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TOA based Indoor Localization and Tracking with
Inaccurate Floor Plan Map via MRMSC-PHD Filter

Heng Zhang, Soon Yim Tan, Member, IEEE and Chee Kiat Seow, Senior Member, IEEE

Abstract—This paper proposes a novel indoor localization
scheme to jointly track a mobile device (MD) and update an
inaccurate floor plan map using the time-of-arrival measured
at multiple reference devices (RDs). By modeling the floor plan
map as a collection of map features, the map and MD position
can be jointly estimated via a multi-RD single-cluster probability
hypothesis density (MSC-PHD) filter. Conventional MSC-PHD
filters assume that each map feature generates at most one
measurement for each RD. If single reflections of the detected
signal are considered as measurements generated by map fea-
tures, then higher-order reflections, which also carry information
on the MD and map features, must be treated as clutter. The
proposed scheme incorporates multiple reflections by treating
them as virtual single reflections reflected from inaccurate map
features and traces them to the corresponding virtual RDs
(VRDs), referred to as a multi-reflection-incorporating MSC-
PHD (MRMSC-PHD) filter. The complexity of using multiple
reflection paths arises from the inaccuracy of the VRD location
due to inaccuracy in the map features. Numerical results show
that these multiple reflection paths can be modeled statistically
as a Gaussian distribution. A computationally tractable imple-
mentation combining a new greedy partitioning scheme and a
particle-Gaussian mixture filter is presented. A novel mapping
error metric is then proposed to evaluate the estimated map?s
accuracy for plane surfaces. Simulation and experimental results
show that our proposed MRMSC-PHD filter outperforms existing
MSC-PHD filters by up to 95% in terms of average localization
and by up to 90% in terms of mapping accuracy.

Index Terms—Localization, tracking, time-of-arrival, multi-
reflections, multi-RD single-cluster probability hypothesis density
filter, mapping error.

I. INTRODUCTION

INDOOR localization and tracking algorithms for wireless
devices have been widely studied. The frameworks of these

algorithms are based on measurements such as received signal
strength (RSS) and time-of-arrival (TOA) [1]–[3]. RSS is easy
to measure using wireless devices, but struggles to achieve
high-ranging accuracy due to severe multipath overlapping
in indoor environments [1]. Fingerprinting, which utilizes
position-dependent fingerprints to localize and track a mobile
device (MD), requires an offline fingerprint collection step
to build a database [4]. TOA can provide highly accurate
path length information, but requires time synchronization
between the reference device (RD) and the MD. To resolve
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the synchronization issue, a two-way ranging method can be
used, as shown in [5].

To overcome multipath fading, conventional algorithms try
to identify and either mitigate or discard multipath compo-
nents [6], [7]. Recently, algorithms have been developed to
utilize multipath components instead of mitigating or discard-
ing them to assist in localizing and tracking MDs, such as map-
aided localization algorithms. Such methods utilize an accurate
floor plan map to treat multipaths as virtual line-of-sight (LOS)
paths traced to corresponding virtual RDs (VRDs) to localize
and track an MD [8]–[12]. However, in most indoor cases,
an accurate floor plan is unavailable, which necessitates joint
estimation of the MD and the map. If the map is modeled as a
collection of map features, such as lines, corners, and points,
it can be jointly estimated with the MD location. In indoor
environments, diffractions from point scatterers and corners
are generally weaker than multiple reflections from planar
reflectors such as walls, floors, and ceilings [13]. Therefore,
this paper treats planar reflectors as the only type of map
feature; all of the measurements generated by point scatterers
and corners are considered clutter.

The main issue in indoor localization and tracking using
multipath components is the alleviation of measurement origin
uncertainty, which is an association process that matches
measurements with estimated path lengths according to prior
information about the MD and map features [14]. Two types of
algorithms can be used to address this issue. One type is based
on a data association (DA) framework; such algorithms include
the joint probabilistic data association filter (JPDAF) [14]–
[17] and the multiple hypothesis tracking filter (MHTF) [18]–
[21]. In [17], a tracking scheme is proposed by modeling
both LOS and reflections and using JPDAF to associate
measurements with their corresponding path origins. In [20],
a tracking and mapping algorithm is proposed that models
LOS, reflections, and point scattering paths and uses MHTF
to associate measurements with their path origins. The results
of these methods are sensitive to DA uncertainty [22]. The
other type is based on a random finite set (RFS) Bayesian
framework; such algorithms include the Rao-Blackwellized
probability hypothesis density (RB-PHD) filter [23], [24] and
single cluster PHD (SC-PHD) filter [25]–[28]. These methods
involve recursively propagating the PHD of map features (the
first-order statistics of the RFS-modeled map features) and
full distribution of the MD [29]. Compared with DA-based
algorithms, the RFS-based framework has better accuracy and
stability because these algorithms incorporate DA uncertainty
and an unknown number of map features [23], [30], [31]. In
addition, the RB-PHD filter assumes that the prior and poste-
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rior distributions of map features are both Poisson processes,
whereas the SC-PHD filter only makes this assumption for
the prior distribution [26]. The SC-PHD filter models the MD
and map features as a doubly stochastic point process, where
the state of the map features is conditional on the state of
the MD [26], [28]. The original SC-PHD filter was proposed
in [26], where only backscattering paths were considered, and
they were modeled as a Poisson point process. In [27], an
SC-PHD filter is proposed in which both the LOS path and
single reflection paths are modeled as a Poisson point process.
In [25], an SC-PHD filter is proposed that models the LOS
path as a Bernoulli point process and single reflection paths
as a Poisson point process.

To the best of our knowledge, all SC-PHD filters assume
that each map feature generates at most one measurement.
Thus, if single reflections are considered effective measure-
ments, then higher-order reflections can only be considered
clutter. However, higher-order reflections carry information on
the MD and map features that could improve the accuracy of
localization and mapping. In an indoor multipath environment,
double and higher-order reflections are common [32]. If such
reflection paths can be modeled in the SC-PHD filter, both
mapping and localization accuracy will be improved. Inspired
by the multi-detection PHD filter proposed in [33], the multi-
ple reflection issue can be considered a virtual multi-detection
problem. However, to incorporate multiple reflections in the
SC-PHD filter, it is necessary to decouple the map features
involved in multiple reflections. The associations among map
features can be decoupled by considering each multiple re-
flection as a virtual single reflection generated by a single
map feature. Note that multi-detection in this paper differs
from extended object tracking. In the latter, the extended
object is modeled as a collection of point scatterers, and the
generated multiple measurements are mainly backscattering
and are spatially close to each other [34]. In this paper, the
map features are modeled as separate plane reflectors. Multi-
ple measurements per feature indicate multipath propagation
involving more than one object. In this case, the multiple
measurements are not necessarily spatially close to each other:
for example, the single and double reflections from the same
reflector may be far apart.

Furthermore, the multi-RD SC-PHD (MSC-PHD) filter is
computationally intractable because the number of partitions
of the measurements, and the associations of the measurements
in each partition, increase combinatorically [33]. In [35],
an iterated-corrector approximation method is proposed to
address this issue. The iterated-corrector approximation itera-
tively updates the PHD of the MD and the map features using
measurements from a single RD each time. The updated PHD
of the MD and map features from the previous RD provides
the predicted PHD for the next RD, and is updated again
using the measurements from the next RD. However, it has
been reported that the estimation results depend on the order
in which the RDs are processed [36]. An alternative way to
mitigate the computational load is to directly reduce the num-
ber of partitions and associations in each partition [33], [34],
[37]–[39]. In [37], a distance partition method is proposed for
extended target tracking. It groups closed measurements in the

same cell and then partitions the cells. In [33], an lmax partition
method is proposed for multi-detection tracking. It restricts
the number of elements in each measurement subset to be no
larger than the number of propagation paths l. In [34], a two-
step partition algorithm including a distance partition and an
lmax partition is proposed. By using a distance partition with
a self-defined multi-detection distance, measurements can be
initially partitioned. Then, by applying the lmax partition to the
partitioned measurement set, the number of resulting partitions
can be further reduced. In [38], [39], a greedy partition method
is proposed to reduce the number of partitions. It considers
only a certain number of partitions with the highest weight at
every step and discards the others. However, these methods
were proposed for tracking situations in which the MD is the
only source of uncertainties. In this paper, the uncertainties of
map features are also taken into account.

