2				
3 4	464		etiology of bloodstream infections in a Brazilian hospital. Infect Control Hosp	
5 6 7	465		Epidemiol 2014;35:85–8. doi:10.1086/674392.	
7 8 9	466	[14]	Kolonitsiou F, Papadimitriou-Olivgeris M, Spiliopoulou A, Stamouli V, Papakostas	
10 11 12	467		V, Apostolopoulou E, et al. Trends of Bloodstream Infections in a University Greek	k
12 13 14	468		Hospital during a Three-Year Period: Incidence of Multidrug-Resistant Bacteria	
15 16	469		and Seasonality in Gram-negative Predominance. Polish J Microbiol 2017;66:171-	_
17 18 19	470		80.	
20 21	471	[15]	Kim YA, Kim JJ, Won DJ, Lee K. Seasonal and Temperature-Associated Increase in	
22 23 24	472		Community-Onset Acinetobacter baumannii Complex Colonization or Infection.	
25 26	473		Ann Lab Med 2018;38:266–70. doi:10.3343/alm.2018.38.3.266.	
27 28 29	474	[16]	Siau H, Yuen KY, Wong SSY, Ho PL, Luk WK. The epidemiology of acinetobacter	
30 31	475		infections in Hong Kong. J Med Microbiol 1996;44:340–7. doi:10.1099/00222615	-
32 33	476		44-5-340.	
34 35 36	477	[17]	Gales AC, Jones RN, Forward KR, Liñares J, Sader HS, Verhoef J. Emerging	
37 38	478		importance of multidrug-resistant Acinetobacter species and Stenotrophomonas	
39 40 41	479		maltophilia as pathogens in seriously ill patients: geographic patterns,	
42 43	480		epidemiological features, and trends in the SENTRY Antimicrobial Surveillance	
44 45 46	481		Program (1997-1999. Clin Infect Dis 2001;32 Suppl 2:S104-13.	
40 47 48	482		doi:10.1086/320183.	
49 50	483	[18]	Davis JS, McMillan M, Swaminathan A, Kelly JA, Piera KE, Baird RW, et al. A 16-	
51 52 53	484		year prospective study of community-onset bacteremic Acinetobacter	
54 55	485		pneumonia: low mortality with appropriate initial empirical antibiotic protocols.	
56 57				12
58 59 60			2	23

1 2				
3 4	486		Chest 2014;146:1038–45. doi:10.1378/chest.13-3065.	
5 6 7	487	[19]	Eber MR, Shardell M, Schweizer ML, Laxminarayan R, Perencevich EN. Seasonal	
8 9	488		and temperature-associated increases in gram-negative bacterial bloodstream	
10 11 12	489		infections among hospitalized patients. PLoS One 2011;6:e25298.	
13 14	490		doi:10.1371/journal.pone.0025298.	
15 16 17	491	[20]	Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, et al.	
17 18 19	492		Summer Peaks in the Incidences of Gram-Negative Bacterial Infection Among	
20 21	493		Hospitalized Patients. Infect Control Hosp Epidemiol 2008;29:1124–31.	
22 23 24	494		doi:10.1086/592698.	
25 26	495	[21]	Rodrigues FS, Clemente de Luca FA, Ribeiro da Cunha A, Fortaleza CMCB. Season,	
27 28 29	496		weather and predictors of healthcare-associated Gram-negative bloodstream	
30 31	497		infections: a case-only study. J Hosp Infect 2019;101:134–41.	
32 33	498		doi:10.1016/j.jhin.2018.06.015.	
34 35 36	499	[22]	Schwab F, Gastmeier P, Meyer E. The warmer the weather, the more gram-	
37 38	500		negative bacteria - impact of temperature on clinical isolates in intensive care	
39 40 41	501		units. PLoS One 2014;9:e91105. doi:10.1371/journal.pone.0091105.	
42 43	502	[23]	Lastoria LC, Caldeira SM, Moreira RG, Akazawa RT, Maion JC, Fortaleza CMCB.	
44 45 46	503		Ecological competition and the incidence of Acinetobacter baumannii	
47 48	504		bloodstream infections in a teaching hospital in Southeastern Brazil. Rev Soc Bras	
49 50	505		Med Trop 2014;47:583–8. doi:10.1590/0037-8682-0161-2014.	
51 52 53	506	[24]	Papadimitriou-Olivgeris M, Fligou F, Spiliopoulou A, Koutsileou K, Kolonitsiou F,	
54 55	507		Spyropoulou A, et al. Risk factors and predictors of carbapenem-resistant	
56 57 58			24	
59 60				

