

Kavanagh, W. J., Miller, A., Norman, G. and Andrei, O. (2019) Balancing turn-based

games with chained strategy generation. IEEE Transactions on Games,

(doi:10.1109/TG.2019.2943227).

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/197167/

Deposited on: 23 September 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/197167/
http://eprints.gla.ac.uk/

1

Balancing Turn-Based Games with Chained Strategy Generation

William Kavanagh, Alice Miller, Gethin Norman, Oana Andrei
School of Computer Science, University of Glasgow, United Kingdom

Probabilistic model checking can overcome much of the complexity inherent in balancing games. Game balancing is the careful
maintenance of relationships between the ways in which a game can be played, to ensure no single way is strictly better than all
others and that players are offered a wide variety of ways to play successfully. We introduce a novel approach towards automating
game balancing using probabilistic model checking called chained strategy generation (CSG). This involves generating chains of
adversarial strategies which mimic the way players adapt their approach during repeated plays of a game. We use CSG to map
out the evolving metagame. The trends identified can allow game developers to identify strategies which will be too strong and
ways of playing the game which a player may want to use, but are never viable for successful competitive play. We introduce a case
study, a game called RPGLite, and use CSG to compare five candidate configurations for the game. We show how to determine
which configurations of RPGLite lead to a more fair and interesting experience for players. We also identify unexpected trends
in how the strategies evolve. Our approach introduces a new technique for improving game development and player experience.

Index Terms—Formal Verification, Automated Game Balancing, Game Design, Model Checking, Adversary Generation

I. INTRODUCTION

GAME balancing is a crucial, but notoriously difficult
part of game development. What constitutes a balanced

game is varies widely because the term depends on the game
genre. Beyer et al. [1] describe game balancing as:

“the process of systematically modifying parameters of game
components and operational rules in order to determine
satisfactory configurations regarding predefined goals.”

The predefined goals are specific to the game under consid-
eration with the aim of ensuring it is fair to all players and
is interesting to play. In this paper we introduce a technique
based on model checking, chained strategy generation (CSG),
that models a game being played over a period of time
through evolving strategies. We focus here on turn-based
stochastic games. We use a simple case study to show
how this approach allows for comparison of several similar
configurations of a game and the analysis of which are
satisfactorily balanced.

Our approach displays the metagame [2], which is the
evolving trend in what material and strategies players are
most likely to play. The metagame must be considered when
looking at game balance because games must be balanced
for the duration that they are played and not just at a single
point in time. We focus on measures of fairness and of how
interesting a game is to play, to show how balanced a game
is. Traditionally fairness refers to how fair a game is to the
players, however this is often achieved through symmetry
with players being offered the same choice of game materials.
When we refer to fairness, we are considering fairness
with respect to the materials rather than the players. We
demonstrate that a game is interesting by verifying that the
material used during competitive play is diverse, i.e. that
differing material is used throughout the metagame. We argue

that this is sufficient to show that a game is interesting,
given that the material is orthogonally differentiated [3], [4].
This means that the material differs qualitatively rather than
quantitatively, e.g. comparing a sword and a bow rather than
comparing a longsword and a shortsword. We ensure fairness
by showing that there are no dominant strategies and no
material is dominated such that it is never employed during
competitive play. We measure fairness by calculating the
extent to which effective strategies can be countered.

The results of CSG can be used to predict developments
in the metagame ahead of time. The intuition behind this
approach is not that we are modelling the ways individual
players learn to play a game, rather that we are modelling
whole communities playing over long periods of time. We
assume that communities will tend towards a locally optimal
strategy against some currently known effective strategy.
Players will look for the most effective way to win, which
is likely to be the best way to win against the current
most popular strategy. Our approach can be used to show
how diverse the strategies found during the players’ ongoing
search for the best way of playing will be, with greater
diversity suggesting a more balanced game.

Current industry methods for game balancing are reactive,
using player data and feedback to adjust game mechanics and
the configurations of game material to improve the player
experience. The aim of our work is to introduce a proactive
approach that can show that a game is fair and interesting
before it is released. Our approach does not use player data,
the gathering of which may require players to have a poor
experience playing unbalanced games.

Approaches to aid competitive game balancing without
using player data include using genetic algorithms [5] and
artificial agents [1] to automate game play. However, these
approaches do not consider strategies that develop in response

2

to repeated plays of a game. The comparative balance of
specific material, rather than strategies, is analysed using
autonomous agents and restricted game mechanics in [6]. The
balance of the card game, Top Trumps, is optimised using
both single-objective [7] and multi-objective optimisation [8],
although the cards in Top Trumps are not orthogonally
differentiated. Reinforcement learning (RL) techniques have
been used for dynamic difficulty adjustment of single player
games [9], [10], but RL has not yet been adopted as a
tool to balance multiplayer games. Other approaches to
automated game analysis include [11] which measures the
interestingness of games as a function of several aspects such
as game length, drawing quota and variability.