To the best of our knowledge, no study has provided a
definition of the error in estimated map features for non-point
scatterers, such as planes. The conventional Euclidean-based
metric, which is used to define the error in point scatterers [23],
[26], cannot be used to define the error in planes in ϕ-ρ
space for two reasons: the units of ϕ and ρ are different, and
the Euclidean distance between two planes in ϕ-ρ space is
dependent on the origin of the coordinates. And the distance
between the estimated and expected VRD is not appropriate to
be used to determine the error in the estimated map features, as
shown in Appendix B. Therefore, it is important to construct
an error metric to resolve these issues.

In short, this paper proposes a novel, first-of-its-kind map-
ping error metric for planar scatterers to evaluate the accuracy
of the estimated map features. In addition, a novel virtual
single reflection path model to handle multiple reflections
is proposed, and a multi-reflection-incorporating MSC-PHD
filter is formulated, which is referred to as an MRMSC-PHD
filter. The proposed MRMSC-PHD filter incorporates the LOS
path and single, double, triple, and higher-order reflection
paths. To reduce the complexity of implementing the MSC-
PHD filter, a new greedy measurement partition approach is
also designed to account for the uncertainties of both the MD
and map features.

The remainder of this paper is organized as follows. The
multipath propagation model is formulated in Section II. The
statistical model for the MD and map features, the proposed
MRMSC-PHD filter, and the proposed novel error metric of
the estimated map features are presented in Section III. Section
IV presents the experimental and simulation results, which
show that our proposed filter outperforms existing MSC-PHD
filters by significant margins in terms of average localization
and mapping accuracy. Conclusions are given in Section V.

II. MULTIPATH MODELING

As shown in Fig. 1, the experimental environment is a
typical office area with furniture and cubicles, where the
dotted line denotes the trajectory of the MD and the bold
lines represent walls, windows, and a large cabinet, which are
modeled as planar reflectors. Three RDs are placed at known
positions with coordinates ps = (xs, ys), where s = {1, . . . , S}
and S = 3 is the number of RDs.
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Fig. 2. Modeling of map features and multipath propagation: (a) Single
and double reflection paths and their corresponding VRD and VMD, (b)
Illustration of multipath propagation including LOS and multiple reflection
paths.

The position of the MD at time k is denoted as pk = (xk, yk).
Considering reflectors only, the map features can be expressed
as m = (ϕ, ρ). The definition of a planar reflector is based
on the Hessian normal form: x cos ϕ + y sin ϕ = ρ, where ϕ
denotes the angle between the planar reflector and the y-axis
and ρ represents the distance from the origin to the planar
reflector, as shown in Fig. 2(a).

In this paper, all of the higher-order reflection paths are
treated as virtual single reflection paths originating from MDk

to their corresponding RD or VRD by the following method-
ology. Fig. 2(a) shows the single and double reflection paths
and their corresponding VRD and virtual MD (VMD) [13].
Two map features arise from plane i and plane j at time
k: mi

k
= (ϕi

k
, ρi

k
) and mj

k
= (ϕ

j
k
, ρ

j
k
), respectively. V RDi

k,s

is the image position of RDs reflected from mi
k

at time
k, which is referred to as a first-order VRD with position
pi
k,s
= (xi

k,s
, yi

k,s
). pi

k,s
can be calculated using image theory

by reflecting RDs through mi
k

as

xik,s = −xs cos 2ϕik − ys sin 2ϕik + 2ρik cos ϕik
yik,s = −xs sin 2ϕik + ys cos 2ϕik + 2ρik sin ϕik

(1)

V RDi, j
k,s

is the image position of RDs reflected from (mi
k
,mj

k
)

at time k, which is referred to as a second-order VRD with
position pi, j

k,s
= (xi, j

k,s
, y

i, j
k,s
). pi, j

k,s
can be calculated using (1)

by reflecting V RDi
k,s

through mj
k
. Similarly, the third-order

VRD of RDs reflected from (mi
k
,mj

k
,ml

k
) at time k is denoted

as V RDi, j,l
k,s

with position pi, j,l
k,s
= (xi, j,l

k,s
, y

i, j,l
k,s
). pi, j,l

k,s
can be

calculated using (1) by reflecting V RDi, j
k,s

through ml
k
. In

general, the mth order VRD of RDs at time k reflected from
a vector of the map features (mi

k
,mj

k
,ml

k
, . . . ), for which

the number of elements in the vector is m, is denoted as
V RDi, j,l,...

k,s
with position pi, j,l,...

k,s
= (xi, j,l,...

k,s
, y

i, j,l,...
k,s

). pi, j,l,...
k,s

can be calculated using (1) by reflecting RDs through the
vector of the map features (mi

k
,mj

k
,ml

k
, . . . ) one at a time.

Note that the same map feature can appear more than once
in the vector of map features. Similarly, the VMD of MDk

reflected from mj
k

at time k can be denoted as MD j
k

with
position pj

k
= (x j

k
, y

j
k
), and can be calculated using image

theory as

x j
k
= −xk cos 2ϕ j

k
− yk sin 2ϕ j

k
+ 2ρj

k
cos ϕ j

k

y
j
k
= −xk sin 2ϕ j

k
+ yk cos 2ϕ j

k
+ 2ρj

k
sin ϕ j

k

(2)

Fig. 2(b) shows an example of multipath propagation in a
typical indoor environment consisting of an LOS path, a single
reflection path, a double reflection path, and a triple reflection
path. As shown, the LOS path is independent of the map
features and can be used to track the MD, which will help
in estimating the map features. All of the reflection paths can
be considered virtual single reflection paths originating from
MDk reflected from m1

k
to their corresponding RD or VRD.

For example, the double reflection path originating from MDk

reflected from (m1
k
,m2

k
) to RDs is considered a virtual single

reflection path originating from MDk reflected from m1
k

to
V RD2

k,s
, which is the first-order VRD of RDs reflected from

m2
k
.

In the remainder of this paper, for ease of presentation, the
superscript of VRD that represents the collection of reflected
map features is omitted. The collection of mth-order VRDs
is denoted as {V RDm,1

k,s
,V RDm,2

k,s
, . . . }, and its tth element is

denoted as V RDm,t
k,s

.

III. INDOOR TRACKING WITH MRMSC-PHD FILTER

In this section, we present the statistical model for the
MD and map features and the proposed MRMSC-PHD filter.
We show that the LOS-incorporating MSC-PHD (LMSC-
PHD) filter [25] is a special case of the proposed MRMSC-
PHD filter. A computationally tractable implementation of the
proposed MRMSC-PHD filter is then presented.

A. Statistical Model of MD and map features

In the two-dimensional (2-D) space, the state vector of the
MD can be expressed as xk = [pT

k
, vT

k
]T , where pk = [xk, yk]T
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and vk = [ Ûxk, Ûyk]T represent the position and velocity of the
MD at time k, respectively. Assuming a linear Gaussian model
of constant velocity, the dynamical model of the MD can be
expressed as

xk = Fxk−1 +Gnk−1,a

=

[
I2 ∆T · I2
02 I2

]
xk−1 +

[
∆T 2

2 · I2
∆T · I2

]
nk−1,a

(3)

where nk−1,a is the driving acceleration noise with zero mean
and covariance matrix σ2

aI2, and σa is the acceleration noise
in either direction. IN and 0N represent the N×N identity and
zero matrix, respectively. ∆T denotes the sampling interval.

