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Abstract

Technologies such as Internet of Things allow small devices to offer web-based

services in an open and dynamic networking environments on a massive scale.

End users or service consumers face a hard decision over which service to choose

among the available ones, as security holds a key in the decision making pro-

cess. In this paper a base linguistic evaluation set is designed, based on which

all the other fuzzy term sets that used for describing security attributes are u-

niformed and integrated for calculating an overall security value of the services.

This work, to the best of our knowledge, is the first practical solution to offer

direct comparisons and rankings of network services based on multiple security

attributes such as confidentiality, availability, privacy and accountability. We

analysed four major cloud service platforms to illustrate the proposed approach.

Keywords: Network Service, Security measurement and evaluation,

Quantitative service security, Linguistic evaluation

1. Introduction

In the digital world, a service is defined as a software unit that provides cer-

tain functionalities. A web service is a service that is made remotely available
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to other entities through networks. By using standard communication protocols

and languages, web services provide necessary interfaces so that any system can5

invoke them remotely. The Service-Oriented Architecture (SOA) provides de-

signs and frameworks to offer services as self-contained units [1]. One can invoke

a web service, as long as the input satisfies the interface specification, and let the

output of the web service to be an input to another service if they need to work

together. The most commonly used communication protocol for exchanging in-10

formation between web services is the Simple Object Access Protocol (SOAP)

[2]. SOA platforms provide a foundation for modeling new applications, which

involves planning, searching for, connecting, and invoking web services.

One of the issues faced by a service consumer is to measure and choose a right

service from potentially a very large service pool. Services provided by different15

providers may offer the same functionality, but they could be very different

in terms of cost, quality, or security. Therefore the service consumer faces

the dilemma of picking up the most suitable services for his/her application,

especially in the era of Internet of Things (IoT) where small devices are made

available as service unit through an open and dynamic networking environment20

in massive scale. Among all the existing works that have been used to quantify

and compare web services, we found that most of them focus on the QoS only

and the key question of quantifying services based on their security properties

remains unanswered. Nonetheless, it is crucial to measure the services from

security perspective since one service developed with good faith in its security25

may not be necessarily good enough for another to use.

In this paper we propose a novel quantitative approach based on fuzzy terms.

In particular, we focus on security as it is a big challenge for utilising web ser-

vices, due to the lack of a common ground and evaluation criteria. It is to use

a linguist evaluation method to quantitatively measure services based on their30

security attributes such as confidentiality, availability, privacy and accountabil-

ity. These attributes are formulized into one base linguistic evaluation set and

calculated towards an overall security value. In this way the comparison of

different services’ security becomes possible.
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To the best of our knowledge, this work is the first practical approach to35

target the issue of evaluating web services based on multiple security attributes

at the same time. It provides the foundation for further research into this area

and has great potential to be extended to solve similar issues faced by other

information systems. The calculation is based on information that already exist,

e. g., descriptions in the Service Level Agreements (SLAs) [3], thus it is feasible40

and practical enough to make immediate impact.

The rest of the paper is organised as follows. The next section explains how

web service security is presented in current network and the challenges service

consumers are facing. section 3 introduces the linguistic evaluation foundation

and the triangular membership function. The next section explains our approach45

to formulize different linguistic term sets and calculate an overall security value

for web services based on multiple attributes. An example is given in section 5

to illustrate the solution and section 6 discusses related work. Finally the paper

concludes with an outline of future work in section 7.

2. Web Service Security50

2.1. Security wtih SLAs and WSDL

Web services are normally made available together with a Service Level A-

greements (SLA). A SLA is a formal guarantee that has to be accepted by

service consumers before the service being used. A SLA can specify the prop-

erties of a service across different levels. For example, on business level it can55

describe what kind of functionality the service is offering and how the users will

be charged (cost); on technical level it may describe the number of shutdowns

the service might experience each year (QoS).

