
A Privacy Awareness System for Software Design

Inah Omoronyia*, Ubong Etuk† and Peter Inglis‡

School of Computing Science

University of Glasgow
Glasgow G12 8QQ, UK

*inah.omoronyia@glasgow.ac.uk
†u.etuk.1@research.gla.ac.uk
‡p.inglis.1@research.gla.ac.uk

Received 14 June 2019
Revised 2 September 2019

Accepted 17 September 2019

There have been concerting policy and legal initiatives to mitigate the privacy harm resulting

from badly designed software technology. But one main challenge to realizing these initiatives is
the di±culty in translating proposed principles and regulations into concrete and veri¯able

evidence in technology. This is partly due to the lack of systematic techniques and tools to

address privacy in the software design, hence making it di±cult for the designer to measure

disclosure risk in a more intuitive way, taking into account the privacy objective that matters to
each end user. To bridge this gap, we propose a framework for verifying the satisfaction of user

privacy objectives in software design. Our approach is based on the (un)awareness that users

acquire when information is disclosed, as it relates to the communication properties of objects in
a design. This property is used to determine the expected privacy utility that users will derive

from the design for a speci¯ed privacy objective. We demonstrate through case studies how this

approach can help designers determine which design decision undermines users' privacy

expectations and better design alternatives.

Keywords: Software design; privacy engineering; awareness.

1. Introduction

Seemingly innocuous design decisions during software engineering can unintention-

ally a®ect user privacy. This is aggravated with ubiquitous systems such as wear-

ables, cars and services that we depend on now becoming privacy threats because of

their ability to seamlessly communicate with each other [25]. Bad software design

*Corresponding author.

This is an Open Access article published by The Author(s). It is distributed under the terms of the Creative
Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 29, No. 10 (2019) 1557–1604

#.c The Author(s)
DOI: 10.1142/S0218194019500499

1557

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

http://dx.doi.org/10.1142/S0218194019500499

may undermine information protection by distorting user expectations and obscur-

ing privacy harm. When this happens, users are tempted to give up on privacy and

lose con¯dence in the technology. For example, studies have shown that most adults

do not believe online service providers will keep their data private and secure [39].

Whereas it is common for software engineers to design the systems and not

consider privacy, but rather delineated as the end users' problem for not being able to

exercise control. Even worse is where privacy is only considered as an afterthought

later in the development life cycle. In part, this is due to lack of incentives to invest in

secure design since end users cannot readily tell which software preserves privacy and

which does not at the point of sale [2]. This can make the designers comfortable

ignoring or indulging in privacy-corrosive design and hoping for the best [25]. A more

savory reason is that designers often lack appropriate tools and analysis techniques

to determine the extent to which a design representation preserves privacy [40, 41].

Irrespective of the rationale for ignoring privacy, it demonstrates the impact of the

lack of systematic consideration of privacy during software design.

It is also a common practice to align users' privacy needs and regulatory compliance

through privacy policies ��� describing data collection, processing and distribution

activities carried out by the software. The speci¯cation of such policies is majorly

business–driven and carried out by legal experts with little or no insights from the

software engineer. This makes it di±cult to link policy statements with demonstrable

evidence of their satisfaction in software design [4]. A further undesirable observation is

that these statements have becomemore complicated over the years and now are rarely

read by users. For example, Google's privacy policy statement has grown from 600 to

4000 words over the past 20 years, and their adjustments in response to GDPR have

seen a 30% increase in the number of words.a The use of policy-based solutions in this

way is symptomatic ofmasking deeply rooted privacy design problems in software with

super¯cial privacy policy statements as solutions.

Consequently, the privacy by design paradigm has become a vital part of the

dialog on what counts as good and e®ective privacy, and is often used as a slogan for

systems built with privacy considered from the onset. Its opposite is responding to

privacy harm after it has occurred. This initiative was passed by the Privacy

Commissioners and Data Protection Authorities as an essential component of fun-

damental privacy protection. The objective was to help companies protect privacy

by embedding a set of seven foundational principles into the design speci¯cation of

technologies, business practices and physical infrastructures [14]. One of the prin-

ciples even argues for the need to support privacy promises with a systematic and

demonstrable evidence.

But the challenge with privacy by design is the lack of any underpinning or

engineering understanding of those principles during software design [15, 25]. This

research is therefore motivated by the increased need for demonstrable evidence of

privacy preservation in software design. The expectation is that such evidence will

ahttps://policies.google.com/privacy/archive?hl=en-US.

1558 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

help software designers make appropriate design choices. Speci¯cally, this paper

investigates a framework for demonstrating that interactions between objects in a

software design enhance or abate the ability to realize a privacy objective. Such

evidence can then be used by designers to distinguish between a good and a bad

design from a privacy standpoint. This research is timely. Given the multitude of

design patterns used in designing software, it remains unclear how the interaction

between objects impacts on the ability of the software to preserve privacy; in par-

ticular, service-oriented software used for \wiring up" everyday objects to be part of

the Internet of Things, social networks, mobile systems and e-commerce.

The central thesis of this research is that a software design that preserves privacy

uses the appropriate disclosure protocol to enable interaction between objects. Such

disclosure protocol maximizes the satisfaction of a privacy objective. The framework

for investigating this assumption in a software design is shown in Fig. 1.

The framework takes as input a software design representing the behavior of a

system. This input is used to generate an intermediate interaction model (Secs. 4–6).

The model identi¯es interacting objects and provides insights on the interaction

history that the design will generate when implemented. In Sec. 4.1, we demonstrate

how this history di®ers from the perspective of each object, and how it evolves based

on the dynamic assignment of roles as information subject, sender or recipient.

Di®ering interaction history implies that the (un)awareness of interacting parties

(and therefore the extent of privacy realized) also di®ers. The interaction model

represents this distinct (un)awareness in the memory of objects in Sec. 4.2. We

demonstrate how a spectrum of (un)awareness ranging from being fully unaware to

fully aware can be measured. When actions speci¯ed in a design are invoked, there is

a transformation in the memory of associated objects along this spectrum. From an

analytical viewpoint, these actions are synonymous to information-°ow transactions

de¯ned by an object either requesting, consenting, sending or notifying another

object about information. In Sec. 5, we outline how these memory transformations

occur. Typically, information disclosure will consist of an ordered set of one or more

Fig. 1. Framework for verifying the satisfaction of a privacy objective in a software design.

A Privacy Awareness System for Software Design 1559

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

transactions to de¯ne a disclosure protocol. Section 6 outlines precedence rules for

transactions in a disclosure protocol, and also the consistency of object memory after

transformation.

We implemented PriSATb as a tool for reasoning about privacy in software de-

sign. The tool generates an intermediate interaction model representing a software

design and facilitates the mapping of disclosure protocols to interaction between

objects speci¯ed in the design. Given a privacy objective and assigned disclosure

protocols, PriSAT generates the expected privacy utility that each object will derive

from the design. In this manner, the designer can compare di®erent design alter-

natives to make informed design choice.