Because the number of detected map features at time k,
denoted as |Mk |, is time-variant as the MD moves around,
the collection of detected map features can be modeled as an
RFS [29]. The ith map feature at time k is denoted as mi

k
=

[ϕi
k
, ρi

k
]T . Assuming that all of the map features are static, the

dynamical model of the map features can be expressed as

Mk = Mk−1 =

{
m1

k, . . . ,m
|Mk |

k

}
(4)

where Mk−1 represents the map features estimated at time k−1.
Given the RDs with position ps = (xs, ys) and MDk with

position pk = (xk, yk), the LOS TOA measured by RDs at
time k can be defined as

zlk,s = hl
s(pk, ps) + nlk,s =

√
(xk − xs)2 + (yk − ys)2 + nlk,s (5)

where nl
k,s

represents the Gaussian measurement noise of the
LOS path with zero mean and standard deviation of σl

z .
The measured TOA of the reflection paths can be calculated

as follows. The mth-order reflection paths generated by the j th

map feature mj
k

to V RDm−1,t
k,s

can be expressed as

zm,t
k,s
= hm,t

s (pk,mj
k
, pm−1,t

k,s
) + nmk,s = hl

s(p
j
k
, pm−1,t

k,s
) + nmk,s (6)

where nm
k,s

represents the Gaussian measurement noise of the
mth-order reflections with zero mean and standard deviation
of σm

z . pj
k
= (x j

k
, y

j
k
) denotes the VMD position obtained

by reflecting the MD through mj
k
, which can be calculated

according to image theory as in (2). pm−1,t
k,s

is the position of
V RDm−1,t

k,s
, which can be calculated using image theory as in

(1).
The number of measurements received at each RD depends

on the detected map features and the clutter, the latter of which
is time-variant. Therefore, the collection of measurements
should be modeled as an RFS:

Zk,s = D(xk) ∪ D(xk, Mk,s) ∪ Ck,s ∈ F (Z) (7)

where F (Z) denotes the collection of all of the finite subsets
of Z. D(xk) is the collection of measurements from the
LOS path whose elements are given in (5). D(xk, Mk,s) is
the collection of measurements from those reflections whose
elements are shown in (6). Ck,s is an RFS denoting the clutter
received by RDs , such as diffractions, which can be formulated
as a Poisson point process with intensity cs(z) = λscU(z),
where λsc is the clutter rate, which indicates the average
amount of clutter measured by RDs [30]. U(·) represents a

uniform density over the maximum detected distance. Then,
the joint measurement set obtained by all of the RDs at time
k can be expressed as Zk = Zk,1 ∪ · · · ∪ Zk,S .

The prediction and updating for the joint probability density
of the MD and map can thus be written as [26]

pk |k−1(xk, Mk |Z1:k−1) =

∬
fk |k−1(xk, Mk |xk−1, Mk−1)

× pk−1(xk−1, Mk−1 |Z1:k−1)dxk−1δMk−1

pk |k(xk, Mk |Z1:k)

=
pk |k−1(xk, Mk |Z1:k−1)Lk(Zk |xk, Mk)∬

pk |k−1(xk, Mk |Z1:k−1)Lk(Zk |xk, Mk)dxkδMk

where fk |k−1(xk, Mk |xk−1, Mk−1) and Lk(Zk |xk, Mk) are the
joint Markov transition density and measurement likelihood
at time k, respectively. pk−1(xk−1, Mk−1 |Z1:k−1) is the joint
posterior density of the MD and map at time k − 1. Note
that the integrals of the map features are set integrals, which
are computationally intractable [29].

B. Likelihood Model

As stated earlier, the measurements consist of the LOS path,
reflections, and clutter. For any nonempty measurement subset
W ∈ Zk , given the MD state xk and map feature mj

k
, the multi-

object likelihood function can be calculated as follows. If the
subset W represents the LOS measurements, the multi-object
likelihood function can be expressed as

Ll
W (xk) =

{
(1 − P̃l,s

d
)
∏

s≺W Pl,s
d

ll,szs , if Ws =
{
zs

}
0, otherwise.

(8)

where 1− P̃l,s
d
=

∏
s⊀W (1−Pl,s

d
). s ≺ W and s ⊀ W mean that

the W does and does not contain measurements from RDs ,
respectively. Pl,s

d
and ll,sz are abbreviations of Pl,s

d
(xk) and

ll,sz (xk), which represent the LOS detection probability and
the measurement likelihood function of RDs , respectively. Ws

denotes the collection of elements in W from RDs . According
to (5), the LOS measurement likelihood can be modeled as
N(z; hl

s(pk, ps), (σ
l
z)

2), where N(·; µ,Σ) represents a Gaussian
distribution with mean µ and covariance Σ.

If the subset W represents reflection measurements, the
multi-object likelihood function can be expressed as

Lr
W (m

j
k
|xk) = (1 − P̃r,s

d
)

×
∏
s≺W

(∑
θs

( ∏
θs (m,t)=0

(1 − Pm,s,t
d
)

∏
θs (m,t)>0

Pm,s,t
d

lm,s,tzθs (m, t )

)
(9)

where 1− P̃r,s
d
=

∏
s⊀W

∏
m

∏nm
k

t=1(1−Pm,s,t
d
), where nm

k
repre-

sents the number of mth-order reflection paths. θs represents
all of the possible associations between the reflection paths
from RDs and the elements in Ws . θs(m, t) = 0 indicates that
the path traced to V RDm−1,t

k,s
is not detected, while θs(m, t) > 0

indicates that the path traced to V RDm−1,t
k,s

is detected and is
associated with the element zθs (m,t) in Ws . Pm,s,t

d
and lm,s,tz are

abbreviations of Pm,s,t
d
(m|xk, pm−1,t

k,s
) and lm,s,tz (m|xk, pm−1,t

k,s
),

which represent the detection probability and measurement
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Fig. 3. Gaussian fit of a double reflection between MD and RD via two
map features with σϕ = 5◦ and σρ = 0.1 m: (a) Calculated VRD position
corresponding to 5000 realizations of m2, (b) Gaussian fit of noiseless double
reflections.

likelihood of the mth-order reflection path traced to V RDm−1,t
k,s

with position pm−1,t
k,s

. According to (5), the measurement like-
lihood of a single reflection conditional on a given map feature
mj

k
can be modeled as N(z; hl

s(p
j
k
, ps), (σ

1
z )

2). However, the
modeling of higher-order reflections is more complex because
it involves uncertainties regarding the VRD position, as shown
in (6).

In this paper, we assume that the map features mk are
Gaussian-distributed random variables. Further, we assume
that hl

s(p
j
k
, pm−1,t

k,s
) also follows a Gaussian distribution for ease

of implementation, and we use a numerical method to find its
mean and standard deviation. Fig. 3 gives an example of the
use of a Gaussian distribution to fit the likelihood of double
reflections. As shown in Fig. 3(a), there are two map features
with mean positions of m̄1

k
= (π/2, 2) and m̄2

k
= (0, 2) and

the same standard deviation σϕ = 5◦ and σρ = 0.1m. The
calculated VRDs corresponding to 5000 realizations of m1

k
are

also shown. The noiseless path length of double reflections
for each generated VRD can be calculated and fitted using
a Gaussian distribution as shown in Fig. 3(b). The mean and
standard deviation of the Gaussian distribution can be denoted
as µm

k,s
= hl

s(p2
k
, p̄m−1,1

k,s
) and σm

k,s
, respectively, where m = 2

and p̄m−1,1
k,s

means the VRD position calculated using m̄1
k
.