Security can also be promised as part of the SLA. However its coverage is

rather poor to date due to the lack of well defined semantics. The SLAs tradi-60

tionally focus on the QoS metrics such as a bandwidth guarantee and backup

strategy. Even when the security being mentioned, in practice it tends to be

written in a natural language with fuzzy terms such as “High”, “Good”, etc.
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Therefore it is very difficult for the service consumer to really understand the

situation and compare the web services from the security aspect.65

Apart from SLA, a web service also describes its interfaces through a Web

Service Description Language (WSDL). A WSDL file specifies how to invoke

the service, i.e. the input parameters, in order to communicate with the service

and the expected output for each of the operations provided by the service. The

WSDL file can be generated automatically from the web service code. Based70

on WSDL specification files, a service consumer can design his/her applications

accordingly and use SOAP to call the operations listed in the WSDL files.

Although WSDL is mostly used to specify the functional aspects of a ser-

vice, it is possible to attach non-functional properties such as security to the

WSDL. WS-SecurityPolicy [4] is an extension of WSDL to secure SOAP mes-75

sages. It utilises standards like SAML [5], XML Signature [6], and XML En-

cryption [7] to achieve the goal of secure communications with web services.

WS-SecurityPolicy is different from the Secure Socket Layer (SSL) protocol

as the WS-SecurityPolicy only encrypts the content of a SOAP message while

SSL can encrypt the entire communication channel. Comparing to SSL, WS-80

SecurityPolicy is more flexible as it can choose which part of the SOAP message

to be encrypted by using which cryptographic algorithm. WS-SecurityPoliy is

attached to the WSDL by declaring it in the WSDL.

2.2. Challenges

Despite some efforts from SLA and WSDL, security issue remains a big85

challenge for web services. The dilemmas faced by a service consumer are in

three folds.

• Firstly, security is a broad concept that includes many aspects such as

confidentiality and privacy. One service may be stronger than another in

terms of confidentiality; while it is also possible that the very same service90

has weaker protection of privacy. It is a typical multi-criteria issue, which

service consumers are not always in the position to resolve due to the lack

of expertise.
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• Secondly, WS-SecurityPolicy was proposed to secure the SOAP messages.

It is well equipped for - but also limited to - the security of communication95

with web services. Security requirements at higher levels are hard to be ex-

pressed by using the WS-SecuirtyPolicy. In contrast, security descriptions

in SLAs are more open and inclusive but not always precise, especially

in natural language. The situation can get even more complicated when

more than one SLA language is involved.100

• Finally, although some security modelling and verification techniques al-

low the service consumer to specify certain security properties that the

service has to comply with before the service being used [8], in practice

the number of services that satisfy the security requirements could still be

very large. Therefore the service consumer still needs help to be able to105

make a sensible choice from a potentially very large pool of services.

In this paper, we try to solve the problem from the angle of linguistic eval-

uation, i. e., measuring the fuzzy linguistic terms used in the SLAs in a more

mathematical and scientific way. We use the most common security attributes

as example, so the method can be applied to existing services requiring little110

changes.

3. Linguistic Evaluation Foundation

3.1. Problem Description

In this section, we first explain how to mathematically describe the problem

of evaluating a SLA in terms of security. Before comparing two services, i. e.,115

their SLAs in our study, they must be formulated first. In order to facilitate the

issue, the following symbols are used to describe the problem. Here we try to

evaluate the security of web services with multiple attributes described in their

SLAs.

S = (S1, S2, ..., Sm) represents a set of alternative web services, wherem ≥ 2.120

C = (C1, C2, ..., Cn) represents a set of the security attributes, e. g., confi-

dentiality, availability, privacy, and accountability, where n ≥ 2.
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W = (w1, w2, ..., wn) represents a weight vector of the attributes, where wj

is the weight of attribute Cj , 0 ≤ wj ≤ 1 and
n
∑

j=1

wj = 1.