Our evaluation consists of two case studies. In Sec. 7.2, a followership network

design on Twitter is reverse engineered. The case study focuses on the scenario where

users interact with their followers privately. Our choice is based on the view that

Twitter represents an example of a system where the traditional assumption that the

impact of privacy can be localized to avoid contagion on other users' privacy becomes

di±cult to hold [58]. This is mainly due to the temporal and spatial distributions of

objects, as well as the autonomous nature of associated users. On Twitter, it is easy

for information once disclosed to reach unintended recipients, and users may be

unsure if an information-°ow path will ultimately lead to privacy violation. The

study showed that the design's ability to realize a privacy objective on Twitter varied

as information °owed in the network. This suggests that using the same disclosure

protocol to foster interaction between any objects introduced asymmetry in the level

of privacy each gets on the network. It was also observed that there is a maximum

limit on the level of privacy that a design can o®er. We demonstrated how a light-

weight refactoring of the design can improve this limit.

The second case study in Sec. 7.3 presents a scenario analysis involving a family of

interaction patterns for designing service-oriented software systems. These ranged

from patterns where interactions between the information producer and consumer

are facilitated or mediated via a broker using a push or pull mechanism, or a hybrid

of both, with or without binding. Popular frameworks and standard speci¯cations

such as Message Queuing Telemetry Transport (MQTT) [18] for facilitating inter-

action between objects in Internet of Things, RESTful APIs [31] for e-commerce

applications and messaging systems [33] are designed using one or more of these

patterns. Using scenario analysis, our aim is to highlight the limits of the privacy-

preserving capabilities of these patterns. This study demonstrates how design choices

in a service-oriented software system inhibit or enhance the ability for an information

producer, broker and/or consumer to realize a privacy objective. We show how the

choice of a design pattern can be determined based on a balance of functional and

privacy expectations. On the whole, this research will bene¯t academia, industry and

policy makers with interest in addressing privacy by design challenges of real-world

software systems.

bhttp://www.prisat.org.

1560 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

2. Background

Software design and privacy are the core concepts of this research. There are

numerous views on what constitutes a good software design [25, 48, 56, 12]. Broadly,

software design comprises the speci¯cation of how systems are architected, how it

functions, how it communicates and how the architecture, function and communi-

cation a®ect users. A design is judged to be good if it leads to software that is correct

(does what it should), robust (tolerant of misuse), °exible (adaptable to shifting

requirements), reusable, e±cient, reliable and usable [16, 22]. Ultimately, a good

design depends on the software engineer making the right design decisions. This

is important since every design decision re°ects an intent on how the software is

to function or be used, as well as users' expectations as to how the software is

compatible with contextual norms.

Likewise, there are diverse views of privacy in software. But we focus on a

viewpoint that is based on (un)awareness, as it relates to communication properties

of objects in a design and how end users interact via the objects. Such properties

imbibe object states in the design which directly impacts the ability of the software

to preserve privacy. This is as a consequence of the information disclosed to users

when an object enters or exits a state. Broadly, (un)awareness is central to the

manner by which we foster interactions in social settings. We coordinate and regulate

our disclosure behavior based on our awareness about those we interact with and

what information we want them to be aware or unaware. In a software-mediated

setting, if a user was previously unaware of a fact, then a subsequent disclosure

action may evolve the memory of objects representing the user, making the user

aware of that fact. It is assumed here that the (un)awareness that is modeled in an

object is perceived in the same way as its user. Hence, the two factors that can

in°uence a user's disclosure behavior are: (1) the user's current (un)awareness; and

(2) the desired (un)awareness that other users should have after disclosure. Hence,

privacy is the ability for a user to regulate the evolution of its (un)awareness, and

that of others, during information disclosure. The privacy objective during such

regulation may be to increase awareness (information visibility) or unawareness

(information secrecy) for one or more users.

Hence, verifying that a software design preserves privacy centers on how objects

interact in the design and whether such interaction satis¯es a privacy objective. We

are of the view that a systematic approach to considering the disclosure protocols

used for interaction between objects can (1) provide insights on the extent a privacy

objective is satis¯ed and (2) be used to select a better design from a set of alter-

natives. There are many of such disclosure protocols. For example, in order to satisfy

a privacy objective, it may be essential that when information is requested by a

recipient, then the sender is required to seek consent from the subject before the

information is sent to the recipient. For other cases, it may be that a granted consent

is acknowledged by the sender, and the subject is noti¯ed when information is sent to

the recipient [38]. Indeed, there are numerous ways to combine information request,

A Privacy Awareness System for Software Design 1561

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

consent, send and notice actions to de¯ne a disclosure protocol, with each combi-

nation likely to generate a di®erent level of privacy satisfaction since it results in a

unique (un)awareness transformation in the memory of associated objects.

3. Related Works

Hoepman [29] de¯ned a design strategy as an approach to achieve a certain design

goal. This favors certain structural organization of the design or schemes over others,

and contains properties that enable its distinction from other approaches that

achieve the same goal. Hoepman also extended this view to de¯ne a privacy design

strategy as a design strategy that achieves (some level of) privacy protection as its

goal. We leverage on this view to investigate how the structure of a design and the

limitations on disclosure protocols can vary across software design, as well as provide

insights into the e®ectiveness of an alternative.

This research contributes to achieving privacy by design in software. While

this paradigm has gained traction in policy circles, its actual integration into the

design of software remains an open research question [24, 5]. A review by Bernsmed

[9] summarized di®erent approaches to operationalize privacy by design into existing

software engineering processes. These include the Information and Privacy Com-

missioner of Ontario industry report on operationalizing privacy by design as a guide

to implementing strong privacy practices [15] and the OASIS Privacy Management

Reference Model and Methodology (PMRM) [47] for software engineering teams

to analyze the system from a privacy perspective and to help them identify

necessary technical and process mechanisms that should be implemented to support

privacy. Similarly, Microsoft [46] and NOKIA [45] have, respectively, presented

their engineering methodologies to bridge the gap between privacy laws and

principles and techniques to foster the realization of privacy by design. One novel

contribution is in the area of privacy impact assessments [54]; speci¯cally, to enable

the designer to carry out an assessment of designed software platforms to determine

the level of privacy risk that users are exposed to, and any associated mitigation

measures.

Developer-centered security is an emerging research area focused on how to get

developers to build more secure systems from the start [44, 57]. While the traditional

focus of cybersecurity research has been on developing new technologies and systems,

in recent years, this is shifting to understanding the software engineer and how they

are supported in creating secure products [53, 23]. One central theme is to explore

and improve the tool support and techniques that are available to software builders.

While process-centric tools exist for understanding the relationship between the

software engineering process and privacy [1, 35], there is very little research on how

to provide the developer with insights on the privacy-preserving capability of the

product itself. This research contributes to this endeavor by investigating an analysis

technique that enables the developer to understand how their design approach to

achieve information disclosure in software impacts on user privacy.

1562 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Normative research has been applied in reasoning about privacy. Breaux et al. [11]

used description logic to analyze privacy in data-°ow speci¯cation with multi-party

expectations. Similarly, Barth et al. [7] proposed the use of a temporal logic frame-

work for expressing and reasoning about normative protocols in privacy legislation.