Page 26 of 76

1 2				
3 4	508		Pseudomonas aeruginosa and Acinetobacter baumannii mortality in critically ill	
5 6 7	509		bacteraemic patients over a 6-year period (2010-15): antibiotics do matter. J Med	
8 9	510		Microbiol 2017;66:1092–101. doi:10.1099/jmm.0.000538.	
10 11 12	511	[25]	McDonald LC, Banerjee SN, Jarvis WR. Seasonal variation of Acinetobacter	
13 14	512		infections: 1987-1996. Nosocomial Infections Surveillance System. Clin Infect Dis	
15 16 17	513		1999;29:1133–7. doi:10.1086/313441.	
17 18 19	514	[26]	Christie C, Mazon D, Hierholzer W, Patterson JE. Molecular heterogeneity of	
20 21	515		Acinetobacter baumanii isolates during seasonal increase in prevalence. Infect	
22 23 24	516		Control Hosp Epidemiol 1995;16:590–4.	
25 26	517	[27]	Fillaux J, Dubouix A, Conil J-M, Laguerre J, Marty N. Retrospective analysis of	
27 28 29	518		multidrug-resistant Acinetobacter baumannii strains isolated during a 4-year	
30 31	519		period in a university hospital. Infect Control Hosp Epidemiol 2006;27:647–53.	
32 33 34	520		doi:10.1086/507082.	
35 36	521	[28]	Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of	
37 38 39	522		physicochemical factors, virulence, antibiotic resistance determinants, gene	
40 41	523		regulation, and future antimicrobial treatments. Infect Drug Resist 2018;11:2277–	
42 43	524		99. doi:10.2147/IDR.S169894.	
44 45 46	525	[29]	De Silva PM, Chong P, Fernando DM, Westmacott G, Kumar A. Effect of	
47 48	526		Incubation Temperature on Antibiotic Resistance and Virulence Factors of	
49 50 51	527		Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother 2018;62.	
52 53	528		doi:10.1128/AAC.01514-17.	
54 55 56	529	[30]	Chapartegui-González I, Lázaro-Díez M, Bravo Z, Navas J, Icardo JM, Ramos-Vivas	
57 58 59 60			25	
00				

1 2				
3 4	530		J. Acinetobacter baumannii maintains its virulence after long-time starvation.	
5 6	531		PLoS One 2018;13:e0201961. doi:10.1371/journal.pone.0201961.	
7 8 9	532	[31]	Kaier K, Mutters NT, Frank U. Bed occupancy rates and hospital-acquired	
10 11	533		infectionsshould beds be kept empty? Clin Microbiol Infect 2012;18:941–5.	
12 13 14	534		doi:10.1111/j.1469-0691.2012.03956.x.	
15 16	535	[32]	Leekha S, Diekema DJ, Perencevich EN. Seasonality of staphylococcal infection	s.
17 18 19	536		Clin Microbiol Infect 2012;18:927–33. doi:10.1111/j.1469-0691.2012.03955.x.	
20 21	537	[33]	Fisman DN. Seasonality of infectious diseases. Annu Rev Public Health	
22 23	538		2007;28:127–43. doi:10.1146/annurev.publhealth.28.021406.144128.	
24 25 26	539	[34]	Christensen AL, Lundbye-Christensen S, Dethlefsen C. Poisson regression mod	els
27 28	540		outperform the geometrical model in estimating the peak-to-trough ratio of	
29 30 31	541		seasonal variation: a simulation study. Comput Methods Programs Biomed	
32 33	542		2011;104:333–40. doi:10.1016/j.cmpb.2011.07.016.	
34 35 36	543	[35]	Gerner-Smidt P. Endemic occurrence of Acinetobacter calcoaceticus biovar	
37 38	544		anitratus in an intensive care unit. J Hosp Infect 1987;10:265–72.	
39 40	545	[36]	Iqbal Hossain M, Iqbal Kabir AK, Khan WA, Fuchs GJ. Acinetobacter bacteremia	a in
41 42 43	546		patients with diarrhoeal disease. Epidemiol Infect 1998;120:139–42.	
44 45	547	[37]	Morfín-Otero R, Alcántar-Curiel MD, Rocha MJ, Alpuche-Aranda CM, Santos-	
46 47 48	548		Preciado JI, Gayosso-Vázquez C, et al. Acinetobacter baumannii infections in a	
49 50	549		tertiary care hospital in Mexico over the past 13 years. Chemotherapy	
51 52 53	550		2013;59:57–65. doi:10.1159/000351098.	
54 55	551	[38]	Porter KA, Rhodes J, Dejsirilert S, Henchaichon S, Siludjai D, Thamthitiwat S, et	al.
56 57 58				26
58 59 60				20

2			
3 4	552		Acinetobacter bacteraemia in Thailand: evidence for infections outside the
5 6	553		hospital setting. Epidemiol Infect 2014;142:1317–27.
7 8 9	554		doi:10.1017/S0950268813002082.
10 11	555	[39]	Retailliau HF, Hightower AW, Dixon RE, Allen JR. Acinetobacter calcoaceticus: a
12 13 14	556		nosocomial pathogen with an unusual seasonal pattern. J Infect Dis
15 16	557		1979;139:371–5.
17 18 19	558	[40]	Seifert H, Boullion B, Schulze A, Pulverer G. Plasmid DNA profiles of Acinetobacter
20 21	559		baumannii: clinical application in a complex endemic setting. Infect Control Hosp
22 23 24	560		Epidemiol 1994;15:520–8.
25 26	561	[41]	Smego RA. Endemic nosocomial Acinetobacter calcoaceticus bacteremia. Clinical
27 28 29	562		significance, treatment, and prognosis. Arch Intern Med 1985;145:2174–9.
30 31	563		doi:10.1001/archinte.1985.00360120042006.
32 33 34			
35 36 37			
38 39			
40 41			
42			
43			
44 45			
46			
47			
48			
49			
50 51			
52			
53			
54			
55			
56			
57			
58 59			27
59 60			

