

Donaldson, P. and Cutts, Q. (2018) Flexible Low-cost Activities to Develop Novice

Code Comprehension Skills in Schools. In: 13th Workshop in Primary and

Secondary Computing Education (WiPSCE '18), Potsdam, Germany, 04-06 Oct

2018, p. 19. ISBN 9781450365888.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

© The Authors 2018. This is the author's version of the work. It is posted here for

your personal use. Not for redistribution. The definitive Version of Record was

published in the Proceedings of the 13th Workshop in Primary and Secondary

Computing Education (WiPSCE '18), Potsdam, Germany, 04-06 Oct 2018, p. 19.

ISBN 9781450365888. http://dx.doi.org/10.1145/3265757.3265776.

http://eprints.gla.ac.uk/198139/

Deposited on: 1 October 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3265757.3265776
http://dx.doi.org/10.1145/3265757.3265776
http://eprints.gla.ac.uk/198139/
http://eprints.gla.ac.uk/198139/
http://eprints.gla.ac.uk/198139/
http://eprints.gla.ac.uk/198139/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Flexible Low-cost Activities to Develop Novice Code
Comprehension Skills in Schools

Peter Donaldson
School of Education

University of Glasgow
Glasgow, Scotland

peter.donaldson.2@glasgow.ac.uk

Quintin Cutts
School of Computing Science

University of Glasgow
Glasgow, Scotland

quintin.cutts@glasgow.ac.uk

ABSTRACT

The lack of code comprehension skills in novice programming
students is recognised as a major factor underpinning poor
learning outcomes. We use Schulte’s Block Model to support
teachers’ understanding of how to break the skill down into
component parts that are more manageable for a learner. This
analysis is operationalised in three code annotation-based
learning/assessment exercise formats, two helping students to
identify and describe programming concepts and the third
enabling them to parse code correctly and carry out desk
executions. A great benefit of the activities is that they are low
cost and can be applied to any imperative style code and so can be
easily adopted by schools anywhere; furthermore, they are active,
not passive, an issue with some animation-based visualisation
approaches. The exercise formats were included as part of a
national schools computing science professional learning
programme (PLAN C).

CCS CONCEPTS
• Social and professional topics~Computer science
education • Social and professional topics~K-12
education • Social and professional topics~Student assessment

KEYWORDS
Notional Machine; Block Model; Program Comprehension;
Formative Assessment.

ACM Reference format:

Peter Donaldson, Quintin Cutts. 2018. Low-cost Activities to Develop
Novice Code Comprehension Skills in Schools. In Proceedings of the 13th
Workshop in Primary and Secondary Computing Education (WiPSCE’18).
ACM, Potsdam, Germany, 4 pages. https://doi.org/10.1145/3265757.3265776

1. INTRODUCTION
This short work-in-progress paper outlines the rationale for, and
design of, three exercise formats that can be used in school
classrooms to aid code comprehension. The formats are

independent of any particular language and can even be delivered
as paper-and-pencil exercises to reduce complexity, cost and
enable flexibility to suit teachers’ needs. This is timely since
computing education, programming in particular, is rapidly
expanding into the secondary school sector and even into
primary. Schools traditionally have relatively low levels of
resourcing to support their teaching; there is no standard teaching
language used by all schools, neither across nations, nor
sometimes even within a single city; and there is no universal
curriculum or set of lesson plans. Finding relatively language
agnostic exercise formats that can be quickly and cheaply tailored
to specific languages and contexts is therefore crucial. The
formats presented here were included in a nationwide teacher
professional development programme (PLAN C) [5] and
incorporated by teachers into Computing Science courses for
learners mainly in the 14 to 16 age range.