Calikli et al. [13] used inductive logic programming to learn privacy norms in social

software. Furthermore, Aucher et al. [6] applied modal and deontic logic in reasoning

about obligations, permissions, knowledge and information exchange in the context

of privacy policy compliance. A similar technique is applied by He and Antón [26] in

the modeling of privacy requirements in role engineering. Our reasoning mechanism

complements these existing approaches. We applied an awareness model based on

possible world semantics to understand the nature of interaction between interacting

objects in a software design and the privacy implications.

Finally, this work relates to access control in computing which typically involves

the need to divulge information to authorized objects only [8]. An object here is a

generic term that refers to an active agent capable of initiating or performing a

computation of some sort. Access modes are broadly categorized into read, write and

execute privileges granted to an object. Our technique provides a means to investi-

gate the underlying engineering actions that lead to granted privileges and associated

privacy risk; for example, the manner in which information is requested, consent is

sought after, information is sent and user is noti¯ed. Indeed, our proposed approach

provides a mechanism to determine the extent to which the de¯ned access control

policies help preserve privacy.

4. Modeling Awareness, Unawareness and Privacy

The privacy threat envisaged relates to a networked setting where privacy is de-

pendent not only on an individual's action but also on those of other users. If this

interdependence is ignored during software design, it can lead to end-user perception

of loss over the control of their personal information after disclosure. Our threat

model therefore builds on the Communication Privacy Management Theory, which

de¯nes information disclosure management in terms of privacy ownership, control

and turbulence [43]. This theory is based on the principle that users believe they

own and have a right to control their private information, and such control

is achieved using personal privacy rules. When others are given access to a

user's private information, they become co-owners of that information. Such co-

owners need to negotiate on the mutually agreeable privacy rules about telling

others. Privacy boundary turbulence occurs when co-owners do not e®ectively

negotiate and follow mutually-held privacy rules, subsequently providing the per-

ception of control loss.

The focus of this paper is to mitigate the threat of privacy turbulence resulting

from inappropriate information disclosure in a software design. Hence, an interaction

model for analyzing software design is necessary to reveal the relationship between a

privacy objective, the disclosure protocols used to enable interaction between objects

A Privacy Awareness System for Software Design 1563

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

and the resulting privacy utility for end users. In this section, we discuss the com-

ponents of this model.

4.1. Behavior modeling with role-based interaction history

General knowledge modeling involves creating a computer interpretable model of

knowledge [34]. Adopting a similar approach, our aim is to create a model that

represents the behavior exhibited when users disclose or receive information via their

surrogate objects. This is a role-based interaction described by the information °ow

ti, involving the disclosure of the proposition about a subject (su) from a sender (s)

to a recipient (r):

tið Þ ¼ ðUi;RÞ; ð1Þ
where

. Ui is the set of objects associated with ti;

. R ¼ fsu; s; rg are the roles that object in Ui can assume;

. roles : Ui ! 2R is a function mapping each object uj to a set of roles, rolesðujÞ � R.

When the sender discloses about itself to the recipient, then s and su refer to the

same object. Alternatively, before is disclosed by the sender to a recipient, it is

either generated by the sender or is granted custody by the subject. In this case, s, su

and r refer to di®erent objects. Finally, an object can also assume the roles of subject

and recipient. This is when the sender sends about a subject to the subject. Here, su

and r refer to the same object. The ¯rst and last scenarios highlight the duality of

roles during information °ow. The sender cannot send to itself. This makes it

impossible for s and r to reference the same object.

Furthermore, when is disclosed by multiple objects during interaction, an

information °ow path is formed. Formally, a path is a sequence of information

°ows represented by

t0<i�nð Þ ¼
Xn
i¼1

ðUi;RÞ;

where n is the path length and Ui � U . When s 2 rolesðujÞ at t1, then uj is the path

source. Whereas, if uj is the recipient of at t1, then the information °ow at t2 is

dependent on uj to switching its role from recipient to a sender. This switching of

roles propagates from t1 up to tn. A backtrack occurs along a path when the sender

at ti discloses to a sender at tk<i; for instance, an interaction involving u1 and u2

where u1 sends to u2, then u2 sends back to u1. A path terminates at tn when the

intended destination of is reached without backtracking. Alternatively, a path

terminates at tn when a backtrack occurs. At this point, a cycle is formed and

terminated to prevent paths of in¯nite length over .

Disclosed information may be attributed to one or more subjects. For the latter,

attribution can be prede¯ned statically, with all the subjects in determined before

1564 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

disclosure at t1. Alternatively, attribution is determined dynamically as the infor-

mation °ows along a path. In this case, an object that assumes the role of a sender at

tn�1 may become a subject at tn. The role of a subject is permanent once assigned and

cannot be switched over the history of a path. Whereas, since a path terminates once

a backtrack is observed, an object can switch the roles of sender and recipient no

more than once and twice, respectively, along a path. Finally, information may °ow

concurrently along any two paths t10<i�n and t20<i�m. The result is an interaction

network consisting of all information-°ow paths:

Tnetð Þ ¼ ft10<i�nð Þ; t20<i�mð Þ; . . . ; t j0<i�kð Þg:
Assume an interaction between the set of objects u1–u5 over about u1. First, u1

discloses to u2 and u3. Subsequently, u2 and u3 disclose to u4 and u5, respectively.

Finally, u4 sends back to u1 and u2 and also discloses to u5. The graph diagram,

interaction network (represented as adjacency matrix), resulting information °ow

paths and role-based interaction histories for static and dynamic subject attributions

are illustrated in Fig. 2. In extracting paths from the interaction network, the order

in which the disclosure actions are executed is nonconsequential and the longest

possible path that satis¯es backtracking constraint is assumed. It can be observed

that each object in the network generates a peculiar interaction history based on its

roles during each information °ow. An alternative information-°ow setting may

result in a di®erent interaction history. Our objective is to understand how these

variations in disclosure behavior can be used to articulate the level of (un)awareness

that objects attain about disclosed information. Subsequently, we explore how such

(un)awareness can be regulated in a software design to preserve privacy.

(a)

(b)

Fig. 2. Role-based interaction histories from the viewpoints of u1–u5 using static and dynamic subject

attributions.

A Privacy Awareness System for Software Design 1565

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

4.2. The (un)awareness of objects

Early works on reasoning about awareness in interactive settings assume limited

rationality of objects [17, 20, 27]. This implies that when the information is disclosed,

the awareness obtained by objects would vary within a spectrum of being fully aware

of the information to fully unaware. In this Subsection, we leverage on this as-

sumption to set the foundations for reasoning about the relationship between soft-

ware design and the awareness generated by the interaction properties of objects in

that design. To achieve this, the memory of an object based on its interaction with

other objects about is represented using possible world semantics for describing

alternative worlds (modes) and accessibility relations between such worlds [49, 28].

When is disclosed in an information °ow, then the subject, sender and recipient

who are previously unaware may become aware of and its related propositions.

Thus, the (un)awareness contained in the memory of an object about can be

modeled using Mð Þ ¼ ðW ; p;R; I;wcÞ, where
. W is a set of possible worlds each considering a unique viewpoint on ;

. p is referred to as the principal and represents the object whose memory contains

the (un)awareness of ;

. R 2 2fsu;s;rg; 8su 2 SU, is a set of reference objects whose (un)awareness about

may be considered by the principal. Each subject, sender or recipient may assume

the role of a principal and/or a reference object;

. I � W �W is the accessibility relation on W . Given two worlds w1;w2 2 W , the

principal ¯nds in w1 indistinguishable from in w2;

. wc is the current world of p.