Table I Characteristics of studies included in the review

Study	Location	Data source	Design*	Data Collection	Duration (mm/yyyy)	Follow-up (months)	No. of cases**	Seasonality objective	Method	Quality rating (%) ^{\$}
Caldeira et al, 2015 [12]	Sao Paulo, Brazil	1 teaching hospital (450 beds)	Case- series	Retr.	01/2005 - 12/2010	72	177	Primary	Comp.	82
Christie et al, 1995 [26]	Connecticut , USA	1 tertiary-care hospital (770 beds)	Case- series	Pros.	01/1990 - 12/1992	36	320	Primary	Comp.	82
da Silveira et al, 2018 [8]	Sao Paulo, Brazil	1 teaching hospital (335 beds)	Case- series	Retr.	01/2006 - 12/2017	144	1207	Primary	GLM/TS	91
Davis et al, 2014 [18]	Darwin , Australia	1 tertiary referral hospital (350 beds)	Case- series	Pros.	01/1997 - 12/2012	192	41	Secondary	Gmodel	82
Eber et al, 2011 [19]	All USA	The Surveillance Network, 132 hospitals	Cohort	Pros.	01/1999 - 09/2006	93	7618	Primary	GLM/TS	100
Fillaux et al, 2006 [27]	Toulouse, France	1 university hospital (1000 beds)	Case- series	Retr.	01/2000 - 12/2003	48	791	Secondary	Comp.	73
Fortaleza et al, 2014 [13]	Sao Paulo, Brazil	1 teaching hospital (450 beds)	Case- series	Retr.	01/2005 - 12/2010	72	177	Primary	GLM/TS	91
Fukuta et al, 2012 [7]	Pittsburg, USA	1 university hospital	Case- series	Retr.	05/2000 - 04/2011	132	1476	Primary	Comp.	73
Gales et al, 2001 [17]	Canada, USA, Argentina, Chile, Colombia, Mexico, Brazil, Venezuela	46 sentinel hospitals (28 in the USA, 8 in Canada, 10 in Latin America)	Case- series	Pros.	01/1997 - 12/1999	36	261	Primary	Graph	73
Gerner-Smidt, 1987 [35]	Odense, Denmark	1 ICU (12 beds)	Cohort	Retr.	01/1984 - 12/1985	24	111	Secondary	Comp.	73
Iqbal Hossain et al, 1998 [36]	Dhaka, Bangladesh	International Centre for Diarrhoeal Disease Research	Cohort	Retr.	01/1994 - 12/1994	12	138	Secondary	Comp.	45
Kim et al, 2018 [15]	Gyeonggido, Korea	1 community hospital (742 beds)	Case- series	Retr.	01/2006 - 12/2015	120	3520	Primary	Comp.	82
Kolonitsiou et al, 2017 [14]	Patra, Greece	1 university hospital (770 beds)	Cohort	Retr.	01/2011 - 12/2013	36	151	Primary	Comp.	73
Lastoria et al, 2014 [23]	Sao Paulo, Brazil	1 teaching hospital (450 beds),	Cohort	Retr.	01/2005 - 12/2010	72	na	Secondary	Graph	55
McDonald et al, 1999 [25]	All USA	National Nosocomial Infections Surveillance	Cohort	Pros.	01/1987 - 12/1996	120	3447	Primary	Comp.	82

		System, ICU patients in 253 hospitals								
Morfin-Otero et al, 2013 [37]	Guadalajara, Mexico	1 tertiary care teaching hospital (1,000 beds)	Case- series	Retr.	01/1999 - 12/2011	156	3680	Secondary	Graph	73
Papadimitriou- Olivgeris et al, 2017 [24]	Patra, Greece	1 university hospital, ICU (13 beds)	Cohort	Retr.	01/2010 - 12/2015	72	129	Secondary	Graph	73
Perencevich et al, 2008 [20]	Maryland, USA	1 tertiary care hospital (669 beds)	Cohort	Pros.	01/1998 - 12/2005	96	1444	Primary	GLM/TS	100
Porter et al, 2013 [38]	Nakhon Phanom & Sa Kaeo, Thailand	20 hospitals	Case- series	Pros.	05/2005 - 12/2008	44	72	Secondary	Graph	64
Retailliau et al, 1979 [39]	All USA	National Nosocomial Infections System, 81 hospitals	Case- series	Pros.	07/1974	54	1372	Primary	Graph	91
Rodrigues et al, 2019 [21]	Sao Paulo, Brazil	1 teaching hospital (450 beds)	Case- series	Retr.	07/2012	48	116	Primary	Comp.	91
Schwab et al, 2014 [22]	All Germany	SARI Surveillance System, 73 ICUs in 41 hospitals	Cohort	Pros.	01/2001	144	3067	Primary	Comp.	100
Seifert et al, 1994 [40]	Cologne, Germany	4 ICUs in a university hospital (800 beds)	Case- series	Pros.	01/1991	12	189	Secondary	Graph	64
Siau et al, 1996 [16]	Hong-Kong	1 tertiary care hospital (1350 beds)	Case- series	Retr.	01/1990	59	7475	Primary	Graph	91
Smego, 1985 [41]	West Virginia, USA	1 university hospital (450 beds)	Case- series	Retr.	01/1979	60	27	Secondary	Graph	73

ICU, intensive care unit; Retr., retrospective; Pros., prospective; Comp., direct comparison of incidence frequencies between discrete calendar periods;

Graph, graphical inspections of incidence frequency over time; Gmodel, geometrical model; GLM/TS, generalised linear model or time series regression.

* With regard to assessing seasonality, longitudinal studies with strictly-outcome based sampling (i.e. only patients infected or colonized by Acinetobacter)

were labelled "case series". Longitudinal studies that sampled from the pool of hospitalized patients were labelled "cohort" studies.