Ã = [ãij ]m×n is the decision matrix with linguistic attribute values, where ãij125

denotes the linguistic evaluation on alternative Si against attribute Cj , where

i = 1, ...,m, and j = 1, ..., n. Since attributes have different characteristics,

the linguistic evaluation sets used for describing them are not the same. For

example, we use terms from “low” to “high” to evaluate confidentiality and use

different set of terms from “weak” to “strong” to measure privacy. Therefore,130

in the linguistic decision matrix Ã = [ãij ]m×n, the evaluations on the services

against different security attributes may come from different linguistic sets, and

they are also of different granularities. Thus, the linguistic attribute values have

to be uniformed in order to make the comparisons possible. This is described

in section 4. To simplify the issue, in this paper we assume all the alternative135

services are described using the same SLA language. In practice the situation

may get further complicated when more than one language being used.

3.2. Concepts of Linguistic Evaluations

3.2.1. Value of Fuzzy Terms

In a complex or uncertain decision environment, fuzzy languages can be140

used to express decision makers’ subjective opinions or judgments more precise-

ly [9, 10]. Security is one of the subjects which people may interpret differently,

depending on their knowledge levels and experiences. For example, when de-

scribing the confidentiality level of a service, the terms like “low”, “fair” and

“high” can be used in the SLA and in practice, the service consumers are likely145

to accept these fuzzy terms even in business cases due to the lack of precise

understanding and definition of these attributes and terminology. It is fine

when there is only one single attribute to be considered, as the comparison is

straightforward, e. g., a service with the “high” confidentiality level is certainly

preferred over another service with the “low” confidentiality level. The problem150

arises when more than one security attribute being taken into account, which is

often the case in real world. This then becomes a multi-criteria decision making

6



issue and the fuzzy terms must be mapped to real numbers first in order to

allow a fast and accurate comparison. To measure the real level of a particular

term in a fuzzy language set, a triangular membership function is commonly155

used for the mapping [11]. Similar to our previous work in paper [12], we use

the following definition and equation to represent the membership function.

Definition 1. A linguistic term T̃ on a real number set is defined as a triangu-

lar fuzzy number denoted as (u, α, β), and its membership function µT̃ is defined

as:160

µT̃ (x) =



























x− α

u− α
, x ∈ [α, u],

x− β

u− β
, x ∈ [u, β],

0, otherwise,

(1)

where α < u < β, u is the model value, α and β stand for the lower and upper

values of linguistic term T̃ respectively. The triangular membership function is

shown in Figure 1. In our study, the values of u, α, and β are determined by

the size of the linguistic term set, which we will explain in the next sub-section.

3.2.2. Linguistic Term Set165

When alternative services are evaluated against the security attributes, the

linguistic term sets for the security attributes should be determined first. As

we already mentioned, different linguistic term sets are employed for describing

different attributes. In this study we assume the SLA uses predefined schema

and ontology to constrain the space of the term sets.170

Suppose TERMSET = (t0, t1, ..., tg) is a linguistic term set for evaluating

one attribute of the services. The TERMSET is defined as an ordered set, which

is composed of g+1 linguistic terms. For example, consider a set of five terms

TERMSET = (t0 = “none”, t1 = “poor”, t2 = “average”, t3 = “good”, t4 =

“excellent”), the membership functions of this term set is drawn in Figure 2. It175

assumes the five terms on real numbers are equally distributed over the range

from 0 to 1. Taking term “average” as an example, the values of its membership
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Figure 1: Triangular membership function.

function (u, α, β) are defined as (0.5, 0.25, 0.75). Given x = 0.5, apply these

values to Equation 1 to get µT̃ (x) = 1 on term “average”.

In addition, the following properties of the TERMSET are also assumed in180

the membership function study, similar to papers [13] and [14]:

• Firstly, the TERMSET is ordered:

ti ≥ tj , if i ≥ j

where symbol “≥” denotes “better or equal”.

• Secondly, there is a negation operator “Neg”:185

Neg(ti) = tj , if j = g − i

where g + 1 is the number of elements in the TERMSET, and the largest

term in TERMSET is tg.

• Thirdly, there is a “Max” operator and a “Min” operator respectively:

Max(ti, tj) = ti and Min(ti, tj) = tj , if ti ≥ tj190
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Figure 2: Membership function of TERMSET with five terms.