To distinguish between an object being aware and the one that is unaware, we de¯ne

an awareness instance in the memory of an object to consist of a principal and the

optional reference objects, represented by the modal operator A. Similarly, an un-

awareness instance contains a principal with optional reference objects, represented

by the operator :A. A composite instance contains more than one operator. Oth-

erwise, the instance is atomic. The utilization of this operator precludes the valuation

of the truth of a proposition as expected in reasoning about knowledge. In the

following, we generate four (un)awareness classes in the memory of p based on M .

[A1] The ¯rst class represents a principal being aware or unaware of the atomic

proposition f (i.e. ¼ f). Instances of this class only contain the principal with no

reference object, rendering R an empty set. Determining whether p is aware or

unaware of f can be modeled by considering W as a set of two possible worlds. The

¯rst world is w1 where p does not consider f possible and is written as :f. The second
world, w2, is the world where p considers f possible. The accessibility relations

between these two worlds are illustrated in Fig. 3. From w1, both w1 and w2 are

accessible. Whereas, from w2, only w2 is accessible. The unshaded world are Fig. 3

represents the current world of p. When p's current world is w1, then p is unaware

of f and it is represented as :Apf. This is because in this world, :f in w1 is

1566 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

indistinguishable from f in w2. Conversely, when p's current world is w2, then p is

aware of f and it is represented as Apf. This is because f is uniquely distinguishable

from w2 since it no longer considers w1 accessible. In summary, let Mp represent the

memory of principal p. When reasoning about p's (un)awareness of f, then :Apf and

Apf exist in the memory of p thus

A1p ¼ f:Apf;Apfg and 8a 2 A1p; a 2 Mp:

[A2] The second class enables the principal to consider whether a reference object

is aware or unaware of f. In this case, is a composite proposition. Hence, A2 is a

class of (un)awareness that can be used to reason about instances inA1. Instances of

A2 can only contain one reference object. Thus, R may contain either the subject,

sender or recipient. We refer to this potential reference object as r 0. Determining

whether p is aware or unaware that r 0 is aware or unaware of f can be realized by ¯rst

generating the (un)awareness of r 0 about f asA1r 0 ¼ f:Ar 0f;Ar 0fg. The next step is

to consider every instance in A1r 0 as and apply similar heuristics used in realizing

p's (un)awareness of f as highlighted in A1 for each . The result is a set of possible

worlds, their accessibility relations and p's (un)awareness given its current world and

 as shown in Fig. 4. In summary, when considering whether p is (un)aware that a

reference object r 0 is (un)aware of f, then :ApAr 0f, ApAr 0f, :Ap:Ar 0f and Ap:Ar 0f

exist in the memory of p thus

A2p ¼ f:ApAr 0f;ApAr 0f;:Ap:Ar 0f;Ap:Ar 0fg and

8a 2 A2p; a 2 Mp:

[A3] The third class enables the principal to consider the (un)awareness that a

reference object may have about the principal. Hence, A3 is also a composite

(a) (b) (c) (d)

Fig. 4. The (un)awareness of a principal (p) about the (un)awareness of r 0.

(a) (b)

Fig. 3. The (un)awareness of a principal (p) about the proposition f.

A Privacy Awareness System for Software Design 1567

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

proposition and represents the class of (un)awareness that can be used to reason

about instances in A2. Instances of A3 contain one reference object and a principal.

The reference can either be the subject, sender or recipient. Again, we refer to the

potential ¯rst reference object as r 0. Determining whether p is aware or unaware that

r 0 is aware or unaware that p is aware or unaware of f is realized by ¯rst generating

the (un)awareness of r 0 about p being aware or unaware of f. Thus

A2r 0 ¼ f:Ar 0Apf;Ar 0Apf;:Ar 0:Apf;Ar 0:Apfg:
The next step is to consider every instance in A2r 0 as and apply similar heuristics

used in realizing p's (un)awareness of f as highlighted in A1 for each . The result

is a set of possible worlds, their accessibility relations and p's (un)awareness given

its current world and as shown in Fig. 5. In summary, when considering whether p

is (un)aware that a reference object r 0 is (un)aware that p is (un)aware of f, then the

memory of p is de¯ned by adding every instance of A3p to Mp. Thus

A3p ¼ f:Ap:Ar 0Apf;Ap:Ar 0Apf;:ApAr 0Apf;ApAr 0Apf;

:Ap:Ar 0:Apf;Ap:Ar 0:Apf;:ApAr 0:Apf;ApAr 0:Apfg and

8a 2 A3p; a 2 Mp:

[A4] This ¯nal class enables the principal to consider the (un)awareness that a

reference object has about other references. Hence, A4 is also a class of (un)aware-

ness that can be used to reason about instances in A2 where is a composite

proposition. Instances of this class contain two reference objects, these are any

ordered pair of subject, sender and recipient. We refer to this ordered pair as r1 and

r2. Determining whether p is aware or unaware that r1 is aware or unaware that

r2 is aware or unaware of f can be realized by ¯rst generating the (un)awareness of

r1 about r2 being aware or unaware of f and vice versa. Thus

A2r1 ¼ f:Ar1Ar2f;Ar1Ar2f;:Ar1:Ar2f;Ar1:Ar2fg;
A2r2 ¼ f:Ar2Ar1f;Ar2Ar1f;:Ar2:Ar1f;Ar2:Ar1fg:

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The (un)awareness of a principal (p) about the (un)awareness of r 0 about the (un)awareness of p.

1568 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

The next step is to consider every instance in A2r1 and A2r2 as and apply similar

heuristics used in realizing p's (un)awareness of f as highlighted in A1 for each .

The result is a set of possible worlds, their accessibility relations and p's

(un)awareness given its current world and as shown in Fig. 6. In summary, when

considering whether p is (un)aware that a reference object r1 is (un)aware that

another reference object r2 is (un)aware of f, then the memory of p is de¯ned by

adding every instance of A4p to Mp. Thus

A4p ¼ f:Ap:Ar1Ar2f;Ap:Ar1Ar2f;:ApAr1Ar2f;ApAr1Ar2f;

:Ap:Ar1:Ar2f;Ap:Ar1:Ar2f;:ApAr1:Ar2f;ApAr1:Ar2f;

:Ap:Ar2Ar1f;Ap:Ar2Ar1f;:ApAr2Ar1f;ApAr2Ar1f;

:Ap:Ar2:Ar1f;Ap:Ar2:Ar1f; z:ApAr2:Ar1f;ApAr2:Ar1fg
and 8a 2 A4p; a 2 Mp:

4.3. Object memory

The subject, sender or recipient can assume unique or dual roles as the principal and/

or reference object in an instance of a class. When the roles are unique, then two

consecutive (un)awareness operators cannot refer to the same object in that instance.

For this case, there are 42 (un)awareness instances from A1, A2, A3 and A4,

respectively, in the memory of a principal as illustrated in Table 1. These instances

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6. The (un)awareness of a principal (p) about the (un)awareness of r1 about the (un)awareness of r2.

