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UNBOUNDEDNESS OF MARKOV COMPLEXITY OF MONOMIAL
CURVES IN An FOR n ≥ 4.

DIMITRA KOSTA AND APOSTOLOS THOMA

Abstract. Computing the complexity of Markov bases is an extremely challenging
problem; no formula is known in general and there are very few classes of toric ideals
for which the Markov complexity has been computed. A monomial curve C in A3 has
Markov complexity m(C) two or three. Two if the monomial curve is complete inter-
section and three otherwise. Our main result shows that there is no d ∈ N such that
m(C) ≤ d for all monomial curves C in A4. The same result is true even if we restrict to
complete intersections. We extend this result to all monomial curves in An, where n ≥ 4.

1. Introduction

Much of the current interest in Markov bases of toric ideals and their complexity began
with the seminal paper [9], which constitutes one of the first connections between com-
mutative algebra and statistics. This work proposes algebraic algorithms to construct a
connected Markov chain over high-dimensional contingency tables with fixed marginals.
A Markov basis is then a set of moves connecting any two contingency tables that have
the same column sums and row sums. Equivalently, the fundamental theorem of Markov
bases established in [9] states that a Markov basis corresponds to a system of generators of
a toric ideal. Motivated by this work, the Markov bases of certain contingency tables were
studied in [2] and also the first examples of matrices with finite Markov complexity were
provided. The Markov complexity is a notion which captures the complexity of Markov
bases for hierarchical models.

In an effort to understand better the Markov basis M(A) of a toric ideal associated to
a matrix A, the study of auxiliary generating sets, such as the indispensable set S(A) and
the Graver basis G(A) of A, is employed. One can think of the indispensable set S(A) as
the set of moves which belong to every Markov basis, since Markov bases are not unique.
The Graver basis, on the other hand, is a superset of a Markov basis and is essentially
another way of computing a generating set of the ideal. The Graver complexity evaluates
the complexity of Graver bases for hierarchical models (see [2] and [16]). Building on the
work by [2], it was proven in [16] that the Markov complexity is bounded above by the
Graver complexity, and since the latter one is finite, the Markov complexity is also finite.

In [4], a geometric description is given for the elements of the Markov basis M(A) and
the indispensable set S(A). This description uses the correspondence between fibers of
A, (i.e. set of contingency tables with the same marginal sums) and certain connected
components of a simplicial complex associated to A. At the same time, the notion of proper
semiconformal decomposition was introduced in a more algebraic approach to describe
the indispensable set S(A) (see [12]). Building on the results of [12], a complete algebraic
characterization for the elements of the indispensable set S(A) and the Markov basis M(A)

2010 Mathematics Subject Classification. 14M25, 13P10, 62H17, 05C90.
Key words and phrases. Toric ideals, Markov basis, monomial curves, Lawrence liftings.

1



is provided in [5] using extended notions of conformality, i.e. conformal, semiconformal,
strongly semiconformal (see Section 2 for definitions).

The study of Markov and Graver bases was motivated, not only by applications to
contingency tables in statistics, but also by applications to integer programming problems
in operational research, such as high-dimensional transportation problems and packing
problems [7]. In particular, Graver bases and their complexity have important applications
in integer programming, where considerable effort has been put into estimating the growth
of the Graver complexity, as it specifies the time complexity of various n-fold integer
programmes (see [14, Chapter 4] and references therein). Most efforts in the integer
programming community have focused on proving exponential lower bounds for the Graver
complexity of complete bipartite graphs, as in [3], [13] and [11]. It is still a conjecture that
the Graver complexity of the complete bipartite graph K3,m is equal to 3m−1.

For A = (n1, n2, · · · , nd) an 1 × d matrix of positive integers, we call the toric ideal IA
the toric ideal of a monomial curve, since the set of zeroes V (IA) in the d-dimensional
affine space over an algebraically closed field K is the set {(tn1 , · · · , tnd)|t ∈ K}. In [5], it
is shown that the Markov complexity of the monomial curve A = (n1, n2, n3) is equal to
two if the toric ideal IA is complete intersection, and equal to three otherwise, answering
a question posed by Santos and Sturmfels (see [16, Example 6]). However, computing the
complexity m(A) of Markov bases is an extremely challenging problem; no formula for the
m(A) is known in general and there are very few classes of toric ideals in the literature
for which the complexity has been computed [2, 12, 16, 5].

