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Abstract—Typically, structural damage tomography (SDT) approaches aim to reconstruct a parameter field containing

damage information from distributed data by solving an iterative inverse problem. Often, there are two shortcomings

in adopting such an approach: (a) the high computational expense and (b) temporal information is inadequately used. In

principle, both issues may be alleviated by approaching SDT as a state-estimation problem – i.e. treating the reconstruction

problem as a temporally-evolving stochastic process. In this letter, we study the feasibility of state estimates in SDT. For

this, we use an extended Kalman filter (EKF) for electrical resistance tomography (ERT) imaging of progressive cracking

on an experimentally-tested reinforced concrete beam with an applied surface area sensing skin. In the investigation, we

quantitatively analyze the effect of including multiple temporal data sets and corroborate EKF-ERT reconstructions with

standard and advanced ERT approaches. It is shown that increasing the amount of temporal data significantly improves

the quality of EKF-ERT reconstructions, which compare favorably with the standard and advanced ERT approaches. In

addition, for the data sets used herein, the EKF-ERT regime computed seven reconstructions approximately 50-100 times

faster than the standard and stacked approaches required to reconstruct one image, respectively.

Index Terms—Extended Kalman filter, inverse problems, state estimation, structural health monitoring

I. INTRODUCTION

Structural damage tomography (SDT) is an emerging field where

users aim to image structural damage processes. Specifically, in SDT

users aim to estimate a particular two- or three-dimensional parameter

field using distributed measurements – usually by solving an inverse

problem [1]. In turn, by interpreting the reconstructions, an assessment

of structural damage can be made. Possibly owing to improvements

in computational resources and advances in inverse methodologies,

SDT has become the source of much research interest in recent

years [2], [3]. In general, SDT involves estimating (reconstructing)

a parameter field θ from noisy distributed data d. In doing this, one

generally aims to minimize a functional of the form

Ψ = | |d − U(θ)| |2 + R(θ) (1)

where | | · | | is the L2 norm, U is a numerical model for the

problem’s physics, and R is a regularization term which stabilizes

the inversion processes since many SDT problems are non-linear

and ill-posed [2]. Some contemporary examples of SDT include

digital image correlation [4], electrical resistance tomography (ERT)

[5], and acoustic tomography [6]. To improve the resolution of

SDT images, the use of iterative methods is commonly used.

Unfortunately, the computational expense of iterative SDT problems

can be staggering and scales exponentially with the degrees of

freedom in the inverse problem. Moreover, many SDT inversion

regimes often do not incorporate sufficient information available

in previous data sets. This issue has been addressed in previous

ERT-relevant works; e.g. researchers have reduced ill-conditioning

by incorporating information on known conductivity changes into
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the underlying inverse problem [7] and improved reconstructions by

including information related to the mechanical deformation [8].

In this work, we may approach the SDT problem as a state estimation

problem. In state estimation problems, we treat the reconstruction of θ

as a temporally-varying stochastic process. The use of state estimation

is commonly adopted in reconstruction problems where the dynamic

evolution of the process of interest is extremely fast – often making

conventional inverse regimes infeasible for online monitoring [9].

Some examples of the former include process tomography [10] and

motion tracking [11]. While there are numerous regimes available

for state estimation [12], [13], the extended Kalman filter (EKF) has

proven to be robust and broadly applicable over the years [14]–[17],

and is adopted herein for SDT imaging.

In this letter, we aim to determine the feasibility of using state

estimation for SDT in order to (a) decrease computational costs

and (b) incorporate information available from prior data sets into

SDT reconstructions. Moreover, while other work in the area of

structural health monitoring has used Kalman filters to identify

damage/structural parameters (e.g. [18]–[20]), the novelty of this

work lies in the use of state estimation for 2D spatial damage

detection. For this, we begin by applying an EKF to a modern SDT

modality: ERT∗. Following, we test the EKF–ERT regime using

experimental data where we aim to image progressive cracking on a

reinforced concrete beam. Lastly, concluding remarks are provided.