** Overall number of infections or colonizations recorded during the study period.

\$ Based on the percentage of fulfilled applicable criteria in accordance with the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies [10]

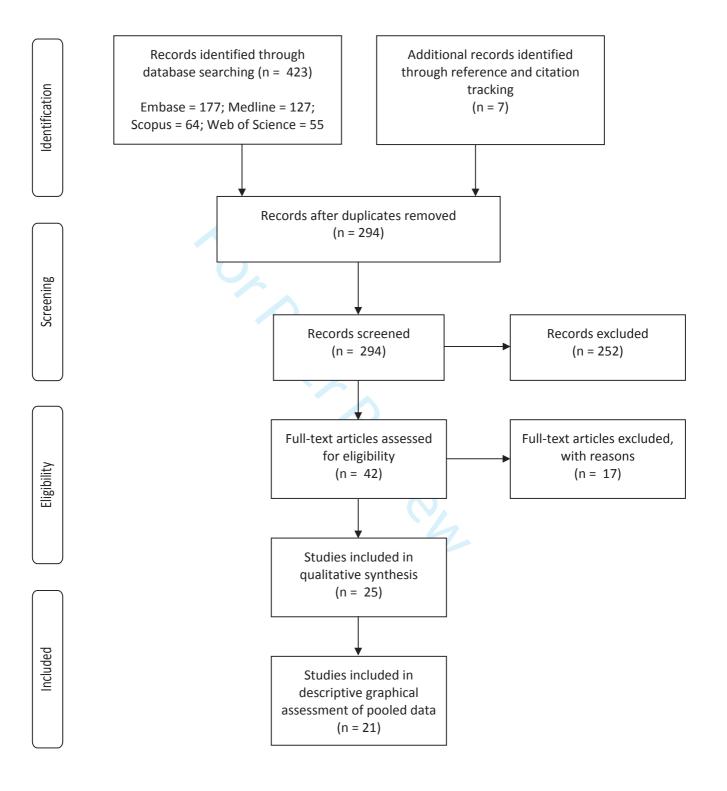
Table II Monthly incidence of Acinetobacter infection (27 data series) retrieved from 21 studies

Study	Incidence measure	Sub-group	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Peak Season ^{\$}
Christie et al, 1995 [26]	Avg monthly proportion (%) of inpatients with BSI by <i>A. baumannii</i> *	-	6.5	6.5	4.7	4.7	4.7	14.6	14.6	14.6	7.7	7.7	7.7	6.5	Summer
Davis et al, 2014 [18]	Cumulative monthly count of community-onset pneumonias caused by <i>Acinetobacter</i> spp.*	-	6	3	5	3	2	2	0	0	3	4	2	11	Summe
Eber et al, 2011 [19]	Avg monthly number of BSIs by Acinetobacter spp.*	-	0.5	0.46	0.51	0.49	0.62	0.64	0.79	0.675	0.78	0.725	0.62	0.57	Autumn
Fillaux et al, 2006 [27]	Avg monthly proportion (%) of A. baumannii clinical isolates	-	10.7	7.2	5.5	4.7	6.4	6.0	8.5	11.8	11.3	10.2	9.6	8.0	Autumn
Fukuta et al, 2012 [7]	Cumulative monthly count of Acinetobacter spp isolates*	Not MDR MDR	32 108	26 62	30 69	36 64	39 64	47 40	97 62	121 55	100 49	63 64	47 63	54 84	Summe Winter
Gales et al, 2001 [17]	Cumulative monthly count of BSIs due to Acinetobacter spp.*	Canada & USA Latin America	12 11	11 13	1 6	8 9	5 6	12 11	15 15	8 17	11 7	20 16	9 13	13 11	Autumr Winter
Gerner-Smidt, 1987 [35]	Avg quarterly proportion (%) of <i>A. calcoaceticus</i> colonizations over all ICU admissions	-	6.4	6.4	6.4	6.2	6.2	6.2	7.0	7.0	7.0	5.4	5.4	5.4	Summe
lqbal Hossain et al, 1998 [36]	Monthly proportion (%) of inpatients with BSI by <i>Acinetobacter</i> spp.	-	2.8	2.8	2.8	2.3	2.3	2.3	2.4	2.4	2.4	1.3	1.3	1.3	Spring
Kim et al, 2018 [15]	Avg monthly proportion of <i>Acinetobacter</i> spp. clinical isolates per 1,000 patients	COI HAI	9.9 10.7	11.2 7.9	9.1 9	11.3 8.9	10.5 8.9	11 8.4	12.2 8.7	18.1 9.2	14.6 11.1	9.9 9	10.6 8.5	7.6 12.6	Summe Winter
Lastoria et al, 2014 [23]	Avg monthly rate of BSI by A. baumannii per 10,000 patient- days *	-	2.40	2.61	1.44	2.19	3.24	5.08	1.79	1.92	2.40	2.03	2.60	1.75	Winter
McDonald et al, 1999 [25]	Avg monthly rate of infections per 10,000 patient-days in ICU*	A. baumannii Acinetobacter spp.	4.15 0.53	4.68 0.29	3.63 0.86	3.71 1.17	3.22 1.13	4.77 1.12	6.09 1.60	7.08 1.29	6.29 1.51	5.48 1.19	4.74 1.06	4.03 0.94	Summe Summe
Morfin-Otero et al, 2013 [37]	Avg. monthly count of A. baumannii clinical isolates*	-	246.3	246.3	246.3	340.7	340.7	340.7	341.3	341.3	341.3	298.3	298.3	298.3	Summe