The purpose of this paper is two fold: (a) to study the Markov complexity m(A) of
monomial curves in Am, m ≥ 4 and (b) to demonstrate that the result of [5], which
bounds the Markov complexity of complete intersection monomial curves in A3 by their
codimension, is a special property of monomial curves in A3 and cannot be generalised
to higher dimension. In particular, we obtain that complete intersection monomial curves
in A4 may have arbitrary large Markov complexity; this is a corollary of the following
Theorem which is the main result of this paper.

Theorem 4.1. Monomial curves in A4 may have arbitrary large Markov complexity.
To prove this, we need to find a family Ar = (a1(r), a2(r), a3(r), a4(r)) of monomial

curves in A4, where the numbers a1(r), a2(r), a3(r), a4(r) depend on a parameter r, such
that the Markov complexity of An, the nth member of the family, is at least n. After
several months working with the computational commutative algebra package 4ti2 [1], we
did find one such family, An = (1, n, n2 − n, n2 − 1) and an element of type n in L(A(n)

n ),
which we proved that it belongs to every Markov basis of A(n)

n .
The paper is organised in the following manner. Section 2 contains all the necessary def-

initions and properties of different types of decompositions. It also features Theorem 2.4,
which states that Markov bases of higher Lawrence liftings behave well with respect to
elimination and implies necessary conditions for the Markov complexity to be equal to 2.
In Section 3, we provide the guiding example of a family of monomial curves in A4 with
arbitrary large Markov complexity. Then, the final Section 4 includes the proof of our
main result Theorem 4.1, which we also generalise to monomial curves in Am, m ≥ 4.

2. Preliminaries

Consider a set of vectors A = {a1, . . . , an} ⊂ Nm, n, m ∈ N, and the corresponding
matrix A ∈ Mm×n(N), whose columns are the vectors of A. We let L(A) := KerZ(A) be
the corresponding sublattice of Zn and denote by IA the corresponding toric ideal of A
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in k[x1, . . . , xn], where k is a field. We recall that IA is generated by all binomials of the
form xu − xw, where u − w ∈ L(A).

A Markov basis M of A is a finite subset of KerZ(A) such that, whenever w, u ∈ Nn

with w − u ∈ KerZ(A), there exists a subset {vi : i = 1, · · · , s} of M that connects w
to u. This means that (w −

∑p
i=1vi) ∈ Nn for all 1 ≤ p ≤ s and w − u =

∑s
i=1 vi. We

call a Markov basis M of A minimal if no subset of M is a Markov basis of A. For a
vector u ∈ L(A), we denote by u+, u− the unique vectors in Nn such that u = u+ − u−.
According to a classical result by Diaconis and Sturmfels, if M is a minimal Markov basis
of A, then the set {xu+ −xu− : u ∈ M} is a minimal generating set of IA (see [9, Theorem
3.1]). The union of all minimal Markov bases of A is called the universal Markov basis of
A and is denoted by M(A) (see [12, Definition 3.1]). In a Markov basis or in the universal
Markov basis we identify elements that differ by a sign, that means if u belongs in one
basis then we consider also that −u belongs to the same basis but we write only one of
them.

The indispensable subset of the universal Markov basis M(A), which is denoted by
S(A), is the intersection of all minimal Markov bases of A via the same identification. The
Graver basis of A, G(A), is the subset of L(A) whose elements have no proper conformal
decomposition; namely, an element u ∈ L(A) belongs to the Graver basis G(A) if whenever
u can be written in the form v +c w, where v, w ∈ L(A) with u+ = v+ + w+ and
u− = v− + w−, then we conclude that either v = 0 or w = 0 (see [17, Section 4]). The
Graver basis of A is always a finite set and contains the universal Markov basis of A, see
[17, Section 7]. Therefore, we have the following inclusions

S(A) ⊆ M(A) ⊆ G(A).

The notion of a semiconformal decomposition was introduced in [12, Definition 3.9].
Let u, v, w ∈ L(A). We say that u = v +sc w is a semiconformal decomposition
of u if a) u = v + w and b) v(i) > 0 implies that w(i) ≥ 0, and w(i) < 0 implies
that v(i) ≤ 0, for 1 ≤ i ≤ n. Here v(i) denotes the ith coordinate of the vector v.
We call the decomposition proper if both v, w are nonzero. For two integer vectors
a, b, the relation a ≥ b means that every coordinate of a − b is positive or zero, while
the relation a > b means a ≥ b and a ̸= b. It is easy to see that u = v +sc w
if and only if u+ ≥ v+ and u− ≥ w−. We remark that 0 cannot be written as the
semiconformal sum of two nonzero vectors, since L(A)∩Nn = {0}. For example, given the
matrix A = (1, 3, 6, 8), the elements (1, −1, −1, 1), (4, 0, −2, 1), (5, −1, −3, 2), (3, 1, −1, 0)
belong to KerZ(A) and (5, −1, −3, 2) = (1, −1, −1, 1) +c (4, 0, −2, 1), while (4, 0, −2, 1) =
(1, −1, −1, 1) +sc (3, 1, −1, 0).