II. EKF–ERT REGIME FOR DAMAGE TOMOGRAPHY

Using ERT, we aim to determine the electrical conductivity

distributionσ from boundary voltage measurements V and knowledge

of an electric current stimulation pattern. Usually, the solution to the

ERT inverse problem is obtained by minimizing a functional similar

∗While other modalities are certainly applicable candidates for crack

imaging with an EKF, ERT is primarily selected because it is well suited for

reconstructing cracks of varying complexity (a common target in SDT) [5].



to the one in Eq. 1. However, in the EKF-based state estimation

approach to ERT, we use a problem description similar to that in

[21] where the temporal evolution at step k + 1 of σk+1 is given by

σk+1 = Fkσk + wk (2)

where Fk = I is the random-walk state transition matrix, I is the

identity matrix, andwk is the white process noise with a corresponding

covariance matrix Γw that controls the rate of change of σ. Γw is also

known as the process matrix and is computed using Γw = s2I where

s is the standard deviation of the process transition. It is important

to remark that Γw encodes prior information into the evolution of

σ. Therefore, selecting a statistically accurate description of Γw is

expected to improve damage estimates. For the purposes of this work,

s = 0.1 provided a reasonably robust first-order approximation.

Having broadly defined the process’s temporal evolution, we may

now write down the observation model at step k

Vk = Uk (σk ) + vk (3)

where Uk is the ERT finite element forward model adopting

the complete electrode model described in [22], [23], Vk is the

measurement at step k, and vk is the Gaussian measurement noise

with corresponding covariance matrix Γv . We may now linearize the

model in Eq. 3 about the current predicted state σk |k−1 by writing

Vk = Uk (σk |k−1) + Jk (σk − σk |k−1) + vk (4)

where Jk =
∂Uk

∂σk

|σk |k−1
is the Jacobian, also referred to as the sensitivity

matrix. Following, we define the pseudo measurement yk as

yk = Vk − Uk (σk |k−1) + Jkσk |k−1≈ Jkσk + vk (5)

where the right hand side is the linearized form the observation

equation used herein. Bearing in mind that we have assumed the

noise is Gaussian and the observation equation is linear: the Kalman

filter estimate of σk on the basis of all measurements taken until

state k, the EKF-ERT estimate minimizes the following functional

Ψk = | |σk−σk |k−1 | |2C−1
k |k−1

+ | |yk−Jkσk | |2(Γv
k
)−1+α | |R(σk−σexp)| |2 (6)

where Ck |k−1 is a covariance matrix updated at each step, σexp is

the expected value of σ, R is a regularization matrix, and α is

a regularization parameter. The inclusion of regularization in this

regime is owed to the ill-posed nature of ERT. Inasmuch, α and

R encode prior information in the solution and may be determined

statistically or empirically [24], [25]. Here, R=I and α=6.9×10−4 was

selected using a standard L-curve analysis using 8 points. Moreover,

σexp=argmin{| |Vundamaged −U(σhomogeneous)| |2} was computed using the

best homogeneous estimate of σ with data from the undamaged state.

Now, by defining the augmented pseudo-measurement matrix

ȳk = Blkdiag[yk ,
√
αRσexp]. and the measurement matrix Hk =

Blkdiag[Jk ,
√
αR] we may concisely rewrite the cost functional as

Ψk = | |σk − σk |k−1 | |2C−1
k |k−1

+ | | ȳk − Hkσk | |2(Γk )−1 (7)

where Γk is a block diagonal matrix written as Γk = Blkdiag[Γv
k
, I]T.

Now, for clarity, we summarize the EKF-ERT regime as follows:

• Initialize – σ0|0 = σexp, C0|0 = Γ
w

• Measurement updating – i.e. filtering

- Compute the Kalman gain, Gk = Ck |k−1H
T
k
(HkCk |k−1H

T
k
+ Γk )−1

- Update the covariance estimate Ck |k = (I −GkHk )Ck |k−1

- Update the state estimate σk |k = σk |k−1 +Gk (ȳk − Hkσk |k−1).
• Prediction – i.e. moving the estimate and its covariance in time

- Compute Ck+1|k = FkCk |kF
T
k
+ Γ

w

- Compute σk+1|k = Fkσk |k
• Project σk+1 < 0 to 10−5 to ensure real U solutions.

From an implementation standpoint, it is important to recall that the

ERT-EKF regime presented here is not iterative in the “traditional”

optimization sense. In other words, one set of data is not iterated on

until some convergence criteria is met. Rather, each state estimate

(conductivity estimate) is computed once for a given data set, and

then updated upon evaluation of the next data set.