Model checking [12] is a widely used technique for
automated verification of reactive systems. Model checking
involves constructing a mathematical model that captures
a systems behaviour. To verify that a requirement, usually
specified in temporal logic, is satisfied, the model is system-
atically explored and analysed. CSG uses model checking to
recursively define effective strategies. Specifically, we use the
probabilistic model checker PRISM [13], which is employed
in a wide variety of contexts, from analysing automated
search-and-rescue efforts [14] to verification of cardiac pace-
makers [15]. Model checking is increasingly being used to
analyse games and game development, including identifying
bugs in major videogame titles [16] and the model checking
of simple multiplayer games [17]. Balance in board games
has been studied [18], where replayability is achieved through
maximising game duration, randomised play and there being
various successful strategies. Our work uses a more realistic
form of strategy description, obtained through maximising
the probability of winning, rather than altering a static value
of aggressiveness.

In summary, the contributions of this paper are: (i) the
specification of CSG, a technique for analysing a game’s
balance; (ii) methods for analysing a predicted metagame
to improve player experience; (iii) a case-study of a simple
turn-based stochastic game analysed with CSG, and; (iv) the
introduction of model checking as a tool for game balancing.

Next we describe the mathematical model of games we
use and explain our CSG technique along with the statistical
analysis that can be performed on the results. In Sect. III
we introduce a case study, RPGLite, and use it to illustrate
how our technique can both measure the variety with which
a game can be played and identify dominant strategies. We
then analyse the results in Sect. IV and discuss how CSG
can be used to make judgements on game configurations.
We conclude in Sect. V by reflecting on our approach, the
challenges of implementation and outlining future work.

II. METHODOLOGY

A. Turn-based Stochastic Games
We now introduce the mathematical model of games that
we use. For any finite set S, let Dist(S) denote the set of

discrete probability distributions over S.

Definition 1. A turn-based multiplayer stochastic game
(TSG) is a tuple G=(Π, S,A, ⟨Si⟩i∈Π, δ) where: Π is a finite
set of players; S is a finite set of states; A is a finite set of
actions; ⟨Si⟩i∈Π is a partition of S; and δ ∶ S×A→ Dist(S)
is a partial transition function.

We say that an action a is available in a state s of a TSG
if δ(s, a) is defined. The choice of which available action is
selected in state s is under the control of the player i such
that s ∈ Si and, if action a is selected, then the probability
of transitioning to state s′ equals δ(s, a)(s′).

A path of a TSG is a sequence ω = s0
a0Ð→ s1

a1Ð→ ⋯
such that δ(sk, ak)(sk+1)>0 for all k≥0. Let ω(k) denote
the (k+1)th state of the path ω. A strategy for player i is a
way of resolving the action choices of the player, based on
the game’s execution so far. More precisely, a strategy for
player i is a function σi which maps finite paths whose last
state is controlled by player i to distributions over actions
available in this last state. The set of strategies of player i
is denoted Σi. A strategy is deterministic if it always selects
actions with probability 1, and memoryless if it makes the
same choice for paths that end in the same state. A Markov
decision process (MDP) is a single-player TSG; in this case
we denote the set of strategies for the single player by Σ.

A strategy profile for a TSG has the form σ=⟨σi⟩i∈Π listing
a strategy for each player. We use IPathsσs for the set of
infinite paths corresponding to the choices of the profile σ
when starting in state s. For a profile σ and starting state
s, the behaviour of a TSG is fully probabilistic and we can
define a probability measure Probσs over the set of infinite
paths IPathsσs [19]. A fundamental property of TSGs is the
probability of reaching a target set. For TSG G, profile σ and
set of target states F , the probability of reaching F from the
state s under profile σ is given by:

PσG(s,F) = Probσs {ω ∈ IPathsσs ∣ ω(k) ∈ F for some k ∈ N}

For a two-player TSG G and target set F we assume the game
is zero-sum, i.e. player 1 tries to maximise the probability of
reaching F and player 2 tries to minimise it. In this zero-sum
setting, an optimal strategy σ⋆1 for player 1 in state s of G is
a strategy that maximises the probability of reaching F no
matter the strategy of player 2, formally we have:

infσ2∈Σ2 P
σ⋆1 ,σ2

G (s,F) = supσ1∈Σ1
infσ2∈Σ2 P

σ1,σ2

G (s,F)

An optimal strategy for an MDP M in state s for reaching a
target set F , is a strategy σ⋆ that maximising the probability
of reaching the target:

Pσ
⋆

M (s,F) = supσ∈Σ PσM(s,F) .

For both two-player TSGs and MDPs there exists memoryless
deterministic optimal strategies. Efficient algorithms exist
for generating such optimal strategies and the corresponding

3

optimal probabilities [20], [12] and have been implemented
in the model checkers PRISM-games [21] and PRISM [13].

For a two-player game G and memoryless strategy σ2 for
player 2, we can construct an MDP MG

σ2
where the choices of

player 2 are resolved according to σ2. The optimal strategy
of MG

σ2
is the most effective counter to the strategy σ2, and

therefore we refer to this optimal strategy as the adversarial
strategy to σ2 as it is only locally optimal.