The lack of a proper semiconformal decomposition is not only a sufficient condition for
an element to be in S(A), as was shown in [12, Lemma 3.10], but it is also a necessary
condition by [5, Proposition 1.1].

Proposition 2.1. The set of indispensable elements S(A) of A consists of all nonzero
vectors in L(A) with no proper semiconformal decomposition.

Let u, u1, . . . , ul ∈ L(A), l ≥ 2. We say that u =ssc u1 + · · · + ul, is a strongly
semiconformal decomposition if u = u1 + · · · + ul and the following conditions are
satisfied:

u+ > u+
1 and u+ > (

i−1∑
j=1

uj) + u+
i for all i = 2, . . . , l.
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When l = 2, we simply write u = u1+sscu2. Note that u = u1+sscu2 implies that u+ > u+
1

and u− > u−
2 . We say that the decomposition is proper if all u1, . . . , ul are nonzero. We

remark that if u =ssc u1+· · ·+ul is proper, then u+, u+−u1, . . . , u+−
∑l

i=1 ui = u− ∈ Nn

and are, therefore, distinct elements of Fu. For example, given the matrix A = (1, 3, 6, 8),
the elements (4, 0, −2, 1), (−5, −1, 0, 1), (3, 1, −1, 0), (6, 0, −1, 0) belong to KerZ(A) and
(4, 0, −2, 1) =ssc (−5, −1, 0, 1) + (3, 1, −1, 0) + (6, 0, −1, 0).

We also have the following characterisation of the elements of the universal Markov
basis according to [5].

Proposition 2.2. The universal Markov basis M(A) of A consists of all nonzero vectors
in L(A) with no proper strongly semiconformal decomposition.

In fact, as shown in [5], we have the following relationship between these decompositions

proper conformal ⇒ proper strongly semiconformal ⇒ proper semiconformal .

Let u ∈ L(A). The fiber Fu is the set {t ∈ Nn : u+ − t ∈ L(A)}. We have that the
fibre Fu is a finite set, since L(A) ∩ Nn = {0}.

Proposition 2.3. Let u ∈ L(A). There is a bijection between the elements of the fiber
Fu and the ways that u can be written as semiconformal decomposition.

Proof. Let t ∈ Nn be an element in the fiber Fu. Then, u+ − t ∈ L(A), as well as
t − u− ∈ L(A), since both u+, u− belong to Fu. Set v = u+ − t and w = t − u−. Then,
u = v+w, and also, u+ ≥ v+ and u− ≥ w−, since t ∈ Nn. This implies that u = v+sc w.

For the converse, suppose we have a semiconformal decomposition u = v +sc w, where
u, v, w ∈ L(A). Then u+ ≥ v+ and u− ≥ w−, which implies that u+ −v = u− +w ∈ Nn.
Note that u+ − (u+ − v) = v ∈ L(A). This implies that u+ − v = u− + w is an element
in the fiber Fu. �

Proposition 4.13 in [17] states that certain bases of a toric ideal behave well with respect
to elimination. Let B ⊂ A, then for the Graver bases we have G(B) = G(A) ∩ L(B). The
corresponding statement is true also for the universal Gröbner bases and for the circuits.

However, the corresponding statement is not true in general for the Markov bases or
the universal Markov bases, i.e.

M(B) ̸= M(A) ∩ L(B) .

For example, generic toric ideals [15] are toric ideals generated by binomials with full
support. Moreover, all elements in a minimal Markov basis are indispensable, which means
that the universal Markov basis is a minimal Markov basis. However, generic toric ideals
are generated by binomials with full support, therefore, it follows that M(A)∩L(B) = ∅ if
B is a proper subset of A. This shows that M(B) ̸= M(A)∩L(B) whenever the ideal IB is
not zero, for a generic toric ideal IA. On the contrary, Markov bases of Lawrence liftings
behave well with respect to certain eliminations, which is the content of Theorem 2.4.

For A ∈ Mm×n(N) as above and r ≥ 2, the r–th Lawrence lifting of A is denoted by
A(r) and is the (rm + n) × rn matrix
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A(r) =

r−times︷ ︸︸ ︷
A 0 0
0 A 0

. . .
0 0 A
In In · · · In


,

see [16]. We write L(A(r)) for KerZ(A(r)) and identify an element of L(A(r)) with an r ×n
matrix: each row of this matrix corresponds to an element of L(A) and the sum of its
rows is zero. The type of an element of L(A(r)) is the number of nonzero rows of this
matrix. The Markov complexity, m(A), is the largest type of any vector in the universal
Markov basis of A(r) as r varies. According to [6, Theorem 3.3], since L(A) ∩ Nn = {0},
all minimal Markov bases of A(r) have the same complexity for r ≥ 2.