Smego, 1985 [41]	Cumulative monthly count of patients with blood culture positive for <i>A. calcoaceticus</i> *	-	3	1	3	2	0	4	7	1	3	1	1	1	Summer
Siau et al, 1996 [16]	Cumulative monthly count of Acinetobacter clinical isolates *	ICU patients Ward patients	194 518	176 491	172 567	155 594	172 614	166 657	230 810	186 792	197 757	209 745	300 685	178 519	Autumr Summe
Seifert et al, 1994 [40]	Monthly count of ICU patients with clinical culture positive for A. baumannii *	-	24	14	14	11	19	22	13	16	15	16	13	12	Summe
Schwab et al, 2014 [22]	Avg monthly rate of <i>A.</i> <i>baumannii</i> clinical isolates per 1,000 patient-days in ICU*	-	1.05	1.39	1.44	1.36	1.40	1.61	2.07	1.76	1.43	1.49	1.25	1.15	Summe
Rodrigues et al, 2019 [21]	Avg monthly count of hospital- acquired BSIs by A. baumannii	-	10.7	10.7	10.7	10.7	10.7	7.0	7.0	7.0	10.3	10.3	10.3	10.7	Summe
Retailliau et al, 1979 [39]	Avg. monthly count of infections by <i>A. calcoaceticus</i> *	-	27.5	23.9	23.6	28.4	31.1	32.5	46.9	49.9	37.6	37.4	26.4	22.6	Summ
Porter et al, 2013 [38]	Cumulative monthly count of patients with BSI by Acinetobacter spp.*	HAI COI	5 0	3 1	7 3	4 4	2 0	4 8	4 5	5 3	3 4	1 0	2 1	0 3	Spring Spring
Perencevich et al, 2008 [20]	Cumulative monthly count of <i>A. baumannii</i> clinical isolates*	-	114	100	108	112	111	131	128	162	128	127	114	111	Summe
Papadimitriou- Olivgeris et al, 2017 [24]	Avg monthly rate of BSI by A. baumannii per 1,000 ICU-days*	-	7.74	3.54	3.63	5.13	5.6	8.73	2.35	9.26	3.77	4.91	3.14	3.51	Summe

Avg, average; BSI, bloodstream infection; ICU, intensive-care unit; MDR, multi-drug resistant; COI, community onset infection; HAI, hospital-acquired infection.

* Data extracted from graph(s).


\$ Peak season was defined as the season for which the sum of monthly incidence data was highest. Season are reported in accordance to hemisphere (e.g., summer is defined as June–August in the northern hemisphere and December–February in the southern hemisphere).

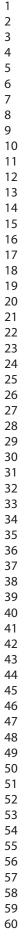

FIGURE CAPTIONS

Figure 1. PRISMA flow diagram of the literature search conducted on 23rd October 2018 to identify longitudinal epidemiological studies investigating seasonal variation in the incidence of infection caused by *Acinetobacter* species in hospitalized patients.