2. RATIONALE
The development of code comprehension skills is increasingly
viewed as a key developmental stage in becoming a competent
programmer [11–13, 21]. Benedict du Boulay is generally
recognised as the first to refer to code comprehension when he
introduced the concept of a notional machine as an issue in
learning to program [6]. This is one of five overlapping potential
sources of difficulty for novices that he defined, another of which
is notation, the syntax and semantics of a particular programming
language. Du Boulay brings these two together in his definition
of a notional machine as "an idealised conceptual computer whose
properties are implied by the constructs in the programming
language". The importance of novices' developing such a machine
model is the consequent ability to see a program as a white box,
the operation of whose statements may be understood, rather than
as a black box around which only inputs and outputs are visible.
In particular, by observing a large number of these white boxes,
for a range of different programs, novices can start to disassociate
individual constructs from the particular contexts in which they
appear, a key learning step, following the no-function-in-structure
principle [10].

Du Boulay suggested that a concrete tool would be valuable to
enable the machine model to be observed. Sorva [18] developed
such a tool in software, UUhistle, which makes visible a notional
machine model for Python. Others have also developed computer
and paper-based tools to help students develop notional machine
models. For example, Berry and Kolling [2] have developed a
paper or animation-based extension to the BlueJ environment for

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only

WiPSCE '18, October 4–6, 2018, Potsdam, Germany
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
https://doi.org/10.1145/3265757.3265776

WiPSCE '18, October, 2018, Potsdam, Germany P Donaldson & Q Cutts

visualizing Java programs; Holliday and Luginbuhl's [8] use of
memory diagrams highlights incorrect learner models of how data
is stored in memory, and Hertz and Jump's [7]trace-based model
for memory allocation and update models both a stack and an
object heap.

Notation and the notional machine [16] form a key part of code
comprehension, and are captured in the two Structural dimensions
of Schulte’s Block Model [14], as shown in Table 1. The model
considers the understanding of code at four levels of detail. The
Atom level, which considers programs at the level of smallest
program components, may be exemplified by a single assignment
statement, or an input or output statement, or even the

expressions contained within these components. The Block level
considers contiguous lines within a program that are bounded in
a logical way, for example the body of a loop or a branch in a
selection statement, or a subprogram body. The Relations level
considers separated lines of code that are related together: this
could be relevant to variable roles [17], where, for example, an
one-way flag variable typically has an initialization, a test in a
loop header, and an assignment statement within the loop body;
alternatively more complex relational behaviour might consider
function calling between code blocks, and parameter passing. At
the top level, Macro Structure concerns the understanding of the
whole program.

The Block Model, across all four levels, is divided orthogonally
according to two dimensions - Structure and Function.

They reflect the dual role that any program has, and the need to
understand the program in either of those roles. The Function
dimension concerns the way a program addresses the problem it
is designed to solve. From the point of view of code
comprehension, how does this line, this block, these components
contribute to solving the whole problem? Which parts do they
play? By comparison, the Structure dimension is associated
principally with the syntax of the code, and is hence referred to as
the “text surface”; and also with the operation of the code, what it
does with respect to some machine model – this is “program
execution”. As noted, text surface and program execution are

directly related to two of the five issues raised by du Boulay-
notional machine and notation.

In this paper, we are principally concerned with building novices
understanding of the Structural dimension of the Block Model
given the increasing evidence that a combination of identifying,
tracing and describing code strongly influence novice’s ability to
explain its purpose and write code of their own [11–13, 20, 21].

3. THE EXERCISE FORMATS
The exercises presented here were designed with the following
aims

• Reducing the high-level of cognitive load of code
comprehension faced by novices [15, 19] by distributing
cognition between the mind of the novice and the code as it
is annotated [4] and reducing the number of details that
need to be maintained in working memory [9].

• Overlaying information on, or near, the code itself to avoid
novices having to split their attention and coordinate
between two completely different representations.

• Able to be focused and targeted at different levels and
aspects of the Structural dimension of the Block Model. This
means that assistance can be provided with parsing,
dynamic control flow and expression evaluation, as well as
variable tracking.