III. STATE ESTIMATION OF PROGRESSIVE DAMAGE

ON A CONCRETE BEAM

A. Experimental program and numerical preliminaries

In this section we aim to determine the feasibility of treating

damage tomography as a state estimation problem. To investigate

this query, we apply the EKF described in the previous section to

ERT imaging of a lightly reinforced concrete beam with an applied

silver sensing skin. In the testing regime, thoroughly detailed in [1],

[5], a 15.2×50.8×15.2 cm beam was loaded in three-point bending

with a maximum load of approximately 120 kN. On the beam’s

surface, a sensing skin with 28 copper boundary electrodes was

utilized in the ERT experimental program. In the program, a total

of 54 1.0 mA DC injections were applied between electrodes i and

j, i = 6,21 and j = 1, ...,28, i , j. For each injection, 1458 adjacent

electrode potentials were measured. Moreover, a total of 8 usable

ERT measurements were taken at the following loading increments:

0, 2.2, 18.2, 29.8, 39.1, 71.2, and 85 kN (two reference measurement

were logged at 0 kN). We would like to mention that the sensing skin,

manually painted on the broad surface of the beam, had an electrical

conductivity over two orders of magnitude larger than the contacted

concrete. As such, we assume herein that the current leakage into the

beam is negligible. For reference, an image of the cracked sensing

skin (39.1 kN) with numbered electrodes is shown in Fig. 1a.

In solving the state estimation problem, we used a finite element

discretization with Ne = 9680 quadratic triangular elements and

Nn = 5047 nodes for solving the forward problem. For computing

the Jacobians, a semi-analytical method outlined in [26] was used. The

EKF was implemented using a MATLAB script using the parameters

defined in the previous section and a noise covariance matrix (Γv )

computed using diagonal matrix entries corresponding to 2% standard

deviation of the measurement magnitudes. In the following subsection,

the EKF-ERT damage tomography regime will be evaluated.

B. EKF-ERT imaging

In this subsection, we test the EKF-ERT regime’s feasibility to

image progressive cracks denoted Damage Level 1 – Damage Level 6.

To do this, we execute the regime using between k = 3 and k = 7 data

sets – this does not include reference data set 1, which is used herein

for computing σexp. In the first suite of reconstructions, where k = 3,

we aim to reconstruct the highest levels of damage, corresponding to

Damage Levels 4 – 6. In the final suite of reconstruction, where k = 7
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Fig. 1. Images showing (a) photo of a cracked sensing skin with numbered electrodes atop a reinforced concrete beam subjected to three-point
bending and (b) state estimations of progressive damage using an EKF applied to ERT. The values of k ranging from 3 to 7 (top to bottom) denote
the total number of data sets used. The levels of damage range from zero in the reference case (far left) to the maximum level (far right).

we use all data sets including reference data set 2. The reconstructions

for k = 3 to k = 7 are provided in Fig. 1b.

The images shown in Fig. 1 support the feasibility of treating

damage tomography as a state estimation problem as the majority

of the cracks were captured via localized reductions in σ. As an

obvious extension, the results also generally support the use of the

EKF-ERT regime for imaging progressive damage – at least when

there is sufficient temporal data. Indeed, the EKF reconstructions

satisfactorially localized the cracks for Damage Levels 3 - 6 and

k > 3. However, when there was insufficient prior data (k < 3) the

damage was poorly localized. This results from the fact that the

change in state between the reference state and Damage Level 4

was sufficiently large to violate the linearization assumption in Eq.

5. On the other hand, for the case where k = 4, the added data set

corresponding to Damage Level 3 was adequate to visually localize

the prominent left-hand crack present at Damage Level 4.

There are two additional, yet subtle, realizations that can be made

from Fig. 1b, namely (i) the crack present at Damage Level 2 is

invisible in all cases and (ii) the added data between cases ranging

from k = 5 to k = 7 did not significantly increase reconstruction

quality. Regarding comment (i), the crack present in in Damage Level

2 is likely invisible in ERT images due to (a) the indistinguishability

of data with respect to the reference data , i.e. | |Vk=2 − Vk=1 | | < ε
where ε is a measurement precision term and (b) the selection of the

process matrix Γw , while sufficient for higher levels of damage, likely

utilized an excessively large process standard deviation s. In practice,

one may address (a) and (b) by, e.g., optimizing electrode locations

to increase sensitivity or optimizing Γw . Regarding comment (ii), the

blurriness in images for Damage Levels 4 – 6 largely results from

the massive change in state from Damage Level 3 to Damage Level

4. The large change has a residual effect on the successive images

that cannot be adequately compensated based on such low temporal

resolution data. In future work, this problem may be alleviated by

increasing the measuring frequency, improving the prior model using

a more physically realistic regularization approach (i.e. using Total

Variation or L1 regularizers for R) coupled with iterative optimization,

or using proxy data sets between large data state changes (executing

the same data set several times so the EKF regime can “catch up”).