We refer to the game elements available to players as
material. Material is frequently used in game development
as a way of enforcing diversity in the way in which games
are played, where players choose their material at the start of
a game. Examples of game material include characters, cars,
weapons and football teams. We consider games as a TSG
only after material has been chosen by all players. Often
the choice of material is considered part of a strategy, but
separating the two stages allows us to discount the effects
of different orderings on when players choose material. For
example, a two-player game where players choose material
simultaneously is very different to the same game where they
choose consecutively. In the latter case the second player will
be able to act with knowledge of what their opponent has
chosen, gaining an advantage. We justify this separation of
material and strategy by considering all possible allocations
of material amongst players.

B. Chained Strategy Generation

We use PRISM to generate effective strategies by finding
the counter to a strategy that is popular in the metagame.
CSG is the process of generating an effective strategy, then
generating the adversarial strategy against it. This lets us
reason that, when finding adversaries of adversarial strategies,
we are always finding effective strategies – a strategy that is
best against some previous effective strategy must itself be
effective. By identifying a small subset of effective strategies
from all of those available, we overcome one of the major
challenges with automated game balancing, the need to
compare all strategies to each other – a task which is often
intractable. We can use CSG to identify two possible issues
with a game’s balance, a dominant strategy existing for any
material or all strategies being dominated for some material.

Identifying Dominant Strategies. As with game balancing,
what constitutes a dominant strategy is different depending
on the genre of game. Generally a dominant strategy can be
thought of as a strategy so effective as to be superior to all
others. We define a dominant strategy as a strategy which is
best played against by itself, i.e. a strategy which is its own
adversarial strategy when all possible material is considered.

In order to identify dominant strategies quickly we exploit
the fact that a dominant strategy must be optimal against a
player with the same material. There can only be one optimal
strategy for each matching of material to players for the type
of games we consider. We can identify potential dominant

strategies by only investigating strategies which are optimal
against their own material, limiting the number to the size
of the material. We can then test these candidate strategies
against other material to see if they are indeed dominant.

Identifying Dominated Material. Dominated player material
is that which an informed player will never use, because no
effective strategy exists for it. In order to identify dominated
material we generate a series of effective strategies and
measure how effective individual material is against them.
Using CSG we can compare adversarial strategies for all
material against known effective strategies. If any material is
significantly worse than all others against all effective strate-
gies we claim it is dominated. Whilst not exhaustive, this
approach will give a good representation of how particular
material could be used in the best case.

Algorithm 1: Chained Strategy Generation
output: Returns the adversarial probabilities for all

material at each iteration
1 probs ∶= [][]
2 strats ∶= []
3 k ∶= 0 // iteration

/* Start with a randomly generated strategy */

4 strats[k] ∶= seed strategy
5 while strats[k] ≠ strats[j] for all j < k do
6 best m ∶= null // best material

7 best probability ∶= 0
8 for m ∈ material do

/* Find best opponent */

9 calculate adversarial probability against
strats[k]

10 probs[m][k] ∶= probability
11 if probability > best probability then
12 update best probability
13 update best m
14 end
15 end
16 k + +

/* store new strategy */

17 strats[k] ∶= strategy for best m against strats[k−1]
18 end
19 return probs

The methodology of CSG is shown in Algorithm 1. First
we generate a seed strategy for some material, a strategy
with an action chosen at random from those available at
every occasion where the player has a choice to make. We
then calculate the adversarial probabilities, i.e. the maximum
probabilities of winning, for all material against the seed
strategy. We generate the adversarial strategy for the material
with the greatest adversarial probability and then calculate
adversarial probabilities against the newly generated strategy.
We continue in this manner, calculating probabilities and gen-

4

erating the strategy which performs best, until we generate
a strategy that we have generated before – i.e. we found a
cycle of strategies. The algorithm always terminates because
there are a finite number of strategies and PRISM’s strategy
generation is deterministic. This happens when either a dom-
inant strategy or a cycle of effective, non-dominant strategies
is identified. At termination, the adversarial probabilities for
all material at each iteration are returned, however further
analysis is required to contextualise the results.

This approach generates a representation of the metagame
consisting of a series of adversarial strategies calculated in
turn. These strategies may be globally optimal, in which case
the algorithm will terminate having identified a dominant
strategy. If a dominant strategy is not identified then the
effect of performing CSG is the calculation of a series of
strategies representative of the evolution of the metagame
over time when played by real players. We will not always
find dominant strategies by iteratively calculating adversarial
strategies, which is why we first search for them separately.
It is not our intention to find dominant strategies during the
iterative phase of our approach.

By comparing the material used by the strategies generated
at each step, we can analyse the comparative effectiveness of
each material independent of strategy. Material used to gen-
erate adversarial strategies that consistently perform worse
than strategies for other materials is considered dominated.
By comparing the probabilities of winning for all strategies
per material, game designers can make value judgements on
comparative strength across all material.

C. Statistical Analysis of CSG
CSG outputs a sequence of probabilities for all material

in a game at every iteration of the algorithm. Analysis of
these results gives a greater understanding of how fair and
interesting the game is. We introduce a series of metrics for
objective comparison between similar games. Our definition
of an effective strategy is recursive: an effective strategy
is a strategy which performs best against another effective
strategy. Because of this, in our analysis we do not consider
all iterations of CSG, starting instead at a lower-bound to
allow the strategies time to settle. This is the base case
for our recursive definition of effective strategies. The delay
will need to be configured by game developers as games
have varying complexity and the length of time taken before
strategy generation settles will differ. The process of using
a delay in this way is equivalent to waiting for players to
familiarise themselves with a game before assuming they are
effective players.