3.2.3. Base Linguistic Evaluation Set

As we mentioned earlier, in the linguistic decision matrix Ã = [ãij ]m×n

different linguistic term sets with various granularities are applied to different

security attributes to suit their characteristics. Therefore these linguistic term

sets are not comparable and have to be uniformed. In this study, a special195

term set of seven terms {“lowest”, “lower”, “low”, “fair”, “high”, “higher”,

“highest”} is adopted as a base linguistic evaluation set, to evaluate the security

level of the services. Different attribute values are uniformed into the base

evaluation set (we will explain the details in section 4). In order to facilitate

descriptions, TERMSETB = {termB
0 , term

B
1 , ..., term

B
g } is used to denote the200

base linguistic evaluation set.

With TERMSETB , the services’ security is distinguished more detailed and

meticulously. The most insecure services are classified as class “lowest”. If a

specific classification (e. g., with more elements) is needed, it can be determined

based on specific problems, which do not affect the viability of the proposed205

approach in the next section.
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4. Quantify and Rank the Web Services

4.1. Uniform different linguistic sets

In this subsection we explain how to uniform different linguistic sets with

various granularities into the base linguistic evaluation set TERMSETB .210

Suppose TERMSET j (g + 1 is the cardinality) is the linguistic evaluation

set corresponding to attribute Cj . For the linguistic evaluation value term
j
i

of service Si with term
j
i ∈ TERMSET j , i = 1, ...,m, and j = 1, ..., n, the

following function τ can be used to transform term
j
i into the fuzzy set over

TERMSETB [15]:215

τ : termj
i → F

j
i (TERMSETB) (2)

where F
j
i (TERMSETB) is the fuzzy set over TERMSETB , and,

τ(termj
i ) = {(termB

0 , γ
ij
0 ), (termB

1 , γ
ij
1 ), ...,

(termB
g , γ

ij
g )}

(3)

γ
ij
l is the shared maximum value of membership functions of term

j
i and

termB
l . In mathematics γij

l is expressed as:

γ
ij
l = Max

x
Min{µ(termj

i ), µl(term
B
l )}, l = 0, 1, ..., g (4)

where µ(termj
i ) and µl(term

B
l ) are the membership functions of term term

j
i

and termB
l respectively. x ∈ [0, 1] is a real number shared by term

j
i and termB

l220

in their triangular membership functions.

To explain the meaning of these equations, we use the same example in Fig-

ure 2 that has a term set of five values {“none”, “poor”, “average”, “good”,“excellent”}.

Assume a service (S2) has the attribute (C3) with value of “poor”, and the

base linguistic evaluation set has seven terms {“lowest”, “lower”, “low”, “fair”,225

“high”, “higher”, “highest”}. According to Equation 3, the uniformed result of

attribute C3 of service S2 is expressed as:
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Figure 3: Uniform the value “poor” in one term set to the base linguistic evaluation set.

τ(term3
2) = {(lowest, γ23

0 ), (lower, γ23
1 ), (low, γ23

2 ),

(fair, γ23
3 ), (high, γ23

4 ), (higher, γ23
5 ), (highest, γ23

6 )}

where the values of γ23
l (l = 0, ..., 6) can be calculated based on Equation 4, or

with the help of Figure 3. It is literally to find the highest crossover point of

the “poor” membership function, with other membership functions in the base230

linguistic evaluation set. In this example, the “poor” membership function gets

crossed with four values (“lowest”, “lower”, “low”, and “fair”) in the base set.

Therefore the final expression of τ(term3
2) is:

τ(term3
2) ={(lowest, 0.4), (lower, 0.8), (low, 0.8),

(fair, 0.4), (high, 0), (higher, 0), (highest, 0)}

It reflects the position of value “poor” in its original term set, i.e., since
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the service S2 has the attribute C3 with value “poor”, its uniformed result is235

mapped mainly into the lower part of the base linguistic evaluation set.