Let B ⊂ A = {a1, a2, · · · , an} and, after renumeration, let B = {a1, a2, · · · , as}. For
u ∈ L(B(r)), we denote by σ(u) an element of L(A(r)) written as an r×n matrix, such that
the first s columns are the columns of u and the last n − s columns are zero columns. Let
v ∈ L(A(r)), then we denote by π(v) an r×s matrix with columns the first s columns of v.
In general, π(v) ̸∈ L(B(r)), but if the last n−s columns of v are zero, then π(v) ∈ L(B(r)).

For simplicity, we will denote σ(M(B(r))) by M(B(r)) and σ(L(B(r))) by L(B(r)).

Theorem 2.4. For the universal Markov bases M(A(r)) and M(B(r)) of A(r) and B(r)

respectively, it holds that M(B(r)) = M(A(r)) ∩ L(B(r)).

Proof. We will first show that M(B(r)) ⊆ M(A(r)) ∩ L(B(r)). Let u be an element of the
universal Markov basis M(B(r)), then u ∈ L(B(r)).

Suppose that σ(u) /∈ M(A(r)), then by Proposition 2.2, there is a proper strongly
semiconformal decomposition of σ(u)

σ(u) =ssc u1 + · · · + ul,

where each ui is an element of the lattice L(A(r)). From the way the element σ(u) is
defined, the last n − s columns of the matrix σ(u) are zero. We claim that all uj also have
the last n − s columns equal to zero. Let us consider one element on the j-th column of
the last n − s columns of u1 that is non-zero. Since the sum of the entries of each column
of the matrix u1 is zero, there exists at least one element on the j-th column of u1 which
is positive. Suppose this element is the element (u1)ij which lies on the i-th row and j-th
column. But then u+ > u+

1 and uij = 0 < (u1)ij , which is a contradiction. Therefore,
the whole column j would be zero and, subsequently, each of the n − s last columns of u1
would be zero.

Suppose that for some t, 1 < t ≤ l, the last n − s columns of the elements u1, · · · , ut−1
are zero. Let us consider one element on the j-th column of ut that is non-zero, where
s + 1 ≤ j ≤ n. Since the sum of the entries of each column of the matrix ut is zero,
there exists at least one element on the j-th column of ut which is positive. Suppose
this element is the element (ut)ij which lies on the i-th row and j-th column. But then
u+ > (

∑t−1
j=1 uj) + u+

t and uij = 0 < (ut)ij , which is a contradiction.
By induction, all uj have the last n−s columns equal to zero, which means that π(uj) ∈

M(B(r)) for j = 1, · · · , l. Thus, u =ssc π(u1) + · · · + π(ul). According to Proposition 2.2,
5



this is a contradiction, since u ∈ M(B(r)) and as such should have no proper strongly
semiconformal decomposition.

To prove the direction M(B(r)) ⊃ M(A(r)) ∩ L(B(r)) , let v ∈ M(A(r)) ∩ L(B(r)).
If we assume that π(v) /∈ M(B(r)), then there exists a proper strongly semiconformal
decomposition π(v) =ssc v1 + · · · + vl with each vi ∈ L(B(r)). But then v =ssc σ(v1) +
· · ·+σ(vl) with each σ(vi) ∈ L(A(r)). According to Proposition 2.2, this is a contradiction,
since v ∈ M(A(r)). �

As an application, we show that if the Markov complexity m(A) of a monomial curve
A is equal to 2, then for any subset of three elements B ⊂ A the corresponding toric ideal
IB is complete intersection.

Corollary 2.5. If a monomial curve A = (l1, l2, · · · , lm) in Am has Markov complexity 2,
then for any i, j, k in {1, 2, · · · , m} the monomial curve B = (li, lj , lk) in A3 is complete
intersection.

Proof. Suppose that there exist i, j, k in {1, 2, · · · , m} such that the monomial curve B =
(li, lj , lk) in A3 is not complete intersection.