• Largely language agnostic so that they could be shaped to
suit a teacher’s particular context. For widespread adoption
of improved teaching methods, this aspect is crucial.

• Considering Chi and Wylie’s learner engagement model [3],
ensuring that the learner is constructively engaged in the
activity, enabling deeper learning than via just listening or
observing, and preparing for even deeper interactive
engagement via group or classroom discussion.

3.1 Code Identification and Description

The first two exercise formats presented directly target the
understanding of code required across the various levels and two
dimensions of the Block Model. They can either be used
separately or in combination. A reference-sheet of programming
concept terms is also provided to aid learners in identifying
particular aspects and describing their execution.

Macro
structure

Understanding the
overall structure of the
program text

Understanding the
“algorithm” of the
program

Relations References between
blocks, e.g.: method calls,
object creation, accessing
data

Sequence of method
class, “object sequence
diagrams”

Blocks ‘Regions of Interests’
(ROI) that syntactically or
semantically build a unit

Operation of a block, a
method, or ROI (as
sequence of statements)

Atoms Language elements Operation of a statement

 Text surface Program execution
(data & control flow)

 “Structure”

Table 1: Structure aspect of Schulte’s Block Model

Figure 1: Python 3 identification & description exercise for a
simple sequential program

WiPSCE '18, October, 2018, Potsdam, Germany P Donaldson & Q Cutts

• Code Identification (CI format) can be used to target the
Atom, Block and Relations level of the Text Surface
dimension. An example is shown in the exercise labelled (1)
in Figure 1. Code identification involves the learner taking
a code fragment and highlighting specific programming
concepts. For example, they might highlight all variables,
or expressions at the Atom level; or they could determine
the extent of looping and selection control structures,
identifying sub-sequences inside, at the Block level; or they
could be identifying variable roles, noting related uses of a
single variable across a program, at the Relations level. We

• note that code highlighting is not new, and is probably a
technique in use by many educators already. Here we aim
to show how it can be used to explicitly meet the breadth of
code comprehension learning aims prompted by the levels
of the Block Model.

• Code Description (CD format) helps to develop the core
understanding of what code constructs do, hence relating to
the Program Execution dimension at any level. A typical
exercise here requires the learner, for atoms on one line or
blocks covering multiple lines in a program, to write or say
the name of the construct(s) involved and give a description
of its operation. Such a task exercises a blend of Text Surface
and Program Execution skills. An example for this in shown
in the exercise labelled (2) in Figure 1.

3.2 Augmented Tracing using TRACS
The third exercise format, TRACS, is an augmented tracing
technique acting principally as a significant cognitive assistant for
developing the skills required in the Program Execution side of
code comprehension. The tracing process is broken down into
clear stages, to help avoid cognitive overload, and the final
representation captures all aspects of the learner’s notional
machine model [16].

First, two finished examples of the technique are given, along with
an explanation to show how the technique operates. Remember,
though, that a learner would construct an example like this step
by step, thoroughly exercising their understanding. After that, a
number of observations are given about the design of the
technique and how it meets the needs of the Block Model.

Figure 2 on the next page shows a completed trace using the
TRACS tracing model on a very simple program expressed in
Python 2, executed against the input data 5 and 7. The program
is as follows:

 value1 = input()
 value2 = input()
 total = value1 + value2
 print total

In this case, the trace has been developed using a drawing tool, to
ensure its readability at the reduced size for this paper, whereas
in normal classroom use it is expected that it should be completed
using pen and A4 (roughly Letter) or A3 (double Letter) sized
paper.

Here are the three main steps to create a TRACS trace:

1. Boxes are drawn round each expression in the code provided
in the left-hand side. These are shown in red in Figure 2.

2. Arrows are drawn between the lines to represent the static
control flow. If the code contains conditional branching
points with two outgoing arrows, these are marked with T
and F to indicate which route should be followed at run-time,
depending on the calculated value of the Boolean expression.
An initial arrow is drawn to the first line to be executed.