In this way, in the linguistic decision matrix Ã = [ãij ]m×n with multiple

granularities, the attribute values ãij of termj
i from different linguistic evalu-

ation sets, are all uniformed into the fuzzy set over TERMSETB denoted as

F
j
i (TERMSETB).240

4.2. Calculate the Overall Security Value of Web Service

Based on the above discussion, after the linguistic decision matrix Ã =

[ãij ]m×n is uniformed, the weighted sum method can be used to calculate the

overall security values of the alternative services:

Overalli =

n
∑

j=1

(F j
i (TERMSETB)× wj), i = 1, ...,m (5)

where, wj is the weight of attribute Cj and j = 1, ..., n . The weight vector of245

attributes can be given by decision makers based on experience or determined

by the AHP method [16].

For example, assume a service is described by four security attributes -

confidentiality (term1), availability (term2), privacy (term3), and accountability

(term4). Their values are uniformed into the base evaluation set respectively as250

the following:
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τ(term1) ={(lowest, 0.4), (lower, 0.8), (low, 0.8),

(fair, 0.4), (high, 0), (higher, 0), (highest, 0)}

τ(term2) ={(lowest, 1), (lower, 0.67), (low, 0.33),

(fair, 0), (high, 0), (higher, 0), (highest, 0)}

τ(term3) ={(lowest, 0), (lower, 0), (low, 0),

(fair, 0), (high, 0), (higher, 0.6), (highest, 1)}

τ(term4) ={(lowest, 0), (lower, 0), (low, 0.6),

(fair, 1), (high, 0.6), (higher, 0), (highest, 0)}

Assume the weight setW of these four attributes is defined asW = (0.1, 0.5, 0.3, 0.1)

by the service consumer. We calculate the Overall security value of the service

over the base evaluation set based on Equation 5. For example, on term “low-

est”, the overall value is:

0.4× 0.1 + 1× 0.5 + 0× 0.3 + 0× 0.1 = 0.54

Similarly we can get the Overall value over the base evaluation set as:

Overall = {(lowest, 0.54), (lower, 0.415), (low, 0.305),

(fair, 0.14), (high, 0.06), (higher, 0.18), (highest, 0.3)}

4.3. Rank the Services

As discussed above, the overall value Overalli of alternative service Si ob-

tained based on Equation 5 is still a fuzzy set of values over the base linguistic255

evaluation set TERMSETB . It can be represented as below:

Overalli = {(termB
0 , o

ij
0 ), (term

B
1 , o

ij
1 ), ...,

(termB
g , o

ij
g )}, i = 1, ...,m

(6)
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To compare the alternative services fast and easily, a single-point overall

security value di of service Si is needed. In this paper, we use the same method

employed by paper [15] and [12] to determine the value di.

di =

g
∑

k=0

koik

g
∑

k=0

oik

, i = 1, ...,m (7)

Continuing the same example from last subsection, the final single-point260

overall security value for the service is calculated as:

d =
0 + 0.415 + 0.61 + 0.42 + 0.24 + 0.9 + 1.8

0.54 + 0.415 + 0.305 + 0.14 + 0.06 + 0.18 + 0.3

= 2.26

In this way, all the alternative services can finally be ranked in descending

order based on their values of di.

5. ILLUSTRATION

In this section we demonstrate how to use the proposed method to evalu-265

ate alternative web services in real world scenario. We look into four major

cloud service providers and their security promises - Amazon Web Services [17],

Dropbox [18], Google Cloud Platform [19] and Microsoft Azure [20]. It is worth

noting that the security features we referred here are publicly available on their

websites. However these are not part of the legally bounded SLAs. Instead270

these features are used as selling points of the cloud services. In some ways,

it proves our point that security is not properly covered in the SLAs and the

situation has to be changed. Challenging the service providers in this front will

actually make the cloud services more transparent to service consumers and

improve their security.275

We analyse these four cloud services or platforms against four security re-

lated attributes, i.e., Confidentiality (C1), Availability (C2), Privacy (C3) and