As a whole, we would like to mention that the EKF-ERT

crack reconstructions using only a few data sets likely have lower

resolution than those in previous works utilizing stacking, model-

error estimation, and advanced regularization methods. To investigate

this, we compare EKF reconstructions to (a) an estimate obtained

using a positively constrained standard iterative approach equipped

with a TV regularizer and (b) a stacked approach. For the stacked

approach (details in [1]), we use a smoothness prior in computing the

(non-cracked) background conductivity σ1 and TV for the change

in conductivity (∆σ) yielding the final estimate σ2 = σ1 + ∆σ.

In order to quantitatively and equitably corroborate the results

from all approaches, we first normalize the reconstructions and

compare them to the true crack geometries extracted from the

Damage Level 4 photograph by generating a binary image using

a simple thresholding technique and interpolating the assumed

binary distribution (0 for a crack, 1 for the background) onto

the inversion grid. To normalize the EKF and the standard TV

approaches, we use the ratio of the reconstructed conductivity to

the homogeneous estimate, i.e. σN =
σ

σexp
. For normalizing the

stacked reconstruction, and because we compute the background

conductivity, we use σN =
σ2

σ1
. Note that, in all cases, we have

0 < σN ≤ 1.0 because cracking can only decrease conductivity,

therefore σ ≤ σexp and σ2 ≤ σ1. As the quantitative metric to

corroborate the EKF/TV/stacked reconstructions, we calculate the

root mean square error (RMSE) between σN and the true crack

geometries. The reconstructions, true crack geometries (red lines),

and RMSEs are shown in Fig. 2.

The results in Fig. 2 show that the use of the EKF approach

when k < 7 resulted in higher error (RMSE) reconstructions than the

standard TV/stacked approaches. Interestingly, however, for the case

where k = 7, the EKF regime had a lower RMSE than the standard

TV approach which may indicate that when many data sets are used,

EKF may out perform standard methods. Nonetheless, unlike the

former reconstruction algorithms which may take hours to days to

execute, the EKF regimes took between 5 seconds (k = 3) and 12

seconds (k = 7) to run. On the other hand, to compute the one

image for Damage Level 4, the standard TV approach required 554

seconds and the stacked approach required 1207 seconds to reach the

stopping criteria (
| |Ψk−Ψk−1 | |

| |Ψk | | ≤ 10−2). In the authors’ experience, these

minimization times are typical for iterative SDT problems of this

size. In this case, the speed up to compute all seven images with the

EKF compared to computing one with the comparative approaches

is approximately a factor of 50 – 100. Moreover, the EKF regimes

have favorable resolution to ERT difference regimes [3]; in contrast

though, EKF retains its quantitative nature since the observation

equation is not linearized at a fixed location – in particuliar, we



Fig. 2. Reconstructions of cracks at Damage Level 4 reporting
normalized values with true crack locations plotted atop in red and the
corresponding RMSEs shown on the left hand side.

refer to the fact that the sensitivity matrix is not linearized about

some stationary point and the covariance matrix is non-stationary. In

general, however, there is always a tradeoff between algorithm speed

and spatial resolution in tomography. Nonetheless, when multiple

data sets are available over a range of time, we have shown that this

information can be used to quantitatively to rapidly image structural

damage using state estimation.

IV. CONCLUDING REMARKS

In this work, we aimed to determine the feasibility of treating

structural damage tomography as a state estimation problem. To

investigate this, we applied an extended Kalman filter regime to

electrical resistance tomography imaging of progressive cracking

on an experimentally-tested reinforced concrete beam. Our results

supported the viability of state estimation for damage tomography.

By leveraging temporal data and treating the damage tomography

problem as a stochastic process, it was shown that quantitative images

of damage are possible with a speedup factor of approximately 50

– 100 relative to a standard TV-regularized approach and a stacked

approach. It was noted, however, that the speed up was at the sacrifice

of some spatial resolution.
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