In order to describe the formulae used, we introduce the
following notation:

● M is the set of playing material (of size ∣M ∣) and m
denotes some material in M ;

● k∗ is the first iteration of CSG where a strategy is
identified to be effective, i.e. the value for the delay

before players are using effective strategies in a single
execution of CSG (this is the base case for our definition
of effective strategies);

● K and K ⋆ = K−k∗ are the number of total iterations
and the number of iterations generating effective strate-
gies by CSG, respectively;

● winProb(m,k) is the maximum probability of winning
for any strategy using material m at iteration k;

● winProb(M,k) is the maximum probability of winning
for any strategy using any material in M at iteration k.

Material Robustness. First we study how effective specific
material is over an extended period of time. We refer to this
as a measure of material robustness. We calculate material
robustness by taking the mean of the maximum probabilities
of winning against effective strategies for some material:

ρ(m) def= (∑K
k=k∗winProb(m,k))/K ⋆

This gives a measure of how viable material is over time. It
can be used to compare strength between different material
to suggest redesign. If the robustness for material m is lower
than 0.5, then m is too weak as it loses more often than it
wins, even when employed with the strategies that maximise
the probability of m winning.

Mean Robustness. The mean of material robustness over all
material M gives a measure of how strong the effective
strategies are when compared to the best ways of playing
against them. We call this the mean robustness of M , denoted
µρ(M) and define it by:

µρ(M) def= (∑m∈Mρ(m)) /∣M ∣

A game with a high mean robustness is one in which players
can always find multiple ways of successfully playing against
effective strategies. A game with low mean robustness, i.e.
one that is close to or below 0.5, would be one in which
the effective strategies identified were overly powerful. For
this reason we claim that a higher mean robustness indicates
a more interesting game, as effective strategies do not limit
the choices of the opponents as much.

Win Delta and Loss Delta. The results of CSG can be
used to measure the variability of potential effectiveness for
material against effective strategies. We do this by calculating
the win and loss deltas for all material. The win delta of
material m, denoted by δwin(m), is the average probability
with which material can beat effective strategies. The loss
delta of material m, denoted by δloss(m), is the average
minimal probability with which material will lose to effective
strategies. Formally, for result ∈ {win, loss}:

δresult(m) def= (∑K
k=k∗δ

result(m,k)) /K ⋆

5

where

δwin(m,k) = { winProb(m,k)−0.5 if winProb(m,k)>0.5
0 otherwise

δloss(m,k) = { 0.5−winProb(m,k) if winProb(m,k)<0.5
0 otherwise

These values allow us to measure effectiveness of a particular
material m without considering situations where material m
is very unsuited to playing against a given strategy. This is
to be expected in a healthy metagame – some strategies are
always effective against certain material. A fair game is one
for which all material can win by similar, significant amounts.
Any material with a win delta of 0 never wins against any
effective strategy. We claim that in this instance the game
is unbalanced as that material will never be used in high-
level play. These values are measures of risk and reward and
could be exploited by game developers for whom it would
be desirable to have some material with low risk and low
reward and others with high risk and high reward.

Outplay Potential. CSG provides an indication of the level
of strategic depth in a game, showing how important the use
of good strategies is to success. We call this a measure of
outplay potential and calculate it as the mean of the difference
between each maximum adversarial probability and the mean
of the adversarial probabilities for all material once strategies
have settled. More precisely outplayPotential is defined as
the mean of:

winProb(M,k) − (∑m∈MwinProb(m,k)) /M

for K ∈ {k∗, . . . ,K}. A higher value of outplay potential
suggests a greater spread of potential effectiveness between
material. Outplay potential shows how important material
choice is to the probability of winning, with higher values
implying greater importance. This is a significant measure
because it allows developers to gauge how important game
knowledge is compared to strategic skill, i.e. knowing what
material to use rather than what strategy. We argue that
a game is more interesting if the maximum probability of
success is highly dependent upon material choice, provided
the material choice is fair.

III. CASE STUDY

A. Description of RPGLite

RPGLite is a case-study we have developed as a role-
playing game (RPG). It involves turn-based, stochastic com-
bat such as battling in Pokémon or combat in Dungeons &
Dragons. RPGLite is a two-player game in which each player
chooses two different characters out of three available. The
winner is the first player to reduce the health of both of
their opponent’s characters to 0 or less. The characters are:
the Knight, who attacks a single opponent; the Archer, who
attacks both opponents simultaneously; and the Wizard, who

Variable Range Description

attack 0, . . . ,9 Last action selected (0 – no action)
turn 0, . . . ,2 Player turn indicator
p1c1 −2, . . . ,8 player 1, character 1 health
p1c2 −2, . . . ,8 player 1, character 2 health
p2c1 −2, . . . ,8 player 2, character 1 health
p2c2 −2, . . . ,8 player 2, character 2 health
p1 stun 0, . . . ,2 player 1 character stunned (0 – neither)
p2 stun 0, . . . ,2 player 2 character stunned (0 – neither)