14



Accountability (C4). This is not an exhaust security attribute list, but a rather

important and common one when it comes to measure the security of a cloud

service. It actually covers a wide range of security features. For example, confi-280

dentiality covers properties like encryption algorithms employed by the service

provider; availability evaluates its backup strategy as well as protection solu-

tion against DoS attacks; privacy indicates the strength of the service’s access

control mechanism and security compliance; accountability measures the facility

for post-forensics.285

For illustration purposes, we assume the four security attributes use the

following term sets in evaluation:

• Confidentiality: {“none”, “low”, “average”, “high”, “very high” }

• Availability: {“very poor”, “poor”, “fair”, “good”, “very good”}

• Privacy: {“very weak” , “weaker”, “weak”, “fair”, “strong”, “stronger”,290

“very strong”}

• Accountability: {“not accountable”, “poor”, “fair”, “good”}

In this paper we evaluate these cloud services simply based on the informa-

tion they provide and our expertise. Most attributes are mentioned in natural

language descriptions and we have to interpret them ourselves. Take the privacy295

issue as an example, the privacy principle by Google states “we work hard to

make sure any innovation is balanced with the appropriate level of privacy and

security for our users”, which reads not very clear and accountable to us; Ama-

zon committed to ‘adhere to the Safe Harbor Privacy Principles agreed upon

by the U.S., the European Union, and Switzerland”; Dropbox says they comply300

with the same Safe Harbor program but will also share information with “oth-

ers working for Dropbox - Dropbox uses certain trusted third parties to help us

provide, improve, protect, and promote our Service”; Microsoft also supports

the Safe Harbor program, as well as EU Model Clauses and ISO/IEC 27018.

Based on the information collected, Google is valued as “weaker” in privacy and305
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Table 1: Evaluation results of Four Major Cloud Services/Plaforms

Services
Attributes

Confidentiality Availability Privacy Accountability

Amazon high good strong good

Dropbox average fair fair poor

Google very high poor weaker good

Microsoft low very good very strong fair

Microsoft gets the “very strong” from us. Similarly, in terms of confidentiality,

Microsoft “offers a wide range of encryption capabilities up to AES-256” to store

data. The subtle wording of “up to” is enough to see Microsoft get lower confi-

dentiality value comparing to Amazon who allows users to choose AES-256, and

Google gets the highest evaluation by promising to apply AES-256 by default.310

It is also possible to measure a security attribute based on a quantitative value.

For example, the service availability is specifically mentioned in some SLAs in

real number, e. g., 99.98%.

In summary, we analysed the available security descriptions offered by these

cloud services. Their security attributes were collected and evaluated with315

results shown in Table 1. If we compare these services pairwise, it is obvi-

ous that Amazon is better equipped in terms of security than Dropbox, as

all its attributes are stronger. Apart from this, there is no clear winner as

they all have strengths and weaknesses, comparing to its peers. However by

apply our aforementioned method, we can get a single-point overall securi-320

ty value for each of the cloud services as Amazon = 4.65, Dropbox = 2.67,

Google = 3.27, Microsoft = 3.83. Thus, the ranking of these cloud services is

Amazon > Microsoft > Google > Drobox.

We want to stress that these results are subjective judgements and it will be

better if all the security attributes are clearly specified in the SLAs. The four325

attributes used here may seem rather abstract. This is because there is no agreed

ontology on security properties that could potentially appear in the SLAs, and
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the information we gathered is quite disparate. Nonetheless, in practice the

proposed method can also operate on more concrete security properties such as

encryption algorithms directly, as long as these security properties are described330

by all the alternative services using a finite term set, which satisfies the three

assumptions made in section 3.

6. Related work

We see three areas of related work: 1. expressing security attributes in SLAs,

2. ranking web services, and 3. multiple attribute decision making.335

6.1. Express Security in SLAs

As we already explained in section 2, SLAs are more flexible in terms of

defining complex security requirements. The problem with SLAs is the lack of a

common ground for the expression and interpretation of security. Crucially this

makes it very difficult to make the SLAs machine readable. Some works have340

been done in the past in order to express the security features of web services in

the SLAs and help the consumers to compare the web services in an automatic

way.