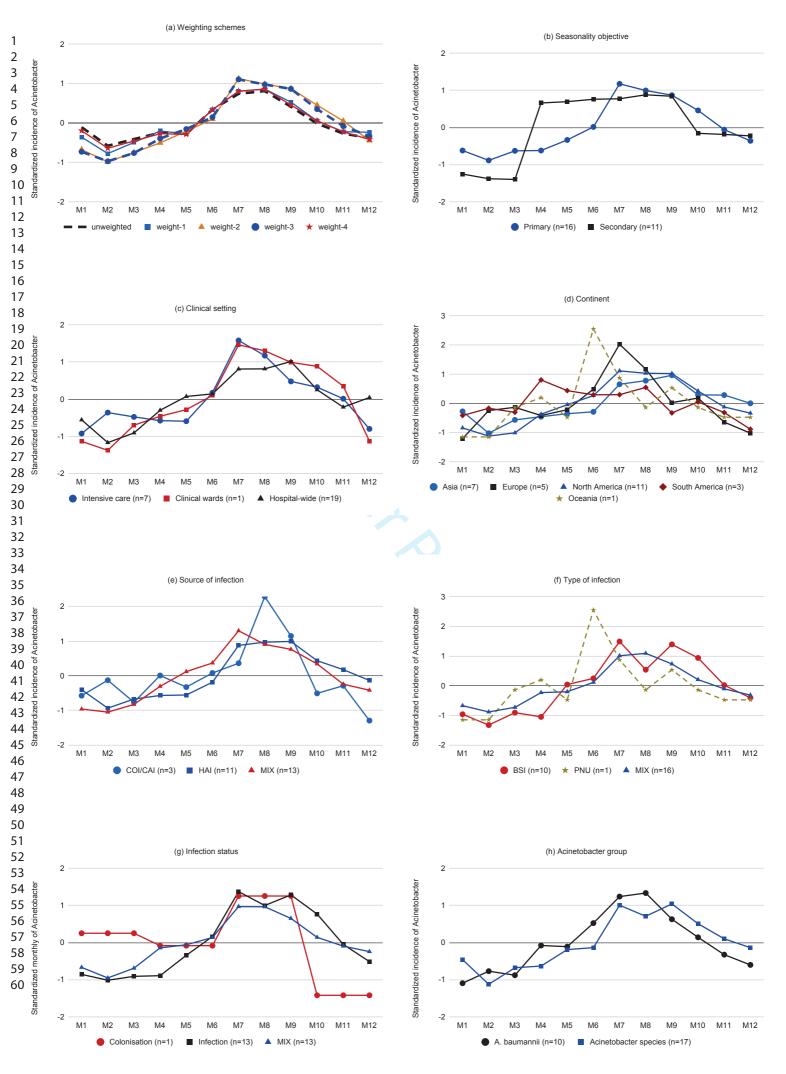

Figure 2. Graphical assessment of monthly incidence of *Acinetobacter* infection in hospitalized patients using 27 data series retrieved from 21 studies. Data were adjusted by six months in data series from the southern hemisphere (i.e. January = M7). Panel (a) weighting schemes were based on follow-up time (weight-1), overall number of infections (weight-2), composite product of follow-up time and number of infections (weight-3) and overall quality rating of each study (weight-4). The composite weight-3 was used in panels (b)-(h). n, number of data series; BSI, bloodstream infection; PNU, pneumonia; COI/CAI, community-onset or community-acquired infection; HAI, hospitalacquired infection; MIX, not distinguishing between different types.

Figure 1.

Page 67 of 76

Supplementary Data

Appendix A. Search strategy

Database: EMBASE Host: OVID Data Parameters: <1974 to 2018 October 23> Date Searched: OCTOBER 23rd, 2018 Hits: **177**

#	Searches	Results
1	season*.mp. [mp=tx, bt, ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq]	193001
2	Acinetobacter baumannii.mp. [mp=tx, bt, ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq]	13453
3	"Acinetobacter".mp. [mp=tx, bt, ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq]	26443
4	Acinetobacter infections.mp. [mp=tx, bt, ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq]	310
5	seasonal pattern.mp. [mp=tx, bt, ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq]	2941
6	1 or 5 (193001)	193001
7	2 or 3 or 4	26443
8	6 and 7	177

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) Host: OVID Data Parameters: <1946 to October 23, 2018> Date Searched: OCTOBER 23rd, 2018

#	Searches	Results
1	Acinetobacter baumannii.mp. or *Acinetobacter/ or *Acinetobacter baumannii/ or	10108
	*Acinetobacter Infections/	
2	"Acinetobacter".mp. or ACINETOBACTER BAUMANNII/ or ACINETOBACTER/ or	15974
	ACINETOBACTER CALCOACETICUS/ or ACINETOBACTER INFECTIONS/	
3	seasons.mp. or SEASONS/	112894
4	SEASONS/ or season*.mp. (189938
5	Seasons/ or seasonal pattern.mp.	98375
6	1 or 2	15974
7	3 or 4 or 5	189938
8	6 and 7	127

Database: SCOPUS Data Parameters: <from inception to October 23, 2018> Date Searched: OCTOBER 23rd, 2018 Hits: 64

#	Searches	Results
	(TITLE-ABS-KEY((ACINETOBACTER AND BAUMANNII) OR (ACINETOBACTER) OR	64
	(ACINETOBACTER AND INFECTIONS)) OR TITLE-ABS-KEY (*ACINETOBACTER*)) AND	
	(TITLE-ABS-KEY (SEASONS) OR (*SEASON)) AND NOT INDEX (MEDLINE) AND (LIMIT-TO	
	(LANGUAGE,"ENGLISH")) AND (LIMIT-TO (EXACTKEYWORD, "ACINETOBACTER") OR	
	LIMIT-TO (EXACTKEYWORD, "HUMAN") OR LIMIT-TO (EXACTKEYWORD, "HUMANS")	
	OR LIMIT-TO (EXACTKEYWORD, "ACINETOBACTER BAUMANNII"))	

Database: WEB OF SCIENCE Data Parameters: <from inception to October 23, 2018> Date Searched: OCTOBER 23rd, 2018 Hits: 55

#	Searches	Results
1	TI=(ACINETOBACTER BAUMANNII/OR ACINETOBACTER/ OR ACINETOBACTER	14,779
	INFECTIONS)	
	Timespan=All years	
	Search language=English	
2	TS=(ACINETOBACTER)	38,321
	Timespan=All years	
	Search language=English	
3	TI=(SEASON*/OR SEASONAL PATTERN)	193,548
	Timespan=All years	
	Search language=English	
4	#2 OR#1	38,321
	Timespan=All years	
	Search language=English	
5	#4 AND #3	55
	Timespan=All years	
	Search language=English	