TABLE I: RPGLite variable for an example configuration.

attacks a single opponent and attempts to stun them, prevent-
ing them from performing an action on their following turn.
A coin is flipped to decide who goes first and play continues
in a turn-based fashion. On their turn, a player chooses one
action to perform from any of their alive characters that
are not stunned and a target for that action from any alive
opposing character. These actions result in a hit or a miss,
with a probability determined by the character’s attributes.
The Archer is unique in that their action can hit-twice, hit-
one, hit-other or miss-both rather than simply hit or miss.
Each of the three characters have three attributes: health,
accuracy and damage, which govern how much damage they
can sustain before dying, how likely their actions are to hit
and how much damage their actions inflict. Our purpose is
to identify values for these attributes for each character that
we know will make the game fair and interesting to play.

RPGLite is intended to be a simple game in order to allow
us to clearly illustrate our approach without complex game
mechanics. The game has an associated state space S. Every
state s ∈ S in RPGLite is a tuple of the form:

(attack , turn,p1c1 ,p1c2 ,p1 stun,p2c1 ,p2c2 ,p2 stun)

where each value is a realisation of a corresponding variable.
All variables, with ranges, are described in Table I. The
lower bound on health is calculated as 1 minus the maximum
damage attribute of all characters.

The characters are intended to excel at different times
during a play of the game. The Archer is meant to be able to
do the most damage early in the game when both opposing
characters are alive. For this reason we constrain the product
of the Archer’s damage and accuracy to greater than half
of the product of the Knight’s damage and accuracy. The
Wizard is intended to be more powerful towards the end of
a play of the game, when one of the opponent’s characters
is dead. When only a single opposing character is alive a
Wizard could stun them repeatedly with a high probability,
forcing an opponent to skip several turns.

The material choice for players in our case study is a pair
of characters. We abbreviate the character pairs to initials,
i.e. Knight-Archer is equivalent to KA. A full setup for a
game is denoted similarly, e.g. KAvKW.

6

Config. Character Health Accuracy Damage

Knight 8 0.70 3

A Archer 7 0.80 2

Wizard 7 0.75 2

Knight 8 0.70 3

B Archer 7 0.80 2

Wizard 7 0.85 2

Knight 8 0.70 3

C Archer 6 0.80 2

Wizard 7 0.85 2

Knight 9 0.70 3

D Archer 7 0.80 2

Wizard 7 0.85 2

Knight 9 0.90 2

E Archer 6 0.60 2

Wizard 8 0.60 2

TABLE II: Configurations for RPGLite.

B. CSG Results

We define several configurations for RPGLite which we
analyse using the approach of Sect. II-B. The configurations
are described in Table II. These configurations have been
developed over a period of time to illustrate how CSG
can be used during game development. Having started with
a configuration with minor differences between the mate-
rial, new configurations were created in response to the
results gathered from analysis of previous configurations.
A candidate configuration can be created and analysed for
effectiveness. Our approach can also identify the material
and general strategies that are weak, informing decisions
about future configurations. We check every configuration
for dominant strategies and search for dominated material
six times, using a random seed strategy each time. We make
sure that all material was selected for the seed strategy at
least once in the six executions.

The results of our dominant strategy identification tech-
nique are shown in Table III. We obtained the results using a
desktop machine running Ubuntu 18.10 with an Intel® Core™

i7−7700 CPU with 2×8GB of RAM. Identifying dominant
strategies took between 5 and 20 minutes and required
550MB of memory, per configuration. The largest of our
models has 816,480 states and can be built by our machine in
4.38 seconds. The results of identifying dominated material
are shown in Figs. 1–6. Each execution took between 10 and
90 minutes. Generating the models of RPGLite requires less
than 30MB of memory and takes approximately 10 seconds.
It takes fewer than 2 seconds to calculate the adversarial
strategy from a model. The majority of this time is spent
converting the files generated by PRISM into adversarial
strategies. The code used to perform CSG on RPGLite is
available at [22].

As an example of how we devised the configurations,

Config. Material Opposing material

choice KA KW AW

KA 0.500 0.470 0.483

A KW 0.623 0.500 0.723

AW 0.579 0.409 0.500

KA 0.500 0.594 0.546

B KW 0.559 0.500 0.617

AW 0.528 0.449 0.500

KA 0.500 0.716 0.665

C KW 0.434 0.500 0.532

AW 0.500 0.516 0.500

KA 0.500 0.625 0.350

D KW 0.472 0.500 0.526

AW 0.716 0.526 0.500

KA 0.500 0.539 0.368

E KW 0.479 0.500 0.424

AW 0.641 0.625 0.500

TABLE III: Comparison of adversarial probabilities against
optimal strategies for the same material in all 5 config-
urations. Rows represent the optimal strategy for a pair
when playing against itself, columns represent the adversarial
probability for a pair against a strategy. Therefore a cell
represents the probability of the column material winning
against the optimal strategy for the row material. The two
dominant strategies are highlighted (other material cannot
beat them with probability greater than 0.5).

we identified that there is a dominant strategy for KA in
configuration A. To counteract this we decided to make the
Wizard stronger by increasing Wizard accuracy in configura-
tion B by 0.1, to 0.85. We wanted to change configurations
minimally, to allow us to examine the effect of small changes
on strategies employed at high-level competitive play.