A Privacy Awareness System for Software Design 1569

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

capture all the (un)awareness that a subject, sender or recipient will acquire about

disclosed information and the related (un)awareness propositions. For each class,

there is a set of (un)awareness instances with the same principal and reference

object(s). For example, labels 3, 4, 5 and 6 in column Msu of Table 1 constitute the

set of all (un)awareness instances of type A2 in the memory of the subject with the

sender as a reference object. Whereas, labels 7, 8, 9 and 10 are the set of all (un)

awareness instances of type A2 in the memory of the subject with the recipient as a

reference object. This uniqueness of roles in an information °ow represents the (un)

awareness an object has about the (un)awareness of other parties during disclosure.

When roles are not unique, then a principal can also be a reference object. In this

case, two consecutive (un)awareness operators may refer to the same object. This

duality of roles during information °ow depicts self-awareness where an object is

(un)aware of its own (un)awareness. This phenomenon is normally assumed in

standard models of belief and knowledge as positive and negative introspections

[10, 55]. An object is positively introspective if it is aware that it is aware of

whenever it is aware of . Similarly, an object is negatively introspective if it is aware

that it is unaware of whenever it is unaware of . This observation does not a®ect

the instances of A1 since it only contains a principal. Whereas, for instances of A2

andA3, the principal and the reference are the same object. Hence, instance labels 3,

7 and 4, 8 in A2, respectively, depict the ability/inability of an object to positively

introspect given that the object becomes (un)aware that it is aware of f. Also, labels

5, 9 and 6, 10, respectively, represent the ability/inability of an object to negatively

introspect given that the object is (un)aware that it is (un)aware of f. Similar views

of positive and negative introspections are observed for labels 11–26 in A3, where an

object is (un)aware that it is (un)aware that it is (un)aware of f. For A4, although

the two reference objects remain a unique pair, the principal and one element of the

pair can refer to the same object. This results in positive and negative introspections

Table 1. The memory of objects involved in an information °ow.

1570 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

for labels 47–42, where an object becomes (un)aware that it is (un)aware that

another object is (un)aware of f.

4.4. Awareness di®erential

At any moment in time, an (un)awareness instance may or may not be tenable in the

memory of an object. An instance becomes untenable when a principal considers it no

longer reasonable as a result of a disclosure action, and vice versa. For example, it is

tenable for the recipient to consider that it is aware of f after it receives f from the

sender. Conversely, it is untenable for a recipient to consider that it is unaware of f

after it has received f from the sender. The transition of an awareness instance from a

tenable to untenable state or vice versa is based on the executed disclosure protocol

during information °ow as detailed in Sec. 6. Categorizing each (un)awareness in-

stance in the memory of a principal in this manner enables the distinction between

di®erent levels of (un)awareness resulting from an information °ow.

De¯nition 1. A principal p is fully unaware of a proposition if for every tenable

instance a with respect to in the memory of p, the actual world of p is w1.

Otherwise, information °ow generates full or partial awareness of whose se-

verity is determined by the number of tenable instances in w1 or w2. This measure

depicts the level of doubt that the principal may have about disclosed information,

and computed as the awareness di®erential

ADiffðp;AiÞ ¼
�� 1

�� 1
þ �;

where

. � is the number of tenable instances of class Ai with the same reference object(s)

in Mp;

. � is the number of instances of class Ai with the same reference object(s) in Mp;

. � is the number of tenable unawareness instances of class Ai with the same ref-

erence object(s) in Mp, and acts as a discriminator between full awareness and full

unawareness.

Assume for the class A2 that it is only tenable for the principal to consider that it

is aware that r1 is aware of f. Then the awareness di®erential for this class in the

memory of the principal is zero since this is the only active instance from A2 relating

to r1. Whereas, if in addition it is tenable for the principal to consider that it is aware

that r1 is unaware of f, then the awareness di®erential becomes 0.33. Alternatively,

when it is only tenable that the principal considers that it is unaware that r1 is aware

of f and that it is unaware that r1 is unaware of f, then the principal is fully unaware

with respect to A2 since for both tenable instances the actual world of the principal

is w1. In this case, the awareness di®erential of the principal with respect toA2 is 2.3.

Overall, the awareness di®erential leans towards zero when the principal becomes

fully aware.

A Privacy Awareness System for Software Design 1571

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

De¯nition 2. A principal p is fully aware of if for every tenable instance a with

respect to in the memory of p, the actual world of p is w2 and ADiffðp;AiÞ ¼ 0,

where Ai is the class of a.

For instance, when the sender discloses information about the subject to a re-

cipient, the subject attains full awareness when only the instances labeled 1, 3, 7, 11,

19, 27 and 35 are tenable in Msu. This implies that the subject considers it tenable

that it is aware of f and aware that both the sender and recipient are aware of f. It

also considers it tenable that it is aware that the sender and recipient are aware of its

awareness of f. In addition, the subject considers that it is tenable that it is aware

that the sender is aware that the recipient is aware of f. Finally, the recipient is

aware that the sender is aware of f. At full awareness, the awareness di®erential for

su over all awareness classes is therefore

X4
i¼1

ADiffðsu;AiÞ ¼ 0:

5. Memory Transformation

The advantage of modeling (un)awareness using possible world semantics is the

ability to highlight how disclosure protocols transform the memory of objects as

information °ows from one object to another. To illustrate this, we represent the

disclosure protocol that results in (un)awareness transformations using transactions.

A transaction contains processes responsible for updating the memory of object on

what it is (un)aware in certain states. These transactions are labeled information

Request, Consent, Sent and Notice, respectively. Transactions and associated

processes are executed in sequence to ensure that the memory of objects does not end

up in invalid (un)awareness states. We assume at the beginning of a path, before an

information °ow occurs (t0), that the subject, sender and recipient are fully unaware.

Based on this assumption, tenable instances in the memory of the subject, sender and

recipient in Table 1 are labels 2, 4, 6, 8, 10, 15–18, 23–26, 31–34 and 39–42 for Msu,

Ms and Mr, respectively.

A disclosure protocol constitutes a sequence of transactions that enables the

sender, subject and recipient of an information °ow to gain a level of awareness

ranging from being partially aware to fully aware after disclosure. The consequence

of a disclosure protocol in the memory of a principal at t1 after disclosure is two-

faceted. First, one or more previously tenable (un)awareness instances of the same

class and reference object(s) become untenable. Second, for the same class and ref-

erence object(s), one or more previously untenable (un)awareness instances become

tenable. This section highlights these memory transformations for Request,

Consent, Sent and Notice transactions.

1572 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

5.1. Request

This transaction involves a sender and a recipient, and is required to give the sender

an opportunity to consider if a recipient should gain awareness of information. This is

representative of a setting where privacy is achieved by enabling an object to accept

or reject another object's request to gain awareness of information. The semantics

involve a recipient requesting for information about a subject from a sender with a

request process. Tenable awareness instances in the memory of the recipient and

sender as a result of this transaction are shown in Table A.1 of Appendix A. There

are two scenarios where information can be requested by a recipient from a sender.

First is where the sender generates requested information about the subject. In such a

scenario, the sender is the custodian of information about the subject. The alter-

native scenario is where the sender is not in possession of the requested information.