The σm
k,s

should be estimated numerically. As can be seen,
the noiseless double reflections fit quite well. The likelihood
functions of the higher-order reflections can be estimated
similarly. Note that σm

k,s
must be numerically estimated for

each particle, each reflection path, and each time k because
it depends on the relative positions of the MD and VRD.
After estimating the standard deviation σm

k,s
, lm,s,tz can be

approximated using N(z; µm
k,s
, (σm

k,s
)2 + (σm

z )
2).

If the subset W represents clutter, the multi-object likelihood
function can be expressed as

cW =

{
cs(zs), if W = {zs}
0, otherwise.

(10)

cs(z) indicates the intensity of clutter as defined in (7).

C. Assumptions

Before we present the derived MRMSC-PHD filter, we first
summarize the assumptions made in the conventional MSC-
PHD filter [28], [40]: (1) The map features are modeled as

a Poisson point process whose state is conditional on the
MD position, which is also a stochastic process; (2) There
is no LOS path; (3) Each map feature generates at most
one measurement, which is a single reflection in the indoor
scenario; (4) Measurements generated by the map features
are conditionally independent of each other given the MD
position; and (5) The clutter measurement is modeled as a
Poisson process and is independent of measurements gener-
ated by map features. For the indoor MRMSC-PHD filter,
assumptions (1), (4), and (5) are kept, while assumption (2) is
removed so that the LOS path is either detected or blocked.
More importantly, assumption (3) is relaxed such that each
map feature can generate more than one measurement through
multiple reflections.

D. Proposed MRMSC-PHD Filter

Based on the assumption of a static map, the joint prediction
of the MD and map features can be expressed as [25]

vk |k−1(xk,m) =
∫

fk |k−1(xk |xk−1)pk−1(xk−1 |Z1:k−1)

× vk−1(m|xk−1)dxk−1

(11)

where fk |k−1(xk |xk−1) and pk−1(xk−1 |Z1:k−1) represent the
marginal Markov transition density at time k and the posterior
distribution of the MD at time k−1, respectively. vk−1(m|xk−1)
represents the conditional posterior PHD of map features at
time k − 1.

The joint updating of the MRMSC-PHD filter can be derived
as

vk(xk,m) =
∑
P@Zk

ωP
pk |k−1(xk |Z1:k−1)LP(xk)

pk |k−1 [LP]
vk(m|xk)

vk(m|xk) =
(
1 − P̃r

d +
∑
W ∈P

(1 −ΩW )
Lr
W

ΓW

)
vk |k−1(m|xk)

(12)

where

ΓW =cW + vk |k−1[Lr
W |xk], ωP =

pk |k−1
[
LP

]∑
Q@Zk

pk |k−1
[
LQ

]
LP(xk) =

(
1 − P̃l

d
+

∑
W ∈P(Ll

W/ΓW )
) ∏

W ∈P ΓW

expvk |k−1[P̃
r
d
|xk ]

ΩW =
Ll
W/ΓW

1 − P̃l
d
+

∑
W ∈P

(
Ll
W/ΓW

)
pk |k−1(xk |Z1:k−1) and vk(m|xk) in (12) denote the predicted
marginal distribution of the MD and the updated conditional
PHD of the map features at time k, respectively. ωP and
LP(xk) in (12) represent the weight and the multi-RD multi-
object measurement likelihood of partition P, respectively.
ΩW in (12) represents the coefficient of the LOS path. When
updating map features, ΩW is subtracted, because the LOS
path is independent of map features. Note that the term
ΩW distinguishes the proposed updating formula from the
formula in [33]. Ll

W , Lr
W , cW are likelihood functions defined

in (8), (9), (10), respectively. 1 − P̃l
d
=

∏
s(1 − Pl,s

d
) and

1−P̃r
d
=

∏
s

∏
m

∏nm
k

t=1(1−Pm,s,t
d
). P @ Zk represents the whole
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Fig. 4. Data association between measurements Zk,s and theoretical path
length Z◦

k,s
.

partition of the measurement set Zk . The detailed derivation
of (12) is shown in Appendix A.

When Pm,s,t
d

= 0 for all double and higher reflections, which
means that there are only single reflections, the MRMSC-PHD
filter simplifies to the LMSC-PHD filter proposed in [25]. The
reflections’ related terms P̃r

d
and Lr

W are reduced to

P̃r
d = 1−

∏
s

(1−P1,s
d
), Lr

W =
∏
s⊀W

(1−P1,s
d
)
∏
s≺W

P1,s
d

l1,s
zs

(13)

The expressions of the other terms remain the same, and the
resulting formulas denote the explicit form of the LMSC-PHD
filter. If it is further assumed that Pl,s

d
= 0 in the LMSC-PHD

filter, which means that there is no LOS path, then the filter
simplifies to the conventional MSC-PHD filter [26].

E. Implementation of MRMSC-PHD Filter

The proposed MRMSC-PHD filter is implemented using a
particle filter to model the MD and a Gaussian-mixture (GM)
filter to characterize the map features. The predictive method
can be found in [25]. Assume that the predicted densities of
the MD and PHD of the map features at time k are

pk |k−1(x|Z1:k−1) =

Nk |k−1∑
ı=1

ω
(ı)
k |k−1δ(x − x(ı)

k
)

vk |k−1(m|x(ı)k ) =
J
(ı)
k |k−1∑
=1

η
( ,ı)

k |k−1N(m; m̄( ,ı)
k |k−1,P

( ,ı)

k |k−1)

(14)

where δ(·) is the Dirac function. ω(ı)
k |k−1 and η

( ,ı)

k |k−1 are the
corresponding weights of the particle and GM components,
respectively. Nk |k−1 and J(ı)

k |k−1 are the number of particles and
number of GM components of the ıth particle, respectively.

1) Greedy Partition Based on the OSPA Metric: According
to (12), when updating the MD and map features, all possible
partitions of the measurements should be considered. To avoid
the combinatorial increase of the computation load, a greedy
partition method based on the optimal subpattern assignment
(OSPA) metric is presented. The OSPA metric is proposed
in [41] and is used to define the difference between the two
sets. For the two sets X and Y with |X | <= |Y |, the OSPA

distance d̄(c)p (X,Y ) between X and Y with some c > 0 and
1 ≤ p < ∞ is defined as

d̄(c)p (X,Y ) =
(

1
|Y |

(
min
π∈Π|Y |

|X |∑
i=1

d(c)
(
xi, yπ(i)

)p
+cp

(
|X |−|Y |

) ))1/p

(15)
where d(c)(x, y) = min (c, d(x, y)) denotes an arbitrary distance
between x and y cut off at c. Πk represents the set of
permutations of {1, 2, . . . , k} for any k ∈ N.

For each particle x(ı)
k

at time k, a set of noiseless path lengths
Z◦
k,s

including the LOS path and reflections to RDs can be
calculated based on the estimated map M̂k−1. Then, for each
particle x(ı)

k
, we can obtain a set of the closest measurements

Ẑk,s and the corresponding cost function C(ı)s = d̄(c)1 (Z
◦
k,s
, Zk,s)

by associating the measurement set Zk,s with Z◦
k,s

, as shown
in Fig. 4. As can be seen, the path associated with ∅ indicates
that the corresponding path is not detected. If the measurement
is not associated with any path, it is considered clutter. After
estimating Ẑk,s for each RD, the measurements generated by
the LOS path and each map feature can be concatenated. Then,
the partition based on the current particle and corresponding
cost function C(ı) =

∑
s C(ı)s can be constructed. After calcu-

lating the cost C(ı) of all of the particles, the NP
max partitions

with minimum C(ı) are selected as possible partitions.
2) Implementation of Update: After performing the greedy

partition, the MD and map features based on each partition
can be updated as follows:

vk(m|x(ı)k ) = vmd
k (m|x

(ı)
k
) +

∑
W ∈P

vdk (m,W |x
(ı)
k
) (16)

where vmd
k

and vd
k

represent the mis-detected and detected
parts of the map features at time k, respectively, which can be
expressed as

vmd
k (m|x

(ı)
k
) =

J
(ı)
k−1∑
=1
(1 − P̃r

d)η
( ,ı)
k−1N(m; m̄( ,ı)

k−1,P
( ,ı)
k−1)

vdk (m,W |x
(ı)
k
) =

J
(ı)
k−1∑
=1

η
( ,ı)
k
N(m; m̄( ,ı)

k
,P( ,ı)

k
)