Appendix B. Excluded studies with reasons

Study identification	Title	DOI	Reason for exclusion
Adams D et al., 2011	Investigation and management of an <i>A. Baumannii</i> outbreak in ICU	10.12968/bjon.2011.20.3.140	Outbreak report
Al Masoudi et al., 2013	Incidence and prevalence of <i>Acinetobacter baumannii</i> in king fahd general hospital, Saudi Arabia	ISSN:1097-8135	Less than 12 months follow-up
Brahmi et al., 2007	Epidemiology and risk factors for colonization and infection by <i>Acinetobacter baumannii</i> in an ICU in Tunisia, where this pathogen is endemic	10.1007/s10156-007-0557-0	Outbreak report
Chu YW et al	Skin carriage of Acinetobacters in Hong Kong	jcm.asm.org/content/37/9/2962	Not reporting the incidence of <i>Acinetobacter</i> spp. infection or colonization.
Freeman et al., 2009	Emerging evidence for seasonality of gram-negative bacterial infections	10.1086/597506	Commentary article. Not a longitudinal observational study. Not reporting the incidence of <i>Acinetobacter</i> spp. infection or colonization.
Herruzo et al., 2004	Two consecutive outbreaks of <i>Acinetobacter baumannii</i> 1-a in a burn Intensive Care Unit for adults	10.1016/j.burns.2004.01.008	Outbreak report
Hurley et al., 2016	Worldwide variation in incidence of <i>Acinetobacter</i> associated ventilator associated pneumonia: a meta-regression.	10.1186/s12879-016-1921-4	Not a longitudinal observational study. Not reporting the incidence of <i>Acinetobacter</i> spp. infection or colonization.
Mc Donald et al., 1998	Outbreak of <i>Acinetobacter</i> spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners.	10.1097/00006454-199808000- 00011	Outbreak report
Munoz-Price et al., 2008	Acinetobacter infection	10.1056/NEJMra070741	Literature review. Not a longitudinal observational study
Ramphal et al	<i>Acinetobacter calcoaceticus</i> variety <i>anitratus</i> : An increasing nosocomial problem.	10.1097/00000441-197901000- 00007	Could not retrieve full text
Schloesser et al. 1990	An Outbreak of <i>Acinetobacter calcoaceticus</i> Infection in a Neonatal Care Unit	10.1007/BF01643394	Outbreak report
Schwab et al., 2009	Summer season in the incidence of Gram-negative bacteria in ICUs	NA	Conference abstract for which the published paper has been included in the review.
Seifert et al., 1995	Nosocomial bacteremia due to <i>Acinetobacter baumannii</i> : Clinical features, epidemiology, and predictors of mortality	10.1097/00005792-199511000- 00004	Not reporting the incidence of <i>Acinetobacter</i> spp. infection or colonization.

2				
3				
4 5 5	Smith et al., 1979	Seasonal incidence of Acinetobacter infection	10.1093/infdis/140.2.275	Commentary. Not a longitudinal observational study.
, }	Wisplinghoff et al., 2000	Nosocomial Bloodstream Infections Caused by Acinetobacter Species in United States Hospitals: Clinical Features, Molecular Epidemiology, and Antimicrobial Susceptibility	10.1086/314040	Not reporting the incidence of <i>Acinetobacter</i> spp. infection or colonization.
0 1	Yallew et al.,	Point prevalence of hospital-acquired infections in two teaching hospitals of Amhara region in Ethiopia	10.2147/DHPS.S107344	Not longitudinal, less than 12 months follow-up
2 3	Zhang et al.,		cma.j.issn.0254-6450.2014.11.022	Not in English language
4 5				
6				
7 8				
9				
.0 .1				
2				
3				
23 24 25				
23 24 25 26				
23 24 25 26 27 28				
3 4 5 6 7 8 9				
3 4 5 6 7 8 9 9 0 1				
23 24 25 26 27 28 29 30 31 32		Epidemiological investigation on respiratory diseases in 1300 children, in Jinan, Shandong		
3 4 5 6 7 8 9 0 1 2 3 4				
3 4 5 6 6 7 8 9 0 1 1 2 3 4 5				
23 24 25 26 27 28 29 30 31 32 33 34 35 36				
3 4 5 6 6 7 8 9 0 1 2 3 4 5 6 6 7 8 9 0 1 2 3 4 4 5 5 6 6 7 8 9 0 1 1 2 3 4 4 5 7 8 9 0 0 1 1 2 5 8 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
23 24 25 26 27 28 29 20 31 32 33 44 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 36 37 38 39 30 30 31 32 33 34 35 36 36 37 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30				
23 24 25 26 27 28 29 30 31 32 33 44 35 36 37 38 39 40 41				
23 24 25 26 27 28 29 30 31 32 33 44 35 36 37 38 39 40 41 42				
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43				4

Appendix C. Critical appraisal of the quality of reviewed studies

Critical appraisal of study quality was based on the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. We utilized 11 of 14 criteria that were applicable in the context of this review as shown in Table C1. All criteria were applied in accordance with the guidelines developed by the authors of the tool with the additional considerations and/or modifications shown in Table C1. A summary of our quality appraisal of reviewed studies is presented in Table C2. To obtain a crude sense of overall study quality, we calculated the percentage of fully fulfilled criteria for each study (i.e. percentage of "yes" responses to applicable criteria).

 Table C1. Criteria in the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies and modifications in the current review

No.	Criterion	Modification or additional consideration
Q1.	Was the research question or objective in this paper clearly stated?	Assessed in relation to seasonality objective. Set to "Yes" only in studies that had a specific primary objective of assessing seasonal variation in the incidence of <i>Acinetobacter</i> infection.
Q2.	Was the study population clearly specified and defined?	Set to "Yes" in studies that included a clear statement or description of their target population irrespective of whether a summary presentation of patient demographics was presented or not. An example of a clear statement for the target population would be "Inpatients with a clinical culture positive for <i>A. baumannii</i> collected after day 3 of hospital admission."
Q3.	Was the participation rate of eligible persons at least 50%?	Set to "No" only when there were legitimate reasons to expect that the study methodology or implementation would lead to exclusion of a substantial proportion of eligible patients in the target population.
Q4.	Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	• • • • • • • • • • • • • • • • • • •