In the KA row for configuration A in Table III there is
no value greater than 0.5, this shows that there is a dom-
inant strategy for a Knight-Archer pair. A player adopting
the optimal strategy for KA in KAvKA cannot be beaten
with a probability greater than 0.5 by any strategy for any
opposing material. In a real world example, players would
eventually discover this strategy. A competitively motivated
player aware of such a strategy has no motivation to use
any other. For this reason we state that configuration A is
uninteresting to play.

We can show with CSG that gameplay will tend towards a
dominant strategy if one exists, as illustrated in Fig. 1. The
adversarial probabilities reach 0.5 and then stay at 0.5 as
the best way to play against the previous strategy is shown
to be to play the same strategy. When a dominant strategy
is present in a given configuration of a game, executions
of CSG tend to show the strategies identified converging to
it. Fig. 2 shows how every execution of CSG performed
on configuration A converges to the same probability of

7

Fig. 1: Configuration A: CSG. (left) A single example where the strategy at iteration 8 is identical to the strategy at iteration
9. (right) A closer examination of the boxed area from (left). The points represent the maximum probability of winning
against the previously identified best strategy using the material denoted. The blue diamond at the top of iteration 3 is
the maximum probability a player using AW can win by against the KW strategy in iteration 2. Iteration 4 will show the
maximum probabilities achievable against the AW strategy in iteration 3.

Fig. 2: Configuration A: six executions of CSG showing
gameplay converging to a dominant strategy in each instance.
The graph plots the highest probability of winning with any
material against the previously identified adversary or seed.
The seed material is displayed in brackets for each execution.
The seed strategy is different for each execution.

0.5. By examining the strategies we can confirm that the
same (dominant) strategy is identified in each instance. Our
implementation of CSG stops when a strategy is identified
which is identical to some strategy generated before. If a
strategy is identical to the strategy generated immediately
before it, then that strategy is dominant. A game developer
would endeavour to develop a game for which a longer cycle
of effective strategies exists.

Configuration B has a cycle of four effective strategies
which are identified in every execution, as shown in Fig. 3
(left). Fig. 3 (right) shows that eventually the same cycle is
identified in multiple executions of CSG, albeit out of step.
In the cycle of strategies there is at least one strategy for

each material. This shows that high-level competitive play
of RPGLite using configuration B would at various points
employ all material, which is something game developers
would strive for. Once the strategies settle for configuration B
(from iteration 3 and beyond in Fig. 3) there is a strategy for
all material against every effective strategy identified which
can win more often than it loses. This is shown by all values
being above the blue line at probability 0.5.

Configurations C and D converge on a cycle of effective
strategies and eventually identify the same cycles of strategies
every time, as shown in Figs. 4 and 5. Configuration C has a
cycle of length 8 whilst D has a cycle of length 6. Both
cycles include strategies for all material, although unlike
configuration B, some effective strategies cannot be beaten
with a probability greater than 0.5 by any strategy for specific
material. For example in Fig. 5 (left) the value for AW at
iteration 17 is 0.331. This means that the most effective
strategy using AW against the strategy identified for KA at
iteration 16 wins less than a third of the time.

The results of searching for dominated material with
configuration E are important for two reasons. First, there
is a dominant strategy for KW in configuration E, as shown
in Table III, but it is not identified in any of the six executions
of CSG (unlike for configuration A). Second, two different
cycles of effective strategies are identified, one of length 3
shown in Fig. 6 (left) and the other of length 16 shown in
Fig. 6 (right). Despite this, the results show clearly that AW
is dominated by the other material. Once the strategies have
settled in both cycles, there are no strategies for AW that can
win with a probability greater than 0.5 against any effective
strategy. In fact, AW is the worst choice of material at every
iteration once the strategies have settled, suggesting it would
never be used during high-level play.

Statistical analysis of the results of CSG allow for clearer

8

Fig. 3: Configuration B: CSG (left) and six executions of CSG (right).

Fig. 4: Configuration C: CSG (left) and six executions of CSG (right).

Metric Configurations

A B C D E

ρ(KA) 0.524 0.589 0.505 0.565 0.528

δwin(KA) 0.024 0.089 0.029 0.071 0.034

δloss(KA) 0 0 0.024 0.006 0.006

ρ(KW) 0.472 0.589 0.582 0.592 0.543

δwin(KW) 0.005 0.09 0.084 0.092 0.043

δloss(KW) 0.033 0.001 0.002 0 0

ρ(AW) 0.505 0.622 0.573 0.523 0.433

δwin(AW) 0.019 0.122 0.073 0.074 0

δloss(AW) 0.014 0 0 0.051 0.066

outplayPotential 0.033 0.082 0.062 0.096 0.052

µρ 0.5 0.6 0.553 0.56 0.502

TABLE IV: Statistical analysis for the five configurations
considered based on the three material metrics (robustness,
win delta and loss delta) and the two game configuration
metrics (outplay potential and mean robustness).

comparisons of how strategies develop across different con-
figurations. Table IV presents the measures described in
Sect. II-C for the 5 configurations.