Then by Theorem 2.6 in [5] we know that m(B) = 3. This means that for any r-th
Lawrence lifting r ≥ 3, B(r) has type 3 elements inside the universal Markov basis M(B(r)).
By Theorem 2.4, there is a type 3 element inside M(A(r)) as well. This means that the
Markov complexity is m(A) ≥ 3, which is a contradiction. �
Remark 2.6. We note that the converse of Corollary 2.5 is not true. In the next sections,
we will give examples of monomial curves A = (l1, l2, · · · , lm) in Am with arbitrary large
Markov complexity, such that for any i, j, k in {1, 2, · · · , m} the monomial curve B =
(li, lj , lk) in A3 is complete intersection.

3. The family of monomial curves An = (1, n, n2 − n, n2 − 1)

In this section we give the guiding example of the paper; a family of monomial curves
An in A4 which has the special structure that all members in the family are complete
intersections, but also every member of the family satisfies the conclusion of Corollary
2.5 i.e. for any i, j, k in {1, 2, 3, 4} the monomial curve B = (li, lj , lk) in A3 is complete
intersection, where l1 = 1, l2 = n, l3 = n2 − n, l4 = n2 − 1. We will also present here some
properties governing some semiconformal sums associated to these monomial curves.

Let us consider the example of the monomial curve An = (1, n, n2 − n, n2 − 1). For this
curve, there is always the following element of type n in L(A(n)

n ):

u =



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


,

since every row is in L(An) and the sum of each column is zero. Note that the first
n − 2 rows are of the form (1, −1, −1, 1), while the last two are (0, 0, n + 1, −n) and
(n−2, 2−n, −3, 2). The following Lemmas study the ways that two of the above elements
of L(An) can be written semiconformally under some special conditions. Note that for big
n, there are thousands of elements in the fibers of the above elements, which according to
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Proposition 2.3, means that there are thousand of different ways of writing these elements
as semiconformal sums.

Lemma 3.1. Consider the element u = (1, −1, −1, 1) ∈ L(An). Then u can be written as
a semiconformal decomposition u = v +sc w with the first element of the first term v1 = 1
in exactly the following two ways

(1, −1, −1, 1) = (1, −1, −1, 1) +sc (0, 0, 0, 0)(1)
(1, −1, −1, 1) = (1, −n, 0, 1) +sc (0, n − 1, −1, 0).(2)

Proof. Suppose that u = v +sc w for some vectors v, w ∈ L(An). Then Proposition 2.3
implies that u+ − v = u− + w = (α, β, γ, δ) ∈ N4. Therefore, the semiconformal sum
u = v +sc w is alternatively written as

u = (u+ − (α, β, γ, δ)) +sc ((α, β, γ, δ) − u−)
= (1 − α, −β, −γ, 1 − δ)) +sc (α, β − 1, γ − 1, δ)

Since the element (α, β, γ, δ) ∈ Fu, we have that u+ − (α, β, γ, δ) ∈ L(An). This implies
that

α + βn + γ(n2 − n) + δ(n2 − 1) = n2.

We are interested in establishing what happens when α = 0, since we are in the case
that v1 = 1. In this case βn + γ(n2 − n) + δ(n2 − 1) = n2 where β, γ, δ ∈ N. Then δ
can take the values of 1 and 0. Suppose that δ = 1 then βn + γ(n2 − n) = 1 which is a
contradiction, since n ≥ 2 and n divides 1. Therefore δ = 0. Then βn + γ(n2 − n) = n2,
which has only two solutions: (β, γ) = (1, 1) or (β, γ) = (n, 0). Therefore (α, β, γ, δ) =
(0, 1, 1, 0) or (α, β, γ, δ) = (0, n, 0, 0) and this gives us only two cases for the semiconformal
decomposition u = (1, −1, −1, 1)+sc(0, 0, 0, 0) or u = (1, −n, 0, 1)+sc(0, n−1, −1, 0). �

Lemma 3.2. Consider the element u = (1, −1, −1, 1) ∈ L(An). Then u can be written as
a semiconformal decomposition u = v +sc w with the second element of the second term
w2 = −1 in exactly the following three ways

(1, −1, −1, 1) = (0, 0, 0, 0) +sc (1, −1, −1, 1)(3)
(1, −1, −1, 1) = (1 − n, 0, −1, 1) +sc (n, −1, 0, 0)(4)
(1, −1, −1, 1) = (1 − n2, 0, 0, 1) +sc (n2, −1, −1, 0).(5)

Proof. Suppose that u = v +sc w for some vectors v, w ∈ L(An). Then by Proposition 2.3
the semiconformal sum u = v +sc w, is alternatively written as

u = (u+ − (α, β, γ, δ)) +sc ((α, β, γ, δ) − u−)(6)
= (1 − α, −β, −γ, 1 − δ)) +sc (α, β − 1, γ − 1, δ)(7)

where the element (α, β, γ, δ) ∈ Fu. Therefore u+ − (α, β, γ, δ) ∈ L(An). This means that

α + βn + γ(n2 − n) + δ(n2 − 1) = n2.