(17)

The weight of each updated map feature using subset W can
be expressed as

η
( ,ı)
k
= (1 −Ω(ı)W )η

( ,ı)
k−1 q( ,ı)W /Γ

(ı)
W (18)

where

Ω
(ı)
W =

Ll
W/Γ

(ı)
W

1 − P̃l
d
+

∑
W ∈P(Ll

W/Γ
(ı)
W )

, Γ
(ı)
W = cW +

∑


η
( ,ı)
k−1φ

( ,ı)
W

φ
( ,ı)
W = (1 − P̃r,s

d
)
∏
s≺W

(∑
θs

( ∏
θs (m,t)=0

(1 − Pm,s,t
d
)

×
∏

θs (m,t)>0
Pm,s,t
d

q( ,ı)W

))
q( ,ı)W = N(zW , yW ,HWP( ,ı)

k |k−1HT
W + RW ) (19)
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zW =
⊕
z∈W

z, yW =
⊕

θs (m,t)>0
hm,t
s (xık, m̄

( ,ı)
k−1, p

m−1,t
k,s
)

HW =
⊕

θs (m,t)>0

∂hm,t
s (xık,m

j
k
, pm−1,t

k,s
)

∂mj
k

�����
m j

k
=m̄( , ı)

k−1

RW is a diagonal covariance matrix with diagonal elements
equal to (σ1

z )
2 for single reflections and (σm)2 + (σm

z )
2 for

higher-order reflections.
⊕

means vertical vectorial concate-
nation. The Gaussian components in (17) are

m̄( ,ı)
k |k
= m̄( ,ı)

k |k−1 +Kk

[
zW − yW

]
Kk = P( ,ı)

k |k−1HT
W (HWP( ,ı)

k |k−1HT
W + RW )

−1

P( ,ı)
k |k
=

[
I −KkHW

]
P( ,ı)
k |k−1

(20)

Then LP(xk), ωP and ω
(ı)
k |k

can be calculated as

L(ı)
P
=

(
1 − P̃l

d
+

∑
W ∈P(Ll

W/Γ
(ı)
W )

)
expP̃r

d

∑
j η
( , ı)
k |k−1

∏
W ∈P

Γ
(ı)
W

ωP =

∑
ı L(ı)
P
ω
(ı)
k |k−1∑

Q@Zk

∑
ı L(ı)
Q
ω
(ı)
k |k−1

, ω
(ı)
k |k
=

∑
P ωPL(ı)

P
ω
(ı)
k |k−1∑

ı L(ı)
P
ω
(ı)
k |k−1

(21)

Finally, the state of the MD is estimated using the weighted
average, and the corresponding posterior PHD of the map
features can be estimated using the weighted average of the
trajectory-conditioned PHD, which can be expressed as

x̂k =

∑
ı ω
(ı)
k |k

x(ı)
k∑

i ω
(ı)
k |k

, vk |k(m|xk) =

∑
ı ω
(ı)
k |k

vk |k(m|x(ı)k )∑
ı ω
(ı)
k |k

(22)

Then, the expected map features are estimated as the local
maxima of the posterior PHD vk |k(m|xk) with weight greater
than a threshold, which is 0.5 in this paper [30]. Note that
the number of GM terms grows exponentially during the
recursion, so pruning should be performed after each update
to retain the most NGM

max GM components of each particle [30].

F. Identifiability
In [20], the identifiability of the joint MD and multipath pa-

rameter estimation with both TOA and angle-of-arrival (AOA)
measurements are analyzed by studying the Cramer-Rao lower
bound (CRLB) for the estimated parameters. Ref. [42] also
discusses the identifiability of a network localization and
mapping, but one based only on TOA measurements. By
using at least three LOS paths, the position of an MD can
be unambiguously localized. Likewise, if at least three single
reflection paths are reflected from the same map feature, the
feature can be unambiguously estimated [42]. If each map fea-
ture satisfies this condition and the correct data association is
known, then the whole map can be constructed unambiguously.
Then, with the unambiguously estimated map and the correct
data association known, the MD can be localized using three
paths, which can be either the LOS or reflections. Although
the correct data association is usually unknown, it can still
be estimated by utilizing the prior position information of the
MD. In the simulation, after the MD and map features are
unambiguously initialized, the MD will remain tracked by at
least three paths (either LOS or reflection paths).

True map feature
Estimated map feature

𝑎"

𝑎#
∆𝜑 𝐴#

𝐴"

𝜄"

𝜄#

（b）

𝜄

𝐴

𝑎"

𝑎#∆𝜑

（a）
𝜄(

Fig. 5. Proposed error metric of the estimated map feature: (a) A case in
which the estimated map feature does not cross the true map feature and (b)
a case in which the estimated map feature crosses the true map feature.

G. Complexity Analysis

Suppose that the number of particles is Np , the maximum
number of GM components of each particle is NGM

max , the
number of maximum partitions is NP

max , the number of mth-
order reflection paths is nm where m is the order of reflec-
tion, and the number of RDs is S. Then, the complexity
of the predictive calculations using the proposed MRMSC-
PHD filter is O(NpNGM

max ), the complexity of the proposed
greedy partition algorithm is O(NpS(1 +

∑
m nm)), and the

complexity of the update calculations the proposed MRMSC-
PHD filter is O(NpNP

maxNGM
max (1 + m)). Therefore, the total

complexity of the proposed filter can be considered to be
O(NpNP

maxNGM
max (1 + m)), which is linear with the number of

reflections.

H. Error Metric

After estimating the MD and map features, it is important to
evaluate the performance of the proposed MRMSC-PHD filter.
For the MD position pk at time k, the localization error can be
calculated as |pk−p̂k |, where p̂k denotes the estimated position
of the MD and | · | represents the 2-norm. For the collection
of map features Mk at time k, the mapping error is defined
using the OSPA metric d̄(c)1 (Mk, M̂k) as shown in (15), where
M̂k is the collection of estimated map features. However,
to calculate the error metric of the estimated map features
d(c)1 (m, m̂), it should be defined as in (15). For an outdoor
radar-based scenario, where map features are treated as points,
the error metric d(c)1 (m, m̂) can be defined using Euclidean
distance [23], [26]. However, for an indoor environment, where
map features are treated as planar reflectors, using Euclidean
distance to define the error in ϕ−ρ space results in two issues.
First, ϕ and ρ involve different units. Second, the Euclidean
distance is dependent on the choice of origin.

Therefore, we propose a new error metric d(c)1 (m, m̂) that
provides the average distance between an estimated planar map
feature and the true planar map feature, as shown in Fig. 5.
Suppose that the distances of two perpendicular lines from the
two end points of the true map feature to the estimated map
feature are a1 and a2, and the resulting enclosed area for case
(a) is A and that for case (b) is A1 + A2; the error metric can
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then be defined as

d(c)1 (m, m̂) =

{
A
ι ,
A1+A2
ι1+ι2

,
=

{
a1+a2

2 cos∆ϕ, case (a)
a1+%21a2
2(1+%21)

cos∆ϕ, case (b)
(23)

where ι is the length of the true map feature for case (a). ι1 and
ι2 are the lengths of two segments of the true map feature split
by its point of intersection with the estimated map feature for
case (b). %21 is the ratio between ι2 and ι1, which is denoted
as ι2/ι1. ∆ϕ is the intersection angle between the estimated
map feature and the true map feature. As shown in (23), the
proposed error metric is independent of the origin position and
the length of the reflector. In addition, it resolves the issue of
different units for ϕ and ρ. In other words, the proposed error
metric only depends on the relative position and intersection
angle between the estimated map feature and the true map
feature. The proposed error metric takes into account both the
displacement and the orientational error. The derivation of the
error metric is shown in Appendix B.

