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Demanding for narrow linewidth and stable lasers for several applications:
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* Metrology

Quantum (e.g. laser cooling)

Sensing (e.g. LIDAR)

* Telecommunications

* Positioning (e.g. GPS)
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In semiconductor lasers the linewidth is described by the Schawlow-Townes formula

Ay _@Rsponth@ U ) Oy (1 ‘l@vgz

8TTP,y¢

J. Buus, et al., Tunable Laser Diode
and Related Optical Sources, 2014

S & internal losses of the material.
 I',.tive mode confinement in the active region.
*  Rgpone SPONtaneous emission rate.

° a, mirror losses.

 P,,; power output from the laser.

° ay linewidth enhancement factor

group velocity.
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For a typical doping profile, p- and n-doped average absorption are a,, = 22 cm~ !t and a,, = 1 cm™t in InP-based.

Reduction of material losses in “pulling” the mode out of the highly lossy p-doped material.
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From an existing 3QW warfer emitting at 1550 nm, the FRL geometry was optimised:
* 500 nm thick FRL with no spacing from active area
 Reduction of QW number nyy, from 3 to 2

Internal losses .
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Fit of the material parameters from differential efficiency n, in Broad Area Lasers (BALS).
Measured internal losses a; = 4.13 cm™! lower in comparison with the non-optimised wafer with o; ~ 10 cm™1!
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Linewidth in high-power operation

From Schawlow-Townes formula, inverse relationship between linewidth and power output.

However, in real lasers verified just for a limited power range before linewidth broadening.
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ay depends on the injection current and, as a consequence, on the power output.
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» Longitudinal single-mode operation with a side mode suppression ratio (SMSR) exceeding 60dB.
* Very accurate selection of the emission wavelength

« Suitable for complex grating engineering on both transverse and longitudinal directions

* No material regrowth required

e Simple fabrication technology

SU8240 10.0kV 8.3mm x15.0k SE(U)
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Longitudinal Spatial Hole Burning (LSHB)

Phase shift layer is necessary for single mode operation but affects the electric field uniformity.
For high-power operation the electric field distribution, and gain in turn, is peaked at the phase shift layer.

. Simulated cavity field
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LSHB due to the correlation between the carrier concentration and the refractive index in semiconductors.
« Enhanced by non-uniformity in cavity field.

* Increases of the linewidth enhancement factor ay and causes mode hopping.

. . . . . . . , . 23,2
Engineering of the grating geometry to uniform the electric field across laser cavity. Catie Repont (s + ctm)am (1 HGEW
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Standard solutions to uniform the cavity field include:
» Distributed phase shift layer [p.znou, etal. 3. Appl. Phys., Vol. 70, No. 3 (1991)]
* Chlrped grating period [M. Okai, et al. Electronics Letters, Vol. 29, pp. 1696-1697 (1993)]

However both method are longitudinally engineered and have strict fabrication tolerances (i.e. = 1 nm).

Grating coupling chirp
« Better fabrication tolerances for transverse direction (i.e. = 10 — 100 nm).
» Critical parameters: chirp length L.;,-, and chirp depth k.,
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gfféﬁigétwy Chirped Grating

The aim of the central chirp is “to screen” the effect of the phase shift layer on the field distribution.
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Simulated cavity field for nmax=87 cm’
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From simulations the optimal chirp length is L.y, = 3 pm
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Sweep on the chirp depth k,,;,, allows to finely tune the
field distribution inside the cavity. 02
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The best cavity field uniformity, closest to the uniform grating, is obtained for k,,;,, =
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Slno%le mode operation over a wide current range High side-mode suppression ratio
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Measurement of the DFB laser linewidth

Linewidth measurements ;<;=32cm'1 L=3mm
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Under the same fabrication conditions, chirped grating lasers have narrower linewidth than standard phase
shifted lasers at high injection currents and high-power operation.

11




@fGlasgowy Conclusions

« Improvement of the mode profile for low losses (i.e. a; = 4.13 cm™1) at 1550 nm wavelength

* Improvement of the single-mode and narrow linewidth range (i.e. no linewidth broadening until
I = 500 mA) through chirped grating

* Narrow linewidth (i.e. Av = 100 kHz ) and high power (i.e. P,,; = 100 mW) lasers emitting at
1550 nm wavelength
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Upper cladding

Active region

Lower cladding ‘ ‘
Substrate

EBL mask definition Cladding dry etch

Si0, passivation 1
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Si0, etch
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PMMA mask
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evaporation
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Mode 1  Theripe = 0.4% Mode 2 Theripe = 1,1%

Epilayer growth direction Epilayer growth direction
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Multiple Quantum Well (MQW) active region to finely tune the optical transition through QW geometry.

For narrow QWs, the QW number does not affect mode profile but just mode confinement I';ctjpe = Now I 19w
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For high-power operation the best condition is to maintain 80
low carrier density to avoid detrimental effects, such as

junction heating or higher/non-radiative transitions. 60
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allows to have low carrier density also in power regimes.
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P.W.A. Mcllroy, et al., IEEE Journal of quantum electronics, Vol QE-21, No. 12 (1985)

Typical values for nyy, are 3-5 for InP-based and 1-2 for GaAs-based materials.
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« Strong and clear RF signal with a large of : A .-(40)=1 6807 Mz
number of points (i.e. 10000 points) '
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Lorentzian lineshape)
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» Linewidth measurement at -3dB from the peak are analitically calculated from the FWHM at -40dB and -
50dB from the peak. This measurement is not depending on the fit quality so it can be considered a

reliable value but represent an upper limit.
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The measured linewidth for DFB lasers with and without chirp clearly shows that the chirped grating allows to
reach larger injection current before to have linewidth broadening.
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« The asymmetry in the cavity reflectivity does not dramatically affect the electrical field
distribution, others cavity modes with a different field distribution do not lase as they do not
overlay the active region.

* The chirped grating ensures a uniform field distribution also for single-facet cavity
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Pound-Drever-Hall Technigue to lock the absolute wavelength to a stabile reference through electronic
feedback
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Ultimate aim is the integration of the laser and
stabilization setup in an enclosed package