3. Execution now begins. The arrow leading to the next line to
be executed is numbered with a step number. Lines of code
executed repeatedly will attract a series of step numbers. The
steps below are carried out for each line as it is executed:

3.1 As with a typical trace table, if a new variable is created, a
new column is used in the variables table. Note that every
update of the variable in the table, including the initialisation,
is numbered on the left with the step number at which the
update occurred. In Figure 2, no variable is updated after
initialisation, so we only see one entry for each.

3.2 Input and output are recorded in the relevant boxes to show
at which step number the operations occurred, and what
values were involved. Here, the value 7 was read in on step
2, and the value 12 written out on step 4.

3.3 When an expression is encountered, if it is just a manifest
constant value, it can be used directly. If it is a simple
variable reference, the variables table can be consulted to find
the value. If it is an I/O operation, like input, then the
appropriate value is retrieved as in the previous step. If a
calculation is required, it is copied into the expression
evaluator, for example on step 3 for the right-hand side of the
assignment. The step number is noted, and values for
variables in the expression are substituted in from the
variables table, and the resulting value determined. This can
then be used in the surrounding statement.

A teacher can use this format to demonstrate to students how
particular constructs operate – giving them a precise reference
model for future use.

The teacher can then prepare a number of examples for students
to work on. Printed sheets can be prepared with the code in place
and the right number of entries in variables table and expression

Figure 2: TRACS trace of a simple sequential program

t

WiPSCE '18, October, 2018, Potsdam, Germany P Donaldson & Q Cutts

evaluator, or else the teacher can display the code on a projector
and let them draw up the whole model on paper.

A more complex instance of the technique is shown in Figure 3
for the following program:

 total = 0
 nextInput = input()
 while nextInput != -1:
 total = total + nextInput
 nextInput = input()
 print total

The following observations are noted about this representation:

- Student's understanding of how expressions are different from
statements is exercised, as is their knowledge of static control
flow (Atom and Block levels of the Text Surface dimension).
Taking place prior to the dynamic execution of the code, this
should relieve cognitive load in the execution phase.

- The full dynamic control flow information is recorded in one
representation, via the sequence of step numbers, as well as
the data flow in the form of the variable updates and
expression evaluation (Atom, Block and Relations level of the
Program Execution dimension).

- This record can be used by a teacher to check for correct
understanding. A quick scan of the step numbers adorning
the program shows whether the student's control flow was
correct. At the first sign of an incorrect sequence, the
expression evaluations and variable updates can be checked
by the teacher to diagnose the exact cause of the problem and
fed back to the student.

- This is a learning exercise to be used to ensure that students
are developing a consistent and correct mental model of how
code executes [1]. Once students have internalised aspects of
how code executes this level of annotation is unlikely to be
required.

4. CONCLUSIONS
These exercises have been used by hundreds of teachers following
their introduction in a professional development programme.
While we do not have rigorous experimental data on their efficacy
yet, questionnaire and interview feedback indicates that teachers
have seen significant learning gains and changes in how their
pupils talk and reason about programs compared to their prior

methods that didn’t have as strong a focus on code
comprehension.

5. REFERENCES
[1] Ben-Ari, M. 2001. Constructivism in computer science education. Journal of

Computers in Mathematics and Science Teaching. 20, 1 (2001), 45–73.
[2] Berry, M. and Kölling, M. 2016. Novis: A notional machine implementation for

teaching introductory programming. Learning and Teaching in Computing and
Engineering (LaTICE), 2016 International Conference on (2016), 54–59.

[3] Chi, M.T.H. and Wylie, R. 2014. The ICAP Framework: Linking Cognitive
Engagement to Active Learning Outcomes. Educational Psychologist. 49, 4
(Oct. 2014), 219–243. DOI:https://doi.org/10.1080/00461520.2014.965823.