C. Analysis of RPGLite

Having studied the results of CSG performed on RPGLite
we set k∗, the iteration of the first effective strategy, to 3.
This value is used in calculating the measures of balance
outlined in Sect. II-C. We claimed that for a game to be
fair all material must be able to win by similar, significant
amounts, therefore following CSG, configurations A and E
can be regarded as unfair. The results for δwin(KW) in A
and δwin(AW) in E (0.005 and 0.0 respectively) as well as
the consistently low values for the other win deltas show this.
Furthermore, the material and mean robustness values show
that they are uninteresting to play too. For both configurations
mean robustness is only slightly above 0.5 meaning the
choice of winning strategies for players is limited. KW is
dominated in configuration A and AW is dominated in con-
figuration E, as shown by their low robustness values. Both
configurations A and E can be discounted as unbalanced.

Analysis of configurations C and D show why it is
important to consider the delta values as well as material
robustness. Consider KA in configuration C and AW in
configuration D, both have significantly lower values for
robustness than the other material. However, we can use the

9

Fig. 5: Configuration D: CSG (left) and six executions of CSG (right).

Fig. 6: Configuration E: CSG for two different seed strategies.

delta values to show that AW is viable in configuration D
whilst KA is not viable in configuration C. Comparing the
loss deltas with other material illustrates the risk associated
with playing the material, both are far lower than the alterna-
tives. The win deltas are more significant, 0.029 compared to
0.084 and 0.073 in C, suggesting that the risk outweighs the
potential reward for playing KA. In D, the win delta for AW
is 0.074 compared to 0.071 and 0.092, a far more justifiable
risk to the player, given the potential reward. Although it may
appear that AW is dominated in configuration D, the delta
values show that it is highly viable, but only at certain times.

Having shown that configurations A and E are imbalanced
and that KA is too weak in configuration C, we are left only
with configurations B and D. B has the greatest µ robustness,
therefore it could be argued that it is the most interesting,
but D has greater outplay potential, suggesting it has a more
varied metagame. Game developers who want to decide on a
configuration based on these results could justifiably choose
either configuration B or D as the optimal one depending on
the type of game they wanted to make.

Configuration B would be a more player friendly game
then D because it is always possible to win with any material
against the effective strategies identified for B and the loss

deltas are 0.0 or 0.001 meaning there is almost always a
winning counter for all material against any effective strategy.
Fig. 3 shows a clear cyclical hierarchy for configuration B
where KA beats AW, AW beats KW and KW beats KA. Con-
figuration D has the same hierarchy, Fig. 5 shows that this is
less clearly defined than in B, as many optimal strategies are
only slightly better than strategies using different material.
The value for δwin(AW) in B (0.122) suggests that AW is
under powered compared to the other material, whereas the
values for configuration D are less varied.

IV. DISCUSSION

The results of CSG on our case study were not what we
expected in a number of ways. The fact that every execution
terminates in a cycle of strategies in a relatively short number
of iterations was surprising given the number of strategies
available. We assumed that the results would reflect those
for identifying dominant strategies, or that we would not
necessarily get more information than simply identifying the
probability of winning calculated for all material playing
optimally against all others. This was not the case – a great
deal of extra context is given by generating strategies in turn.
For example, simply calculating optimal values would give

10

no appreciation of the risk associated with using specific
material or of the extent to which material is dominated.
We were surprised by the dramatic effects caused by small
changes in configuration. Some configurations were designed
incrementally: C was created from B by reducing the health
value of the archer from 7 to 6, while D was created from
B by increasing the health value of the knight from 8 to 9.
Yet the differences in the results between configurations is
profound, demonstrating the value of our approach.

A key point to note about the cycle of effective strategies
identified for configurations B, C and D is that they include
at least one strategy using each material. This property alone
is enough to show that a game is well developed as natural
competitive play employs all of the choices offered to the
players, which can only be positive for game developers. This
is an example of orthogonally differentiated game material
constituting an intransitive relationship at high-level play, the
confirmation of which is one of the aims of this paper.

V. CONCLUSION

We have introduced new techniques for analysing game
balance by simulating educated competitive play through
CSG. We have outlined the technology used and the ap-
proach, and demonstrated its effectiveness through the use
of a case study. We have shown how our technique offers
game developers a deep insight into the interaction between
material and lets them ensure that a game is fair and
interesting to the players.

Future work includes scaling the approach to cope with
the complexity of a more realistic game. This may require
a purpose-built tool for performing CSG as the most costly
process is generating files to describe strategies and inputting
them back to the model checker. Improvements in this area
could mean significant linear time improvement for CSG. We
are also investigating the use of CSG on different forms of
games, including concurrent games. CSG could be expanded
to include automated analysis of results and reasoning about
reconfiguration of parameters to perform the entire balancing
process without human interaction.