IV. RESULTS

This section compares the performance of the proposed
MRMSC-PHD filter and several indoor tracking and mapping
algorithms based on RFS theory, including the LMSC-PHD
filter proposed in [25] and the multi-hypothesis SC-PHD filter
(MH-SC-PHD filter) proposed in [27]. As shown in Fig. 1,
the experimental environment was a half-enclosed area in the
INFINITUS lab at the School of Electrical and Electronic
Engineering, Nanyang Technological University (NTU), with
dimensions of 14.5 m×5.7 m. Three RDs were placed at
known positions with coordinates (3, 3), (3, 6.7), and (8.9, 6.7).
The trajectory of the MD consisted of 49 points spaced
by 20 cm, starting from the upper right corner. The MD
movement model and the TOA measurement model shown
in Section II were used for all of the filters. The detection
probability of the LOS and reflections was set as 0.9 [25].
The ceiling, floor, and pillar shown in Fig. 1 were used to
generate the clutter measurement, and the clutter rate was
set as 0.1. The number of particles used to model the MD
was 200 and the maximum number of GM components for
each particle was set at NGM

max = 12. For the MRMSC-
PHD filter and the LMSC-PHD filter, the greedy partition
approach proposed in Section III-E1 was implemented, with
the cut-off distance c = 1 m and maximum number of
partitions NP

max = 5. For the MRMSC-PHD filters, we
considered two cases: first, the double-reflection-incorporating
MSC-PHD (DRMSC-PHD) filter, which incorporates the LOS
path and single and double reflection paths; and second,
the triple-reflection-incorporating MSC-PHD (TRMSC-PHD)
filter, which incorporates the LOS path and single, double,
and triple reflection paths. To allow for fair comparison with
the MH-SC-PHD filter, the number of hypotheses retained at
each step was 200, and each hypothesis could generate 5 new
hypotheses at the next step.

A. Simulation Results

The performance of the proposed filters under different
measurement noises σl

z and σm
z was examined, where σl

z and
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Fig. 6. Comparison of tracking and mapping performance with different
measurement noise σl

z : (a) Solid lines, average localization error (ALE) of
MD, (b) Dashed lines, average OSPA mapping error (OSPA-AME) of map.
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Fig. 7. Comparison of the tracking and mapping performance with uniformly
distributed initial MD: (a) CDF of localization error, (b) CDF of OSPA
mapping error.

σm
z are as defined in (6) and represent the standard deviation of

the LOS path and the multi-reflections, respectively, and m is
the order of reflection. In the simulations, σl

z varied from 0.1 m
to 0.4 m. To account for reflection loss, we assumed σm

z to be
double for each reflection, which means that σm

z = 2mσl
z . Each

filter was reiterated 25 times using different random sequences
with perfect initialization of the MD and map features. The
average localization error (ALE) of the MD and average OSPA
mapping error (OSPA-AME) are presented in Fig. 6. As can be
seen, the proposed TRMSC-PHD filter achieved ALE ranging
from 0.1 m to 0.5 m and OSPA-AME ranging from 0.04 m
to 0.17 m when σl

z varied from 0.1 m to 0.4 m. Meanwhile,
the proposed DRMSC-PHD filter achieved ALE ranging from
0.1 m to 0.8 m and OSPA-AME ranging from 0.04 m to 0.20
m when σl

z varied from 0.1 m to 0.4 m. When σl
z = 0.4 m,

the proposed TRMSC-PHD filter outperformed the LMSC-
PHD and MH-MSC-PHD filters by around 85% and 90%,
respectively, in terms of localization accuracy. The proposed
TRMSC-PHD filter also outperformed the LMSC-PHD and
MH-MSC-PHD filters in terms of mapping accuracy by around
40% and 85%, respectively.

The performance of the proposed filters under an inaccurate
initial MD position was simulated. In the simulation, the
measurement noise of the LOS path σl

z = 0.2 m and all
other parameters remained the same as before. Each filter
was reiterated 25 times using different random sequences,
and the initial MD position was uniformly distributed in a
1 m×1 m area around the exact MD position. The cumulative
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Fig. 8. Comparison of tracking and mapping performance with σϕ = 5◦ and
σρ = 0.1m, (a) CDF of localization error, (b) CDF of OSPA mapping error,
(c) RMS mapping error along the trajectory, (d) Estimated trajectory and map
features, where k is the number of time steps.

distribution function (CDF) performance of the localization
error (LE) with 0.5 m step-size and OSPA mapping error
(OSPA-ME) with 0.1 m step-size are shown in Fig. 7. As
can be seen, the proposed TRMSC-PHD and DRMSC-PHD
filters achieved similar performances, with LE and OSPA-ME
of around 0.4 m and 0.2 m, respectively, 90% of the time. The
results show that our proposed filter outperformed the LMSC-
PHD and MH-MSC-PHD filters in terms of localization ac-
curacy by around 90% and 95%, respectively. Our proposed
filter also outperformed the LMSC-PHD and MH-MSC-PHD
filters in terms of mapping accuracy by around 70% and
90%, respectively. Note that the LMSC-PHD and MH-SC-
PHD filters have errors greater than 2 m. This highlights
the fact that, because these two filters can only handle LOS
paths and single reflections, while considering all higher-order
reflection paths as clutter, they perform poorly under heavily
multipath situations.

Next, the performance of the proposed filters under an
inaccurate initial map was simulated. In the simulation, the
measurement noise of the LOS path σl

z = 0.2 m and all
other parameters remained the same as before. Each filter was
reiterated 25 times using different random sequences, and each
time, the initial map was generated randomly according to
the Gaussian distribution with σϕ = 5◦ and σρ = 0.1 m.
The cumulative distribution function (CDF) performances of
the localization error (LE) and OSPA mapping error (OSPA-
ME) are shown in Fig. 8. As can be seen, the proposed
TRMSC-PHD and DRMSC-PHD filters achieved similar per-
formances, with LE and OSPA-ME of around 0.7 m and 0.3
m, respectively, 90% of the time. Therefore, our proposed
filter outperformed the LMSC-PHD and MH-MSC-PHD filters
in terms of localization accuracy by around 70% and 90%,

(a) (b)

Fig. 9. Experimental environment, (a) View of the whole laboratory environ-
ment. (b) A snapshot of the experiment environment, which is a zoomed-in
view of the area circled in red.

respectively. Our proposed filter also outperformed the LMSC-
PHD and MH-MSC-PHD filters in terms of mapping accuracy
by around 55% and 85%, respectively. We also studied how
the root mean square OSPA-ME (RMS-OSPA-ME) changed
along the trajectory, as shown in Fig. 8(c). As can be seen, the
RMS-OSPA-ME of the proposed TRMSC-PHD and DRMSC-
PHD filters decreased continually from 0.3 m to 0.1 m,
showing stability and convergence. However, the RMS-OSPA-
ME of the other filters either diverged or remained the same.
For illustration, the estimated trajectory and map features of
TRMSC-PHD filter based on 1 run data out of the total 25 runs
data are shown in Fig. 8(d). As can be seen, at time k = 1,
the map features are initialized incorrectly. As time elapses,
the map features become more accurate.