Paper [21] was among the first works trying to address the quantifiable se-

curity issue in SLAs. Basically it tries to express and measure the security of a345

service by associating it with performance related metrics. For example, a se-

curity requirement of “restore backed up data” is measured by the quantifiable

metric of “data restored 95% of time within response time”. The way the secu-

rity has been expressed is rather subjective, depending on the scenario of each

enterprise, where the research was targeting. Therefore the process cannot be350

implemented automatically. Instead, it requires a close study of the enterprises

configurations by security specialists.

Paper [22] uses SecAg as another framework to express security metrics in

SLAs. SecAg extends the standard WS-Agreement to provide necessary seman-

tics for specifying security properties. For example, with the extensions it can355
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specify which service level objective (SLO) is auditable and assign an access

control list to the SLO. Based on the extensions, the author also proposed a

risk-based approach for service matchmaking. Each SLO is assigned a weight w

representing the risk that the SLO is not fulfilled. By calculating the weighted

Euclidean distance of each SLA to the security requirements using techniques360

such as a text similarity analyser, the SLA that is closest to the security re-

quirements will be selected as the risk is at the minimum.

For cloud consumers, before employing any cloud service they have to make

sure that the service is compliant with their security requirements. In addition,

business users seek for assurance that the cloud service they use complies with365

both industrial standards and government legislations. Unfortunately, SLAs are

often not rich enough or directly linked with such legislations or standards, in

order to support the compliance check. Paper [23] solves the issue by proposing

a compliance vocabulary to embed security controls in the SLAs of cloud ser-

vices. This vocabulary is associated with the security controls from governance370

documents. Therefore the SLAs become more transparent to the consumers in

terms of the level of security being offered.

6.2. Rank Web Services

After expressing the security in the SLAs, it is still necessary to compare

and rank the web services based on the consumer’s requirements. In the past375

the focus was on raking web services based on just their QoS metrics and trying

to find the best matched one.

Paper [24] proposed a Web Service Relevancy Function (WsRF) to measure

the relevancy ranking of a particular web service based on the user’s preferences

(weights) and the QoS metrics such as Response Time, Throughput, Availability380

and Cost. It uses a simple mathematical matrix to normalize the QoS metrics

of web services. The method is suitable for QoS metrics that have real numbers.

However as security is often described by fuzzy terms, the application of this

method is limited. Similarly, paper [25] uses a Singular Value Decomposition

(SVD) based technique, and a user assisted weighting system to find higher385
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order correlations among web services. This enables the selection of web services

without an exact match of required QoS attributes.

Paper [26] ranks web services under multi-criteria matching. It targets at

accurate web service selection and assigns a dominance score to each advertised

web service. Security unfortunately was not the research focus. Other similar390

works include paper [27], which defines a business-focused ontology to enable

semantic matchmaking in open cloud markets.

Paper [28] proposed the concept of Quality of Security Service. It treats

the security as part of QoS requirements. The author argues that security

requirements such as the strength of a cryptographic algorithm, the length of a395

cryptographic key, security functions, confidence of policy-enforcement and the

robustness of an authentication mechanism would all be specified and measured

as the quality of security services. However no explicit example was given in

the paper.

Paper [29] proposed an AHP (Analytic Hierarchy Process) based framework400

for web service quality evaluation. It uses a quality meta-model to format SLAs

and assigns weights to different quality characteristics based on their impor-

tance. The web services are measured by a satisfaction function, which covers

both measurable and non-measurable characteristics. For example, the prop-

erty of confidentiality is measured by combining the encryption algorithm, key405

length and key protection used. The web service that has the greatest value in

the satisfaction function will be chosen. Although not all the security attributes

can be calculated in this way, we can benefit a lot from this idea.