Currently, in order to use our approach, a user would need
expertise in model checking. In future we hope to hide this
aspect by wrapping the entire modelling and analysis chain
within self-contained software. CSG could potentially be the
foundation of a very powerful tool for game analytics. This
is only an initial investigation into what could be possible
with CSG. More work is needed if it is to be used to by
professional game designers, however the early results are
encouraging.

ACKNOWLEDGMENT

This work is partially supported by the EPSRC Doc-
toral Training Partnership award EP/M508056/1 and the EP-
SRC Programme Grant Science of Sensor Systems Software
EP/N007565.

REFERENCES

[1] M. Beyer, A. Agureikin, A. Anokhin, C. Laenger, F. Nolte, J. Win-
terberg, M. Renka, M. Rieger, N. Pflanzl, M. Preuss, and V. Volz,
“An integrated process for game balancing,” in Proc. IEEE Conf.
Computational Intelligence and Games (CIG’16), 2016, pp. 1–8.

[2] M. S. Debus, “Metagames: On the ontology of games outside of
games,” in Proc. Int. Conf. Foundations of Digital Games (FDG’17).
ACM, 2017, pp. 18:1–18:9.

[3] H. Smith, “Orthogonal unit differentiation,” Lecture notes from GDC,
2003.

[4] E. Adams, Fundamentals of Game Design. Thousand Oaks, CA,
USA: New Riders Publishing, 2014.

[5] M. Morosan and R. Poli, “Automated game balancing in Ms PacMan
and StarCraft using evolutionary algorithms,” in Applications of Evo-
lutionary Computation. Springer, 2017, pp. 377–392.

[6] A. Jaffe, A. Miller, E. Andersen, Y. Liu, A. Karlin, and Z. Popovic,
“Evaluating competitive game balance with restricted play,” in Proc.
AAAI Conf. Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE’12). AAAI Press, 2012, pp. 26–31.

[7] A. B. Cardona, A. W. Hansen, J. Togelius, and M. G. Friberger, “Open
trumps, a data game,” in Proc. Int. Conf. Foundations of Digital Games
(FDG’14). Society for the Advancement of the Science of Digital
Games, 2014.

[8] V. Volz, G. Rudolph, and B. Naujoks, “Demonstrating the feasibility of
automatic game balancing,” in Proc. Conf. Genetic and Evolutionary
Computation Conference (GECCO’16). ACM, 2016, pp. 269–276.

[9] F. G. Glavin and M. G. Madden, “Skilled experience catalogue:
A skill-balancing mechanism for non-player characters using
reinforcement learning,” CoRR, vol. abs/1806.07637, 2018. [Online].
Available: http://arxiv.org/abs/1806.07637

[10] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic
computer game balancing: a reinforcement learning approach.” 01
2005, pp. 1111–1112.

[11] I. Althöfer, “Computer-aided game inventing,” Friedrich Schiller Uni-
versität, Jena, Germany, Tech. Rep, 2003.

[12] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[13] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. Int. Conf. Computer
Aided Verification (CAV’11), vol. 6806. Springer, 2011, pp. 585–591.

[14] R. Giaquinta, R. Hoffmann, M. Ireland, A. Miller, and G. Norman,
“Strategy synthesis for autonomous agents using prism,” in Proc. NASA
Formal Methods Symp. (NFM’18), ser. LNCS, vol. 10811. Springer,
2018, pp. 220–236.

[15] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre, “Quanti-
tative verification of implantable cardiac pacemakers over hybrid heart
models,” Inf. Comput., vol. 236, pp. 87–101, 2014.

[16] S. Radomski and T. Neubacher, “Formal verification of selected game-
logic specifications,” in Proc. EICS Workshop Engineering Interactive
Computer Systems with SCXML, 2015, pp. 30–34.

[17] R. Rezin, I. Afanasyev, M. Mazzara, and V. Rivera, “Model checking
in multiplayer games development,” in Proc. Int. Conf. Advanced
Information Networking and Applications. IEEE, 2018, pp. 826–833.

[18] P. Milazzo, G. Pardini, D. Sestini, and P. Bove, “Case studies of
application of probabilistic and statistical model checking in game
design,” in Proc. Int. Workshop on Games and Software Engineering
(GAS’15). IEEE, 2015, pp. 29–35.

[19] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov
Chains. Springer, 1976.

[20] A. Condon, “On algorithms for simple stochastic games,” Advances in
computational complexity theory, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 13, pp. 51–73, 1993.

[21] M. Kwiatkowska, D. Parker, and C. Wiltsche, “PRISM-games: veri-
fication and strategy synthesis for stochastic multi-player games with
multiple objectives,” STTT, vol. 20, no. 2, pp. 195–210, 2018.

[22] https://github.com/WJLKavanagh/chained strategy generation/.

http://arxiv.org/abs/1806.07637
https://github.com/WJLKavanagh/chained_strategy_generation/

	Introduction
	Methodology
	Turn-based Stochastic Games
	Chained Strategy Generation
	Statistical Analysis of CSG

	Case Study
	Description of RPGLite
	CSG Results
	Analysis of RPGLite

	Discussion
	Conclusion
	References