Q5.	Was a sample size justification, power description, or variance	Set to "Yes" if any of the following applied: (a) clear justification of sample size in
	and effect estimates provided?	accordance with the tool guidelines, or (b) large effective sample size of at least 10 cases per month of follow up, or (c) reported low p-values for differences or trends (e.g. in Edward's test for seasonality).
Q6.	For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	The exposure of interest was taken to be calendar season or any other discrete time period. The outcome of interest was the occurrence of <i>Acinetobacter</i> infection. All studies examined the association between exposure and outcome longitudinally. Therefore, Criterion Q6 was not applicable in this review.
Q7.	Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	Eligibility criteria required at least 12 months of follow-up, so that at least a single comparison between seasons could be performed. Obviously, studies with repetition over several years would be more likely to detect true seasonality. Criterion Q7 was set to "Yes" for studies having at least 2 years of follow-up (i.e. at least two repetitions).
Q8.	For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	The exposure of interest was taken to be calendar season or any other discrete time period. Therefore, Criterion Q8 was not applicable in this review.
Q9.	Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	- P
Q10.	Was the exposure(s) assessed more than once over time?	Set to "No" for studies having less than 1 year of follow-up and for those that performed 2-group comparisons of incidence data (e.g. summer v. winter). It was set to "Yes" when the data were examined longitudinally for at least 2 years of follow-up and a formal assessment of seasonality was included.
Q11.	Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	4
Q12.	Were the outcome assessors blinded to the exposure status of participants?	Q12 was not applicable in this review.
Q13.	Was loss to follow-up after baseline 20% or less?	None of the studies reported loss to follow-up. Criterion Q13 was set to "No" only when there were legitimate reasons to expect that the study methodology or implementation would lead to substantial losses to follow-up.
Q14.	Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?	This criterion was set to "Yes" for studies that utilised regression models to adjust for variation in climate parameters and/or other risk factors.

Table C2. Summary of the critical appraisal of the quality of reviewed studies

Study	Q1	Q2	Q3	Q4	Q5	Q7	Q9	Q10	Q11	Q13	Q14	"Y"	"Υ"
												count	percent (%)
Caldeira et al, 2015	Y	Y	Y	Y	N	Y	Y	N	Y	Y	Y	9	82
Christie et al, 1995	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	N	9	82
da Silveira et al, 2018	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	10	91
Davis et al, 2014	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	9	82
Eber et al, 2011	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	100
Fillaux et al, 2006	N	Y	Y	Y	Y	Y	Y	N	Y	Y	N	8	73
Fortaleza et al, 2014	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	10	91
Fukuta et al, 2012	Y	Y	Y	Y	N	Y	Y	N	Y	Y	N	8	73
Gales et al, 2001	Y	Y	Y	Y	N	Y	Y	N	Y	Y	N	8	73
Gerner-Smidt, 1987	N	Υ <	Y	Y	N	Y	Y	Y	Y	Y	N	8	73
Iqbal Hossain et al, 1998	N	CD	CD	Y	Y	N	Y	N	Y	Y	N	5	45
Kim et al, 2018	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	N	9	82
Kolonitsiou et al, 2017	Y	N	Y	Y	N	Y	Y	Y	Y	Y	N	8	73
Lastoria et al, 2014	N	Y	Y	Y	N	Y	N	N	Y	Y	N	6	55
McDonald et al, 1999	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	N	9	82
Morfin-Otero et al, 2013	N	Y	Y	Y	Y	Y	Y	N	Y	Y	N	8	73
Papadimitriou-Olivgeris et al, 2017	N	Y	Y	Y	N	Y	Y	Y	Y	Y	N	8	73
Perencevich et al, 2008	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	100
Porter et al, 2013	N	Y	Y	Y	N	Y	Y	N	Y	Y	N	7	64
Retailliau et al, 1979	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	10	91
Rodrigues et al, 2019	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	10	91
Schwab et al, 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	100
Seifert et al, 1994	N	Y	Y	Y	Y	N	Y	N	Y	Y	N	7	64
Siau et al, 1996	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	10	91
Smego, 1985	N	Y	Y	Y	N	Y	Y	Y	Y	Y	N	8	73

Y, Yes; N, No; CD, cannot determine.

4	
5	
6	
7	
8	
9	
	0
1	1
1	2
	3
1	
1	
1	6 7 8
1	7
1	9
2	0
2	1
2	2
	3
	4
2	
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
	4
3	5
3	6 7
3	7
3	8
3	9
4	0
4	1
	2
4	
4	4
4	-5
4	6
4	7

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #		
TITLE					
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1		
ABSTRACT					
Structured summary	ructured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.				
INTRODUCTION					
Rationale	3	Describe the rationale for the review in the context of what is already known.	4		
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4 (lines 72-76)		
METHODS					
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5 (lines 81-83)		
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5, 6 (lines 97-118)		
Information sources	ormation sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.				
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5 (lines 85-94) + Appendix A		
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5, 6 (lines 97-118)		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6,7 (lines 120-131 + Appendices B, 0		
Data items	ata items11List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.				
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7, 8 (lines 141-15		
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7 (lines 134-145)		

45

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7 (lines 134-145)		
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8 (lines 147-157)		
Additional analyses	itional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.				
RESULTS					
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8 (lines 162-163), - Figure 1 + Appendix B		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8,9 (lines 164-182) + Table I		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9,10 (lines 184- 196) + Appendix C		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	(a) Tables I and II, Figure 2.		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-11 + Figure 2 (descriptive analysis of data pooled across subgroups)		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	9, 10 + Appendix C Figure 2		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA		
DISCUSSION					
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	14 – 17		
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	18-19		
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19-20		

- 46 47

PRISMA 2009 Checklist

FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	20
	I	· · · · · · · · · · · · · · · · · · ·	
rom: Moher D, Liberat	i A, Tetzlaff J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statem For more information, visit: www.prisma-statement.org.	ent. PLoS Med 6(7): e10000
oi:10.1371/journal.pmec	11000097	For more information, visit: www.prisma-statement.org.	

Clinical Microbiology and Infection