Paper [30] proposes a method for finding semantically equal SLA elements

from differing SLAs by utilizing several machine learning algorithms. The user410

requirements are specified in a SLA template, which are compared to different

SLAs offered by various service providers. The offered SLAs can be specified in

different languages. This method tries to map the elements in different SLAs

and generates an equivalence probability score. The cloud service that has the

highest score will be selected for the users automatically.415
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6.3. Multiple Attribute Decision Making (MADM)

The problem this paper tries to address is a MADM issue, where alternatives

are always evaluated against some non-commensurate and conflicting attributes.

How to rank the alternatives or select the best one has attracted many researches

in different disciplines.420

Security information on alternatives can be described in different types of

formats. Paper [31] transforms evaluation information of alternatives into fuzzy

preference relations. Also utility values of alternatives are converted into fuzzy

preference relations for ranking as well. After the information from multiple

sources are uniformed, fuzzy majority method with fuzzy quantifier are used to425

aggregate these uniformed evaluation information into a social one and to select

the best acceptable alternative. With fuzzy preference relation being the basic

format of the decision makers’ opinions, [32] propose an approach to calculating

the group consensus based on the concept of fuzzy majority. The linguistic

quantifiers are employed to represent a fuzzy majority. The group consensus430

is “soft” based on the fuzzy linguistic quantifiers, which is determined by the

decision makers’ subjective attitudes.

The security descriptions, in truth, can be expressed in different formats due

to different culture and education backgrounds. Therefore uniformity and ag-

gregation process are needed to determine the optimal alternative. Integration435

is an important task in decision support process, as well as it does in group

decision making process with preference information on alternatives. By us-

ing the nonparametric Wilcoxon statistical test, paper [33] presents a detailed

experimental study on comparing five most widely used distance functions for

measuring the consensus in group decision-making problems.440

Our work is very much inspired by paper [15], where the author proposed

a support system model for reaching the consensus in group decision-making

problems where experts express their opinions in linguistic preference relations

with multiple granularities. By means of designing the basic linguistic term set,

multigranular linguistic information is uniformed.445

Finally, with fuzzy preference relation and multiplicative preference relations
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as the formats of information sources respectively, [34] proposed two methods for

determine the weights of sources, i.e. goal programming model and quadratic

programming model. Then two iterative algorithms are developed for group

decision making to reach the consensus, respectively.450

In summary, to the best of knowledge, there is still no effective solution yet

to measure web services from the security perspective. Our solution considers

the current situation and uses the widely available SLAs as the foundation

to evaluate and compare different web services. We tackle this issue based

on a MADM approach and make the web services are directly comparable by455

analyzing the fuzzy terms used to describe their security in the SLAs. It has

been proved to be both practical and effective.

7. Conclusions and Future Work

Internet becomes a world full of web services and IoT devices with net-

working capability. Through advanced network techniques such as Information-460

Centric Networking, service consumers are offered wide range of choices for their

application. However, measuring and choosing the most appropriate services is

not easy, when security of the services is considered in the process.

In this paper we proposed a novel approach to measure and quantify the

security attributes of web services based on existing descriptions in the SLAs. In465

order to extend our work, we need to define a SLA schema that can describe the

security attributes in a more consistent and precise way. So that an automatic

process can be used to facilitate the process of measuring and comparing large

number of web services or networked devices in the era of IoT.

To further prove our ideas we also plan to carry out a real experiment with470

experts on real decision support tasks. In particular, this evaluation could pro-

vide insights into the following two aspects: 1) The process of defining linguistic

term sets as well as the process of rating a service with respect to the these terms

sets. One experiment with respect to this is to evaluate if, for a fixed set of ser-

vices or SaaS offerings, multiple domain experts come up with term sets and475
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ratings that are roughly equivalent. 2) For various sets of services, the quality

of the ranking could be evaluated by domain experts as well. It is to see if the

result of the ranking meets the expectations from domain experts and whether

there are any surprises that they would not have expected and, thus, giving

them new insights. Both aspects require a significant effort as an empirical480

evaluation is required.
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