In this case, the request can only be ful¯lled if the information is sought from the

subject. For example, in an event-driven system, a component (recipient) may re-

quest event noti¯cations about another component (subject) from the event broker

(sender). At the time of request, the broker is unaware of such noti¯cations from the

subject. Hence, the transaction can only be ful¯lled when noti¯cations are subse-

quently pushed by the subject component to the broker.

5.2. Consent

This transaction involves the sender and subject, and the aim is for a sender to disclose

information to a recipient only when granted permission to do so by the subject.

Obtaining Consent may be implicit where initiating the operation acts as the will-

ingness to disclose; otherwise it may be explicit, where the user is clearly presented with

an option to agree or disagree (opt-in or opt-out) of the collection or disclosure of

personal information [21]. Consent can be speci¯c or generic. The former involves a

sender seeking consent or the subject granting consent to disclose information to a

speci¯ed recipient. Hence, the sender has identi¯ed the recipients for which it is seeking

or granting consent. The subject is also informed or able to identify the recipients to

which information will be sent at the time Consent transaction is executed. Conversely,

generic Consent involves the sender seeking or the subject granting consent to disclose

information to unknown recipients. The semantics are as follows: The sender ¯rst seeks

consent from the subject to disclose information to a recipient with seekConsent.

Subsequently, the sought consent may be granted by the subject with grantConsent.

Tenable awareness instances in the memory of the subject and sender as a result of this

transaction for speci¯c consent are shown in Table A.4 of Appendix A.

A seekConsent process can also be executed in one of the two ways. In the ¯rst

case, the sender is the custodian of information about the subject for which the

disclosure consent is being sought. Hence, the sender is aware of information to be

disclosed at the point seekConsent is executed. Alternatively, the subject is the

source of information for which the consent is being sought. In this case, the subject

becomes aware of information to be disclosed at the point seekConsent is executed.

A Privacy Awareness System for Software Design 1573

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

After grantConsent is executed, it becomes tenable for the subject and sender to

consider that they are aware of the information for which the consent is being

granted. Hence, it is impossible for the subject to grant consent to disclose infor-

mation that it is not aware. Also, it is impossible for the sender to remain unaware of

the information it has been granted consent to disclose. Tenable instances ofA2,A3

and A4 are also dependent on whether the sender generates the information for

which the consent is being granted, or the subject is the source of the information.

Finally, when the consent is not granted by the subject for the information generated

by the sender, but rather it responds to the sender with an acknowledgment of

sought consent, then it is tenable for the subject to consider that it is aware of the

information for which the consent is denied. Hence, it is impossible for the subject to

acknowledge sought information that it is not aware (cf. Sec. 5.5).

5.3. Sent

This transaction enables a recipient to gain awareness of information about a subject

and involves a sender and a recipient. The semantics entail the sender disclosing

information to the recipient with a send process. After the execution of this process,

the recipient becomes aware of disclosed information with the corresponding trans-

formation in tenable A1–A4 instances in the memory of sender and recipient as

shown in Table A.2 of Appendix A.

5.4. Notice

A Notice transaction is used by an object to notify other objects of its state of

(un)awareness. There are primarily two types of noti¯cations ��� prominent and

discoverable [37]. Prominent notice is the one that is designed to catch the user's

attention and the user to inspect the outcome of their privacy options and choices.

Whereas, discoverable notice is the one that the user has to ¯nd. Irrespectively, they

both aim to achieve privacy by ensuring transparency ��� referring to openness to

users in the manner personal information is manipulated [3]. These include which

information is sent, who the receiver is and where the information came from. To

achieve transparency, it is then an obligation for each object to inform other parties

involved in an information °ow of its (un)awareness. Realizing full transparency across

parties involved in an information °ow requires six forms of Notice transactions

involving each pair of sender, subject and recipient as demonstrated in Table A.3

of Appendix A. For example, the transaction Notice:s–su is triggered by the sender to

a subject, and results in transforming the memory of the subject.

5.5. Process acknowledgments

An acknowledgment provides the guarantee of information receipt. In a social set-

ting, the mere act of a subject granting consent to disclose or the sender disclosing

1574 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

the information may provide enough guarantee that the sender (respectively, re-

cipient) is aware of the information. But this may not hold in a socio-technical

setting. For example, the information may be held up in a message bu®er not yet

accessed by the reference or principal object. Hence, for the guarantee of delivery, an

object may provide acknowledgment on receipt of the information. An acknowl-

edgment can occur after the execution of Request-, Sent-, Notice- and

Consent-related processes as shown in Table A.5 of Appendix A.

6. Disclosure Protocol Suite

The transactions in a disclosure protocol depend on its inherent processes:

– There are two variants of Request. These are Request, containing processes where

the recipient requests for information from the sender, followed by the acknowl-

edgment of request by the sender, and Request2, which only contains processes

where the recipient requests for information from the sender, without any

acknowledgment.

– There are eight variants of Consent. The ¯rst is Consent1 where the sender seeks

consent and then the subject grants consent. The second is Consent2, which

involves a process where the subject grants consent without the sender initially

seeking consent. The third variant is Consent3 where the sender seeks consent, but

is never granted by the subject. Furthermore, Consent4 and Consent5 extend

Consent1 and Consent2, respectively, with the acknowledgment of granted con-

sent by the sender. Whereas, Consent6, Consent7 and Consent8 extend

Consent1, Consent3 and Consent4, respectively, with the acknowledgment of

sought consent by the subject.

– Furthermore, there are two variants of Sent. First is Sent1, which contains pro-

cesses where the sender discloses information to the recipient, and a receipt is then

acknowledged by the recipient. The second is Sent2, and it only consists of a

process where the sender discloses information to the recipient, without any ac-

knowledgment of receipt.

– Finally, there are two variants for each pair of Notice transactions. For example,

Notice:s–su1 contains processes where a sender noti¯es the subject of its

(un)awareness and is thereafter acknowledged by the subject. Whereas, Notice:s–

su2 only consists of a process where the sender noti¯es the subject of its (un)

awareness, without any acknowledgment.

Altering the manner in which these di®erent transactions are combined leads to

disclosure protocols that uniquely transform the memory of an object. Ensuring that

the memory of objects remains consistent after the execution of a disclosure protocol

requires the assurance that only legitimate sequence of transactions is allowed in a

disclosure protocol. Furthermore, each transaction may transform instances of an

(un)awareness class di®erently. Hence, when two transactions are executed in

A Privacy Awareness System for Software Design 1575

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

sequence, then a set of rules is necessary to determine how transformations resulting

from one transaction override another.

6.1. Memory consistency

The legitimate sequence of transactions to ensure the memory of objects remains

sound in a valid state is speci¯ed using the precedence (adjacency) matrix in Fig. 7.

A Request transaction can only occur before Sent since the recipient can only

Fig. 7. Precedence (adjacency) matrix for a sequence of transactions. Shaded cells indicate that the

transaction T1 can be executed before T2 in a trace.