We are interested in establishing what happens when β = 0, since we are in the case that
w2 = −1. In this case α + γ(n2 − n) + δ(n2 − 1) = n2 where α, γ, δ ∈ Nn. Then δ can
take the values of 1 and 0. Indeed, if δ ≥ 2 then α + γ(n2 − n) + δ(n2 − 1) > n2 which
is contradiction. If δ = 1 then α = 1 and γ = 0, therefore (α, β, γ, δ) = (1, 0, 0, 1). In
the case that δ = 0, we get α + γ(n2 − n) = n2, which has only two solutions, namely
(α, β, γ, δ) = (n, 0, 1, 0) and (α, β, γ, δ) = (n2, 0, 0, 0).

7



Therefore, by equation (7) we only have the following three cases for the semiconformal
decomposition u = (0, 0, 0, 0) +sc (1, −1, −1, 1) or u = (1 − n, 0, −1, 1) +sc (n, −1, 0, 0) or
u = (1 − n2, 0, 0, 1) +sc (n2, −1, −1, 0). �

Lemma 3.3. Consider the element u = (2 − n, n − 2, −3, 2) ∈ L(An). If u can be written
as a semiconformal decomposition u = v +sc w with the first entries v1, w1 non-positive
and the second entries v2, w2 non-negative, then v = 0 or w = 0.

Proof. Suppose that u = v +sc w for some nonzero vectors v, w ∈ L(An). The semiconfor-
mal sum u = v +sc w, is alternatively written as

u = (u+ − (α, β, γ, δ)) +sc ((α, β, γ, δ) − u−)(8)
= (−α, (n − 2) − β, −γ, 2 − δ)) +sc (α − (n − 2), β, γ − 3, δ)(9)

Since (α, β, γ, δ) belongs to the fiber Fu, we have that u+ − (α, β, γ, δ) ∈ L(An). This
means that

α + βn + γ(n2 − n) + δ(n2 − 1) = 3n2 − 2n − 2(10)

which also gives α − δ ≡ −2 mod n. The initial conditions about the entries v1, w1 and the
entries v2, w2 imply that 0 ≤ α ≤ n − 2 and 0 ≤ β ≤ n − 2.

Noting that 0 ≤ δ ≤ 2, we distinguish three cases for the value of δ. In the case
that δ = 2, we have that α ≡ 0 mod n which together with 0 ≤ α ≤ n − 2 imply that
α = 0. Then equation (10) gives βn + γ(n2 − n) = n2 − 2n, which in turn implies that
γ = 0 and β = n − 2. Therefore (α, β, γ, δ) = (0, n − 2, 0, 2) obtaining the semiconformal
decomposition u = (0, 0, 0, 0) +sc (2 − n, n − 2, −3, 2).

Now if δ = 1, we get that α ≡ −1 mod n and together with 0 ≤ α ≤ n − 2 gives a
contradiction.

Finally, if δ = 0, then α ≡ −2 mod n which together with 0 ≤ α ≤ n − 2 imply that
α = n − 2. Then equation (10) becomes n − 2 + βn + γ(n2 − n) = 3n2 − 2n − 2 which
in turn gives β + γ(n − 1) = 3n − 3. This means that β is a multiple of n − 1 and since
0 ≤ β ≤ n−2 the only option is for β = 0 and γ = 3. Therefore (α, β, γ, δ) = (n−2, 0, 3, 0)
gives us the semiconformal decomposition u = (2 − n, n − 2, −3, 2) +sc (0, 0, 0, 0). �

4. Markov complexity of monomial curves

In this section, we prove the main result of this paper regarding the unboundedness
of the Markov complexity of monomial curves in Am, m ≥ 4. We use the properties of
semiconformal decompositions for the special monomial curve An = (1, n, n2 − n, n2 − 1)
shown in Section 3, as well as Theorem 2.4 regarding the good behaviour of Markov bases
of higher Lawrence liftings with respect to elimination.

Theorem 4.1. Monomial curves in A4 may have arbitrary large Markov complexity.