B. Experimental Results

A measurement campaign was carried out in a typical
laboratory environment, as shown in Fig. 9. Fig. 9(a) shows
the whole laboratory, with a height of 2.6 m, in which the
red circle highlights the experiment area for our proposed
scheme. Fig. 9(b) shows a zoomed-in view of the experiment
area. As can be seen, it contains a wall, a metallic cabinet, a
window, a pillar, tables, ceiling, and floor. The MD and RDs
are set at the same height of 1.9 m. The 2D plane containing
MD and RDs is shown in Fig. 1, and does not include the
ceiling or floor. This experiment setting was chosen to test the
performance and reliability of our proposed 2D scheme for
indoor environments. The channel response between the MD
and three RDs was measured using a single-input single-output
system, the Agilent Technologies PNA-X Network Analyzer
N5244A, in a frequency domain with 500 MHz bandwidth
centered at 2.4 GHz over 201 frequency points [13]. These
channel responses, which included propagation paths reflected
from the modeled walls as well as the pillar, ceiling, floor
etc., were then used to estimate the TOA using an expectation
maximization (EM) algorithm [43]. All propagation paths
extracted from the EM were assumed to arise from the same
2D plane. Note that only paths associated with the modeled
walls were used to track the MD and update the map features,
and all of the remaining paths including those from the ceiling
and floor were treated as clutter. For each snapshot, the number
of multipaths estimated at each RD was 10, which included
the LOS, single and higher-order reflection paths, and clutter.
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Fig. 10. Comparison of the measured and simulated reflection paths from
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Fig. 11. Comparison of tracking and mapping performance based on collected
measurement data using different numbers of RDs: (a) CDF performance of
localization error, (b) CDF performance of OSPA mapping error.

To examine the quality of the measurements, Fig. 10 com-
pares the measurements at MD1 with the simulated reflection
paths from the walls, ceiling, floor, and pillar. Note that we
only include three wall reflectors in our model. This means
that the simulated reflections from the walls are considered
as paths, and are denoted as Ri, j,l in Fig. 10, where the
subscript represents the collection of wall-reflected signals.
The simulated reflections from the ceiling, floor, and pillar
are considered as clutter. The measurements associated with
the simulated paths are denoted as associated measurements,
and the rest are referred to as unassociated measurements. The
associated and unassociated measurements can be considered
true measurements and clutter, respectively. As can be seen in
Fig. 10, some of the unassociated measurements were in close
proximity to the simulated clutter from the ceiling, floor, and
pillar, and can be considered to have been generated by those
features. This shows that the proposed MRMSC-PHD filter
utilizes dominant multipath components and partial inaccurate
map information to jointly localize the MD and correct the
inaccurate map features.

Each filter was reiterated 25 times using different random
sequences and initialization with perfect knowledge of the MD
and map features. The CDF performances in terms of LE and
OSPA-ME are shown as solid lines in Fig. 11. As can be seen,
the proposed TRMSC-PHD and DRMSC-PHD filters achieved
similar performance, with LE and OSPA-ME of around 1 m
and 0.3 m, respectively, 90% of the time. Our proposed filter
outperformed the LMSC-PHD filter by 30% for LE. However,
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Fig. 12. Comparison of tracking and mapping performance with σϕ = 5◦
and σρ = 0.1 m using all three RDs: (a) CDF of localization error, (b) CDF
of OSPA mapping error, (c) RMS mapping error along the trajectory, (d)
Estimated trajectory and map features.

the proposed filter showed little performance gain over the
LMSC-PHD filter in terms of OSPA-ME, because in this
semi-open cubical environment, single reflections are more
numerous than higher-order reflections. Therefore, there are
few higher-order reflections to further improve the OSPA-ME
margin over the LMSC-PHD filter. However, in many indoor
environments, there are often more higher-order reflections
than single reflections [32]. This situation can be emulated
by decreasing the number of RDs in the environment. The
dashed lines in Fig. 11 show the performance of our proposed
filter with fewer RDs. As can be seen, when using only
RD1 and RD2, the proposed TRMSC-PHD and DRMSC-PHD
filters achieved similar performance, with LE and OSPA-ME
of around 1.2 m and 0.5 m, respectively, 90% of the time. The
results show that our proposed filter outperformed the LMSC-
PHD and MH-MSC-PHD filters in terms of localization ac-
curacy by around 65% and 70%, respectively. Our proposed
filter also outperformed the LMSC-PHD and MH-MSC-PHD
filters in terms of mapping accuracy by around 45% and 65%,
respectively. Thus, as the number of RDs decreases, which
results in the number of detected single reflections decreasing,
the performance margin between the proposed MRMSC-PHD
filter and other filters increases. A performance comparison
using only a single RD was also made, and showed an even
larger performance margin; the details are omitted here for
conciseness.

The performance of the proposed filters using measurement
data under an inaccurate initial map was also examined. Each
filter was reiterated 25 times using different random sequences,
and each time, an initial map was generated randomly accord-
ing to the Gaussian distribution with σϕ = 5◦ and σρ = 0.1
m. The CDF performance for LE and OSPA-ME is shown
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in Fig. 12. As can be seen, the proposed TRMSC-PHD and
DRMSC-PHD filters achieved similar performance, with LE
and OSPA-ME of around 1.4 m and 0.5 m, respectively,
90% of the time. The results show that our proposed filter
outperformed the LMSC-PHD and MH-MSC-PHD filters in
terms of localization accuracy by around 55% and 80%,
respectively. Our proposed filter also outperformed the LMSC-
PHD and MH-MSC-PHD filters in terms of mapping accuracy
by around 30% and 50%, respectively. We also examined how
the RMS-OSPA-ME changed along the trajectory, as shown
in Fig. 12(c). As can be seen, the RMS-OSPA-ME of the
proposed TRMSC-PHD and DRMSC-PHD filters decreased
continually from 0.37 m to 0.30 m, showing stability and
convergence. However, the RMS-OSPA-ME of the other filters
either diverged or remained the same throughout. The esti-
mated trajectory and map features are shown in Fig. 12(d),
where k is the number of time steps. As can be seen, at time
k = 1, the map features are initialized incorrectly. As time
elapses, the map features become more accurate.

The computation time of the proposed MRMSC-PHD filters
was also examined. Using a laptop with an Intel Xeon CPU
E5-1650 v2 at 3.5 GHz and MATLAB 2016a, the proposed
MRMSC-PHD filter, which considers up to triple reflection
paths, takes around 6.8 seconds to localize the MD and
estimate the map features for each time step. The proposed
MRMSC-PHD filter, which considers up to double reflection
paths, takes around 4.2 seconds for each time step, and the
LMSC-PHD filter takes around 3.7 seconds. If the algorithms
were implemented on an FPGA, the computation time would
be at least 10 times less [44]. The results presented in this
section demonstrate that the proposed MRMSC-PHD filter can
be successfully implemented in a real indoor environment to
localize the MD and estimate the map features.

V. CONCLUSION

This paper proposes a new MRMSC-PHD filter incorpo-
rating both the LOS and multiple reflections, which greatly
enhances the accuracy of localization and tracking in indoor
environments. A new greedy measurement partition scheme is
designed to implement the MRMSC-PHD filter, and a novel
error metric applicable to non-point scatterers is proposed to
evaluate the error in the estimated map features. Based on
simulation and experimental results, the proposed MRMSC-
PHD filter outperforms existing RFS-based algorithms in
terms of LE and OSPA-ME by a significant margin. These
results show the critical importance of including higher-order
reflections in indoor tracking and mapping.