1576 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

request for information it is unaware. In contrast, a Request can occur before or after

any variant of Consent or Notice. A disclosure protocol cannot contain more than

one variant of Consent, and can only occur before Sent. This is important since

seeking and/or granting consent when the information is already disclosed invali-

dates the purpose of Consent. Similarly, a protocol cannot contain more than one

variant of Sent, which cannot occur before a Request or Consent. Finally, any

variant of Notice can occur before or after any other transaction in a disclosure

protocol. The resulting matrix is a state space of disclosure protocols, with traces

containing a minimum of one and a maximum of nine transactions, respectively.

When two transaction processes are executed in sequence and the resulting

transformation, for instance, of the same class and reference objects di®ers, then the

process transformation that contains fewer negations and achieves lower awareness

di®erential overrides the other. The general rules applied to determine how process

transformations override each other are described in Table A.6 of Appendix A. When

any variant of Notice occurs before a process, then the process overrides Notice.

Conversely, when a process occurs before any variant of Notice, then the process is

overridden by Notice. Interacting objects can also end up with di®erent awareness

di®erentials depending on the disclosure protocol. This di®erence is indicative of the

varying levels of awareness that transactions in the protocol generate in each object.

Based on this view, the memories of parties in an information °ow are only consistent

with each other when they are all fully aware. Whereas, partial awareness may

introduce some level of inconsistencies based on varying awareness di®erentials and

accounts for the uncertainty that objects may have about disclosed information.

6.2. Properties of disclosure protocols

The objective of privacy-preserving information disclosure is to transform the

memory of parties involved to varying levels of awareness, ranging from being fully

unaware to fully aware. Assume a simple information °ow characterized by a sender

(Bao) and a recipient (Oz), where Bao generates and discloses information about a

subject (Gor). Also, consider that the recipient is revealed at the point consent is

being sought and/or granted. Then each disclosure protocol trace may enable each

party to achieve more or less awareness of the information. For example, the trace

� ¼ (Consent1, Sent1, Notice:r–su, Notice:s–su, Notice:s–r) would enable Gor to

achieve more awareness compared to Bao and Oz. Whereas, the trace � ¼ (Consent2,

Notice:su–r, Request, Sent1, Notice:r–s) enables Oz and Bao to achieve more

awareness compared to Gor. We leverage on three metrics to characterize the impact

of disclosure protocols on the memory of objects.

6.2.1. Unawareness level

This is a measure of the extent an object remains unaware of information after

disclosure. This metric is determined by comparing the awareness di®erential in the

A Privacy Awareness System for Software Design 1577

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

memory of the object at t0 (i.e. full unawareness) with the di®erential at tn (after

disclosure) as follows:

ULðpÞ ¼
P

Ai
ADiffðp;AiÞ

� �
tnP

Ai
ADiffðp;AiÞ

� �
t0
;

where Ai 2 fA1;A2;A3;A4g.
As awareness di®erential in the memory of an object at tn turns towards zero, the

unawareness level of the object also turns towards zero. Hence the information is

more visible to the user. Otherwise, the object is less able to determine its awareness

of disclosed information and/or the awareness of other objects about the disclosed

information.

6.2.2. The cost of a disclosure protocol

This is a measure of the frequency at which instances in the memory of an object are

switched from being untenable to tenable or vice versa by a disclosure protocol

relative to another. Given �i, the cost for an object is determined by

Costðp; �iÞ ¼
j 4Mpj�i

� HSizep

j 4Mpj�max
� HSizemax

� �tn
� �

actual

� discount;

where �max is the disclosure protocol trace that generates the maximum number of

memory transformations at tn. Likewise, HSizep is the number of entries in p's

interaction history. This represents the impact of p's evolving roles as the subject,

sender and/or recipient of information up to tn using �i. Whereas, HSizemax is the

maximum number of entries that can exist in the interaction history of an object at tn
given �i. This cost is an indication of the actual overhead associated with using a

disclosure protocol in designing interaction between objects in software. From an

implementation viewpoint, the cost of a disclosure protocol indicates the resources

and e®ort required to realize its design. Whereas, from an end-user viewpoint, more

costly disclosure protocols may also be more disruptive. Finally, the actual cost can

be forfeited with a discount factor that ranges between zero and the actual cost,

which indicates the trade-o® for increased or reduced unawareness levels.

The utility derived when the software is designed to enable interaction between

objects based on a disclosure protocol depends on the privacy objective. When this

objective is to increase awareness and the visibility of disclosed information at low

cost, then privacy utility is computed as

Utilvisðp; �iÞ ¼ ½1� ULðpÞ� � Costðp; �iÞ:
Alternatively, the objective is to increase unawareness and the secrecy of disclosed

information at low cost. This is computed as

Utilsecðp; �iÞ ¼ ðULðpÞÞ � Costðp; �iÞ:

1578 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

6.2.3. Degree of freedom

Constraining the disclosure behavior of users to a single protocol may inhibit the

usability of the software. A design which implements a functional requirement using

only one protocol provides minimum °exibility since users can only interact in one

way. Likewise, the software design becomes more °exible if a functional requirement

can be achieved using a set of alternative disclosure protocols that provide the same

or acceptable range of privacy satisfaction. For example, the two traces �a ¼
(Consent2, Sent1, Notice:su–r) and �b ¼ (Consent1, Sent1, Notice:r–su) will

generate similar unawareness levels and costs at ULðGorÞ ¼ 0.08 with

CostðGor; �aÞ ¼ 0.69 and CostðGor, �bÞ ¼ 0:69, respectively. Hence, �a and �b

provide the same level of privacy to Gor at the same cost. The number of disclosure

protocols that can be used in software design to achieve an object's privacy objective

is referred to as the degree of freedom (DoF) and determined by

DoFðpÞ ¼ j½Utilobjðp; �iÞ � Utillim�j
jDPmatrixj

;

where DPmatrix is the set of disclosure protocols from the precedence matrix in Fig. 7.

The function Utilobj is the privacy utility realized by �i 2 DPmatrix, when the ob-

jective is to enhance visibility or secrecy of disclosed information in the memory of p.

Whereas, min � Utillim � max is the threshold on acceptable range of privacy

utility. When the threshold is in¯nite, then every disclosure protocol trace in DPmatrix
can be used in enabling object interaction in the software design. In this case,

jDPmatrixj ¼ 36; 913; 048 with DoFðpÞ ¼ 1. This is a relatively large state space and

suggests the plethora of design options available to implement interaction between

objects. But this state space can be pruned based on search constraints; for instance,

by limiting the maximum and/or minimum number of transactions in a disclosure

protocol, and also protocols that contain, exclude, start with and/or end with a

speci¯c transaction. For example, if the designer is only interested in disclosure

protocols with a maximum of four transactions that contain any variant of Sent and

a Consent1, then the awareness system will generate a reduced state space with

jDPmatrixj ¼ 1580.

7. Case Studies

Overall, designing software that preserves privacy is a balance between the infor-

mation-°ow settings and the disclosure protocol(s) used to enable interaction in the

design. These settings are de¯ned by properties such as the roles of objects associated

with each °ow along a path, and also the duality/uniqueness of such roles; whether

the subject is the source of information being disclosed or the information is gener-

ated by or in custody of the sender; and ¯nally, whether the subject and/or sender

has identi¯ed the information recipients at the point consent is sought and/or

granted. Whereas, the degree of freedom broadly indicates °exibility in the manner

A Privacy Awareness System for Software Design 1579

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

software can be designed. In this section, we present two case studies to investigate

the impact of these factors on real-world system implementation. The ¯rst study is a

reverse engineering of the Twitter followership network to understand highlighted

factors in its design. The second study is a scenario analysis involving a family of

design patterns for realizing service-oriented software systems.