Proof. We will show that the type n element

u =



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2
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belongs to every Markov basis of A(n)
n . Which means we wish to show that the element

u is indispensable, namely that it belongs to S(A(n)), the intersection of all the minimal
Markov bases. Let us assume on the contrary that the element u is not indispensable.
Proposition 1.1 in [5], implies that u admits a proper semiconformal decomposition u =
v +sc w, where u, v, w ∈ L(A(n)

n ) such that

vij > 0 ⇒ wij ≥ 0 and wij < 0 ⇒ vij ≤ 0,

for any 1 ≤ i ≤ n, 1 ≤ j ≤ 4. In terms of signs, for each row of the vector u we have

(1, −1, −1, 1) = (∗, ⊖, ⊖, ∗) +sc (⊕, ∗, ∗, ⊕)
(0, 0, n + 1, −n) = (⊖, ⊖, ∗, ⊖) +sc (⊕, ⊕, ⊕, ∗)

(n − 2, 2 − n, −3, 2) = (⊖, ∗, ⊖, ∗) +sc (∗, ⊕, ∗, ⊕).

The symbol ⊖ means that the corresponding integer is non positive, the symbol ⊕ non
negative and the symbol ∗ means that it can take any value.

Let u = v +sc w be a semiconformal decomposition of u, then the sign pattern of the
elements v, w is:

u =



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



∗ ⊖ ⊖ ∗
∗ ⊖ ⊖ ∗

. . .
∗ ⊖ ⊖ ∗
⊖ ⊖ ∗ ⊖
⊖ ∗ ⊖ ∗


+sc



⊕ ∗ ∗ ⊕
⊕ ∗ ∗ ⊕

. . .
⊕ ∗ ∗ ⊕
⊕ ⊕ ⊕ ∗
∗ ⊕ ∗ ⊕


.

Considering that the sum of every column should be zero, we conclude that the last element
of the second column of v, vn,2, is non-negative and the last element of the first column
of w, wn,1, is non-positive. This means that in the nth row the elements highlighted in
grey above are; vn,1, wn,1 which are non-positive and the elements vn,2, wn,2 which are
non-negative. From Lemma 3.3, we distinguish two cases for the last row: first case that
the last row of w is zero or second case that the last row of v is zero.

In the first case, the decomposition of u becomes

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



∗ ⊖ ⊖ ∗
∗ ⊖ ⊖ ∗

. . .
∗ ⊖ ⊖ ∗
⊖ ⊖ ∗ ⊖

2 − n n − 2 −3 2


+sc



⊕ ∗ ∗ ⊕
⊕ ∗ ∗ ⊕

. . .
⊕ ∗ ∗ ⊕
⊕ ⊕ ⊕ ∗
0 0 0 0


.

The first column of w, highlighted in gray above, is non negative and adds to zero, thus,
all the column is zero. So,

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



1 ⊖ ⊖ ∗
1 ⊖ ⊖ ∗

. . .
1 ⊖ ⊖ ∗
0 ⊖ ∗ ⊖

2 − n n − 2 −3 2


+sc



0 ∗ ∗ ⊕
0 ∗ ∗ ⊕

. . .
0 ∗ ∗ ⊕
0 ⊕ ⊕ ∗
0 0 0 0


.
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By Lemma 3.1, we see that if the first element of the first vector in the semiconformal
decomposition of (1, −1, −1, 1) is 1, then there are exactly two ways of decomposing semi-
conformally the element (1, −1, −1, 1); namely

(1, −1, −1, 1) +sc (0, 0, 0, 0) or (1, −n, 0, 1) +sc (0, n − 1, −1, 0).

This means that each one of the first n − 2 rows of v should be either (1, −1, −1, 1) or
(1, −n, 0, 1). By looking at the second column of v, highlighted in gray above, we see that
the first n − 2 elements are either −1 or −n , the (n − 1)th element is non-positive and the
last is n − 2. Since they add to zero, this forces all of the first n − 2 elements to be −1
and the (n − 1)th element to be zero. So −1 in the second position means that we are in
the first decomposition (1, −1, −1, 1) = (1, −1, −1, 1) +sc (0, 0, 0, 0). Therefore, we get



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 ∗ ⊖

2 − n n − 2 −3 2


+sc



0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 ⊕ ∗
0 0 0 0


.

Looking at w, in particular the entries highlighted in gray above, and considering that
each column adds to zero, we have that

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


+sc



0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 0 0
0 0 0 0


.

In the second case, the decomposition of u becomes

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



∗ ⊖ ⊖ ∗
∗ ⊖ ⊖ ∗

. . .
∗ ⊖ ⊖ ∗
⊖ ⊖ ∗ ⊖
0 0 0 0


+sc



⊕ ∗ ∗ ⊕
⊕ ∗ ∗ ⊕

. . .
⊕ ∗ ∗ ⊕
⊕ ⊕ ⊕ ∗

2 − n n − 2 −3 2


.