[4] Cunningham, K., Blanchard, S., Ericson, B. and Guzdial, M. 2017. Using
Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. (2017), 164–172.

[5] Cutts, Q., Robertson, J., Donaldson, P. and O’Donnell, L. 2017. An evaluation
of a professional learning network for computer science teachers. Computer
Science Education. 27, 1 (Jan. 2017), 30–53.
DOI:https://doi.org/10.1080/08993408.2017.1315958.

[6] Du Boulay, B. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research. 2, 1 (1986), 57–73.

[7] Hertz, M. and Jump, M. 2013. Trace-based teaching in early programming
courses. (2013), 561.

[8] Holliday, M.A. and Luginbuhl, D. 2003. Using Memory Diagrams When
Teaching a Java-Based CS. ACM Southeast Conference. (2003), 6.

[9] Kirschner, P.A., Sweller, J. and Clark, R.E. 2006. Why Minimal Guidance
During Instruction Does Not Work: An Analysis of the Failure of
Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based
Teaching. Educational Psychologist. 41, 2 (Jun. 2006), 75–86.
DOI:https://doi.org/10.1207/s15326985ep4102_1.

[10] de Kleer, J. and Seely Brown, J. 1981. Mental Models of Physical Mechanisms
and Their Acquisition. Cognitive Skills and Their Acquisition. Taylor & Francis
Group.

[11] Lister, R., Fidge, C. and Teague, D. 2009. Further evidence of a relationship
between explaining, tracing and writing skills in introductory programming.
Proceedings of the 14th annual ACM SIGCSE conference on Innovation and
technology in computer science education (2009), 19–26.

[12] Lister, R., Fone, W., McCartney, R., Seppälä, O., Adams, E.S., Hamer, J.,
Moström, J.E., Simon, B., Fitzgerald, S., Lindholm, M., Sanders, K. and Thomas,
L. 2004. A Multi-National Study of Reading and Tracing Skills in Novice
Programmers. ACM SIGCSE Bulletin. 36, 4 (2004), 119–150.
DOI:https://doi.org/10.1145/1041624.1041673.

[13] Lopez, M., Whalley, J., Robbins, P. and Lister, R. 2008. Relationships between
reading, tracing and writing skills in introductory programming. Proceeding of
the fourth international workshop on Computing education research - ICER ’08
(Sydney, Australia, 2008), 101–112.

[14] Schulte, C. 2008. Block Model: an educational model of program
comprehension as a tool for a scholarly approach to teaching. ICER ’08
Proceedings of the Fourth international Workshop on Computing Education
Research (2008), 149–160.

[15] Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kästner, C., Begel,
A., Bethmann, A. and Brechmann, A. 2017. Measuring neural efficiency of
program comprehension. Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017 (Paderborn, Germany,
2017), 140–150.

[16] Sorva, J. 2013. Notional machines and introductory programming education.
ACM Transactions on Computing Education (TOCE). 13, 2 (2013), 8.

[17] Sorva, J., Karavirta, V. and Korhonen, A. 2007. Roles of Variables in Teaching.
Journal of Information Technology Education. 6, (2007), 407–423.

[18] Sorva, J. and Sirkiä, T. 2010. UUhistle: a software tool for visual program
simulation. Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli, Finland, 2010), 49–54.

[19] Vainio, V. and Sajaniemi, J. 2007. Factors in Novice Programmers’ Poor
Tracing Skills. Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education (Dundee, Scotland, 2007), 236–
240.

[20] Xie, B., Nelson, G.L. and Ko, A.J. 2018. An Explicit Strategy to Scaffold Novice
Program Tracing. (2018), 344–349.

[21] Yamamoto, M., Sekiya, T., Mori, K. and Yamaguchi, K. 2012. Skill hierarchy
revised by SEM and additional skills. (Jun. 2012), 1–8.

Figure 3: A more complex TRACS trace

t

t