APPENDIX A
UPDATE FORMULA OF MRMSC-PHD FILTER

The joint update formula involves a set integral that is com-
putationally intractable. Define the two-variable probability-
generating functionals (PGFLs) [26]

F[g, h] =
∬

hMk

∏
s

Gs
k[gs |xk, Mk]pk |k−1(xk |Z1:k−1)

× pk |k−1(Mk |xk, Z1:k−1)dxkδMk

(24)

where Gs
k
[gs |xk, Mk] is the PGFL of Lk(Zk,s |xk, Mk), which

is defined as

Gs
k[gs |xk, Mk] =

∫
g
Zk,s
s Lk(Zk,s |xk, Mk)δZk,s (25)

The measurements from each RD consist of three classes:
LOS, single and double reflections, and clutter measurements,
with corresponding PGFLs as Gl

k
[gs |xk], Gr

k
[gs |xk, Mk], and

Gc
k
[gs], respectively. According to the properties of the

PGFLs, the Gs
k
[gs |xk, Mk] can be extended from [33] by

adding an LOS component as

Gs
k[gs |xk, Mk] = Gl

k[gs |·](G
r
k[gs |·])

Mk Gc
k[gs] (26)

where

Gl
k[gs |·] = 1 − Pl,s

d
+ Pl,s

d
pl,sg , Gr

k[gs |·] =
∏
m

∏
t

Gm
k [gs,t |·]

Gm
k [gs |·] = 1 − Pm,s,t

d
+ Pm,s,t

d
pm,s,tg , Gc

k[gs] = expλ
s
cc

s [gs ]−λ
s
c

(27)

Gl
k
[gs |·] and Gr

k
[gs |·] are abbreviations of Gl

k
[gs |xk] and

Gr
k
[gs |xk,m], respectively. Gm

k
[gs,t |·] is an abbreviation of

Gm
k
[gs,t |xk,m, pm−1,t

k,s
].

pl,sg =
∫

gs(z)ll,sz dz, cs[gs] =
∫

gs(z)cs(z)dz

pm,s,tg =

∫
gs(z)lm,s,tz dz

(28)

The clutter is modeled as a Poisson process. Substituting (26)
and (27) into (24), we obtain

F[g, h] =px

[
Gc

k[gs]
∏
s

Gl
k[gs |·]Gm

[
h
∏
s

Gr
k[gs |·]

��� · ] ]
px[Φ[h]] =

∫
Φ[h]pk |k−1(xk |Z1:k−1)dxk

(29)

Gm[h|·] is an abbreviation of Gm[h|xk], the PGFL of the
map features, which is defined based on the Poisson process
assumption as

Gm[h|·] =
∫

hMk pk |k−1(Mk |xk, Z1:k−1)δMk = expµpm[h |xk]−µ

(30)

pm[h|xk] =

∫
h(m)pk |k−1(mk |xk, Z1:k−1)dm

where µ is the average number of predicted map features,
which is defined as µ =

∫
vk |k−1(m|xk)dm. Substituting (30)

and (28) into (29), we obtain

F[g, h] = px

[∏
s

Gl
k[gs |·] expΦ[g,h]

]
(31)

Φ[g, h] = µpm

[
h
∏
s

Gr
k[gs |·]

��� · ] − µ +∑
s

(
cs[gs] − λsc

)
Then, the functional derivative of F[g, h] to set Zk is

δF
δZk
[g, h] = px

[ ∑
P@Zk

expΦ[g,h]

×
∏
W ∈P

Φ[·]W

(∏
s

Gl
k[gs |·] +

∑
W ∈P

Ll
W [g]

Φ[·]W

)]
(32)
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Fig. 13. Illustration of why the distance between the expected VRD and the
estimated VRD cannot be used to determine the error in an estimated map
feature.

where

Ll
W [g] =

{∏
s∈W Pl,s

d
ll,szs

∏
s<W Gl

k
[gs |·], if Ws = {zs}

0, if |Ws | > 1.

Φ[·]W =
δΦ[g, h]
δW

= cW + µpm
[
hLr

W [g]
�� · ]

Lr
W [g] =

∏
s⊀W

Gr
k[gs |·]

×
∏
s≺W

∑
θs

( ∏
θs (m,t)=0

Gm
k [gs,t |·]

∏
θs (m,t)>0

Pm,s,t
d

lm,s,tzθs (t )

)
(33)

Equation (32) can be proved by induction following the
method of [45]. Based on the relationship between PGFL and
PHD,

vk |k(xk,m) =
δF

δ(xk,m)δZk
[0, 1]

/ δF
δZk
[0, 1] (34)

Taking the functional derivative of δF
δZk
[0, h] to (xk,m), we

obtain
δF

δ(xk,m)δZk
[0, h]

=pk |k−1(xk |Z1:k−1)
∑
P@Zk

expΦ[0,h]
(
1 − P̃l

d +
∑
W ∈P

Ll
W

ΓW [h]

)
×

∏
W ∈P

ΓW [h]
(
1 − P̃r

d +
∑
W ∈P

(1 −ΩW [h])
Lr
W

ΓW [h]

)
vk |k−1(m|xk)

(35)

where

ΩW [h] =
Ll
W/ΓW [h]

1 − P̃l
d
+

∑
W ∈P(Ll

W/ΓW [h])

Φ[0, h] = vk |k−1[h(1 − P̃r
d)|xk] − µ −

∑
s

λsc

ΓW [h] = Φ[·]W |g=0 = cW + vk |k−1[hLr
W |xk]

Dividing (35) by δF
δZk
[0, h] and setting h = 1, we obtain the

update formulas of the MRMSC-PHD filter shown in (12).

APPENDIX B
PROPOSED ERROR METRIC

In this section, we will first show that the distance between
the estimated VRD and the expected VRD is not appropriate

to be used to represent the error in the map features because
it depends on the relative position of the RD with respect
to those features. It can be shown that different distances
between the estimated and the expected VRD can produce
identical errors in the map features. Fig. 13 shows two RDs
denoted as RDs and RDt , the true map feature mi

k
, and the

corresponding estimated map feature mi
k

′. As can be seen,
the distance between the estimated and the expected VRDs of
RDs , δs , is smaller than the distance between the estimated
and the expected VRDs of RDt , δt . This means that for a
given distance between the estimated and the expected VRDs,
we cannot infer the actual error between the estimated map
feature and the true map feature. For higher-order VRDs, the
distance between the expected and the estimated VRDs may
be zero even if the map features are estimated inaccurately, as
shown in Fig. 13.

Next we show the derivation of the proposed error metric.
Note that the intersection angle between the estimated map
feature and the true map feature cannot be greater than π/4;
otherwise, the estimated map feature will be assigned to
another map feature with an intersection angle smaller than
π/4 by the OSPA metric. For case (a) in Figure 5, the estimated
map feature does not intersect with the true map feature but
does intersect with the extension of the true map feature. Then,
the enclosed trapezoidal area can be expressed as

A =
1
2
(a1 + a2)ι cos∆ϕ

=
1
2
(ι
′

sin∆ϕ + (ι + ι
′

) sin∆ϕ)ι cos∆ϕ

=
1
4
(ι2 + 2ι

′

ι) sin 2∆ϕ

(36)

As shown, for a fixed ∆ϕ, A increases as ι
′

increases, which
means that as the estimated map feature becomes further from
the true map feature, the error increases. If ι

′

becomes positive
infinity, then ∆ϕ = 0, and the error only depends on a1. For
a fixed ι

′

, A increases as ∆ϕ increases from 0 to π/4, which
means that as the estimated map feature becomes more tilted,
the error likewise increases. Similarly, for case (b) in Figure 5,
the estimated map feature intersects the true map feature at the
boundary between segments ι1 and ι2. Then, the two enclosed
triangular areas can be expressed as

A = (A1 + A2) =
1
2
(ι1a1 + ι2a2) cos∆ϕ

=
1
4
(ι21 + ι

2
2) sin 2∆ϕ

≤
1
4
(ι1 + ι2)

2 sin 2∆ϕ =
1
4
ι2 sin 2∆ϕ

(37)

The equality holds when ι1 or ι2 is zero. As shown, for a fixed
∆ϕ, A increases as the intersection point moves from the center
to the endpoint of the true map feature. For a fixed ι1 and ι2,
which means a fixed intersection point, A increases as ∆ϕ
increases from 0 to π/4, which means that as the estimated
map feature becomes more tilted, the error increases.

As can be seen, for both cases, the area A reflects the
difference between the estimated map feature and the true map
feature. Normalizing A by the length of the true map feature,
the proposed error metric can be derived.
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