The second column of v, highlighted in gray above, is non positive and adds to zero, thus,
all the column is zero. Then

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



∗ 0 ⊖ ∗
∗ 0 ⊖ ∗

. . .
∗ 0 ⊖ ∗
⊖ 0 ∗ ⊖
0 0 0 0


+sc



⊕ −1 ∗ ⊕
⊕ −1 ∗ ⊕

. . .
⊕ −1 ∗ ⊕
⊕ 0 ⊕ ∗

2 − n n − 2 −3 2


.

By Lemma 3.2, we have that if the second element of the second vector in the semi-
conformal decomposition of (1, −1, −1, 1) is −1, then there are exactly three ways of
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decomposing semiconformally the (1, −1, −1, 1); namely (0, 0, 0, 0) +sc (1, −1, −1, 1) or
(1 − n, 0, −1, 1) +sc (n, −1, 0, 0) or (1 − n2, 0, 0, 1) +sc (n2, −1, −1, 0).

This means that each one of the first n − 2 rows of w should be either (1, −1, −1, 1)
or (n, −1, 0, 0) or (n2, −1, −1, 0). By looking at the first column of w, highlighted in gray
above, we see that the first n − 2 elements are either 1 or n or n2, the (n − 1)th element is
non-negative and the last is 2 − n. They all add to zero, so that forces all of the first n − 2
elements to be 1 and the (n − 1)th to be zero. Having 1 in the first position means that
we are in the first decomposition (1, −1, −1, 1) = (0, 0, 0, 0) +sc (1, −1, −1, 1). Therefore,



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 ∗ ⊖
0 0 0 0


+sc



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 ⊕ ∗

2 − n n − 2 −3 2


.

Looking at v, particularly the entries highlighted in gray above, and considering that each
column adds to zero, we have that

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


=



0 0 0 0
0 0 0 0

. . .
0 0 0 0
0 0 0 0
0 0 0 0


+sc



1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n + 1 −n

2 − n n − 2 −3 2


.

Therefore, the decomposition u = v +sc w can never be proper. Thus, we conclude that
u is indispensable, therefore, it belongs to all Markov bases. �

Remark 4.2. We do not claim that the Markov complexity m(An) of An is n, but at
least n. Indeed, consider the example of the monomial curve A5 = (1, 5, 20, 24) ∈ A4.
Then using the computational package 4ti2 (see [1]), we compute a Markov basis of A(r)

n

for r ≤ 6. Table 1 includes the number of elements of the Markov basis of A(r)
n as well as

the largest type of any vector in the universal Markov basis of A(r)
n , for each r = 1, · · · 6.

rth Lawrence lifting # elements of Markov basis Type
2 46 2
3 174 3
4 528 4
5 1520 5
6 4110 6
7 10206 6

Table 1. The monomial curve A5 = (1, 5, 20, 24) in A4

Therefore, this implies that the Markov complexity is at least 6. In fact, the elements
of type 6 in the sixth Lawrence lifting are
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0 0 −6 5
−2 2 −4 3
−2 2 −4 3
−2 2 −4 3
3 −3 3 −2
3 −3 3 −2

 ,



0 0 −6 5
0 0 −6 5

−1 1 −5 4
−1 1 −5 4
−1 1 −5 4
3 −3 3 −2

 ,

as well as all elements coming from permutation of the rows of the above matrices.

Note that the monomial curve An = (1, n, n2 − n, n2 − 1) is complete intersection,
therefore, the following Corollary directly follows from Theorem 4.1.

Corollary 4.3. Complete intersection monomial curves in A4 may have arbitrary large
Markov complexity.

Corollary 4.4. Monomial curves in Am, m ≥ 4, may have arbitrary large Markov com-
plexity.

Proof. The proof for general m ≥ 5 follows from Theorem 2.4 and Theorem 4.1.
Suppose there is a d ∈ N such that m(A) ≤ d for all monomial curves A in Am. If

we consider the monomial curve A = (1, n, n2 − n, n2 − 1, am−4, · · · , am) in Am, where
n ≥ d + 1 and am−4, · · · , am are any natural numbers, then this means that the largest
type of any vector in the universal Markov basis of A(r) as r varies would be at most d.

We know by Theorem 4.1, that m(B) ≥ n for B = {1, n, n2 − n, n2 − 1} ⊂ A. This
means that for any r-th Lawrence lifting with r ≥ n, B(r) has an element of type at least
n inside the universal Markov basis M(B(r)). By Theorem 2.4, there is an element of type
at least n inside M(A(r)) as well. This means that the Markov complexity is m(A) ≥ n.
Since n ≥ d + 1, we immediately reach a contradiction. �
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