7.1. Methodology

Given a design that highlights the expected behavior of a system, we map observable

interaction patterns noted in the software design to disclose protocol traces. We

achieve this by the systematic analysis of functional speci¯cation as follows:

(1) Identify objects and their actions from behavioral speci¯cations.

(2) Abstract roles of objects from identi¯ed interactions.

(3) Map actions to transactions to identify the associated disclosure protocol.

After the information-°ow settings and disclosure protocols are discovered from a

software design, the e®ectiveness of the design can be investigated using PriSAT. A

designer can specify the disclosure protocols and information-°ow settings over an

interaction network. PriSAT then determines the extent a privacy objective is sat-

is¯ed. Alternatively, given an information-°ow setting, PriSAT determines the ap-

propriate set of disclosure protocols that can be used to realize a privacy objective.

We applied this methodology to evaluate the privacy-preserving capabilities in the

design of private interactions on Twitter [51] and service-based software.

7.2. The design of private interactions on Twitter

Twitter is a social networking platform where users interact predominately via a

followership network [51]. Users are expected to register with the service before they

can interact with other users. Once registered, the interaction is fostered by a user

following another user to gain visibility of the messages they tweet, retweet, like or

reply. The relationship between a followed user and the follower is not symmetric.

Also, disclosure behavior is dependent on whether the users choose to interact pri-

vately or publicly in their privacy con¯gurations. In this study, we focus on a scenario

where a user interacts with its followers privately as shown in Fig. 8.

When a user follows another user, then the follower is the recipient and the

followed user is the sender. This action implies that the recipient is requesting for the

visibility of all actions executed by the sender on a message. When the followed user

account is set as private, then a followership request from the follower has to be

explicitly con¯rmed by the followed user. This corresponds to Request1 transaction

considering that a followership request from a recipient matches the request pro-

cess, while a con¯rmation from the sender is ackRequest. When a message is

tweeted, the follower is the recipient while the followed user is the source of the tweet

and therefore the sender and subject. The follower may like a private tweet, while a

1580 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

reply is considered a new message and not bound by the privacy settings of the

followed user. A \like" action can be initiated by the followed user or follower, who,

respectively, assumes the role of a sender. If initiated by a followed user, then its

followers are the recipients. Whereas, the visibility of an action on a tweet that is

initiated by a follower is dependent on whether or not the tweet is private. For a

private tweet, the followed user and its other con¯rmed followers each assume the

role of a recipient. These actions correspond to a Sent2 transaction, since the

propagation of a message by a sender is not acknowledged by the respective reci-

pients. Hence, the corresponding disclosure protocol for interacting privately on

Twitter is �1 ¼ ðRequest1; Sent2Þ, which matches the scenario where a private user

is followed by other users, then the followed user or follower tweets, likes, replies or

retweets a message.

7.2.1. Followership design on Twitter

There are diverse followership scenarios in a private setting. A user may choose to

follow or unfollow another user at any time and a message tweet does not always

attract the same amount of likes from a set of followers. This results in a changing

followership network for every message that is tweeted. The scenario in Fig. 9

represents a user F0 that tweets a private message to ¯ve of its followers F1–F5. This

results in ¯ve information-°ow paths with an interaction history where F0 assumes a

dual role of the subject and sender ¯ve times, with each follower being a recipient

once. At this point, the followership design in Fig. 8 yields a maximum expected

Fig. 8. Sequence diagram of the followership-based interactions on Twitter platform and the associated
transactions.

A Privacy Awareness System for Software Design 1581

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

positive utility of 0.2 for F0 when �1 is used to enable interaction and the privacy

objective to reduce unawareness levels. Whereas, the followers F1–F5 all derive

negative utility with the mean of 0.01 across all users. When F1 subsequently likes

the tweet, the interaction network is extended to nine information-°ow paths, with

F0 assuming an additional role of a recipient while F1 assumes the role of a sender ¯ve

times. This action improves the mean privacy utility to 0.1 for all users in the

network. Overall, it is observed that the unawareness level of users reduces and

privacy utility increases with each like action on a tweet. A maximum mean utility of

0.2 is reached when all the followers have liked the tweet. At this point, a total of

1305 paths would have been generated.

Based on the outlined scenario, the research question is whether there is an al-

ternative followership design that improves the expected utility for users given a

privacy objective. We note that an objective to maximize information visibility

cannot necessarily be realized by using a trace with high number of transactions and

processes. For example, the trace �max ¼ ðRequest1, Consent8, Sent1, Notice:s–su1,
Notice:su–s1, Notice:s–r1, Notice:r–s1, Notice:r–su1, Notice:su–r1) results in

ULðF0Þ ¼ 0, CostðF0; �maxÞ ¼ 1 and UtilvisðF0; �maxÞ ¼ �1. This represents a state

where F0 achieves full awareness but at the maximum cost and hence the worst

negative utility. Utilizing �max for interaction is only viable when F0 discounts its

associated cost of interaction. Likewise, once the information is disclosed, it is im-

possible for a privacy objective of maximizing information secrecy to be realized with

Fig. 9. Twitter interaction after a private message is tweeted from F0 to its ¯ve followers and the sub-

sequent like action executed by each follower using �1 and discount ¼ 0.

1582 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

a utility of 1. This is because any disclosure protocol used will result in some un-

awareness reduction in either the subject, sender and/or recipient. Thus, the impact

of these contending factors can be mitigated by leveraging on the utility values to

determine the extent a privacy objective is satis¯ed.

To investigate an alternative design, DoF analysis was carried out on the outlined

scenario using PriSAT. The analysis focused on identifying potential lightweight

refactorings where inherent transactions in the design are preserved but augmented

with variants of Consent or Notice. In this way, the functional properties of the

followership network remain unchanged. PriSAT was used to search the precedence

matrix for traces that start with Request1, may contain any variant of Consent and

end with Sent2. The outcome was a reduced state space with jDPmatrixj ¼ 9 which

includes �1 and the traces (Request1; Consent½1j2j . . . j8�; Sent2). Also, since the

followership network is bound by a con¯rmation of follow request by the followed, it

was assumed that the subject and sender have identi¯ed the information recipient at

the point the consent is sought.

Figure 10 illustrates the outcome of DoF analysis based on traces that matched

our Consent search criteria. For F0, the traces (Request1; Consent½2j3j5j7�, Sent2)
generated a utility greater than �1 which ranged between 0.4 and 0.6. Whereas,

(Request1; Consent½1j6�, Sent2) o®ered utilities similar to �1 while (Request1;

Consent½4j8�, Sent2) did not o®er better utilities compared to �1. For F1, the traces

(Request1; Consent½1j4j6j8�, Sent2) generated lesser utility values ranging between

Fig. 10. The DoFs in realizing categories of privacy utilities for a private message tweet from F0 to F1–F5

with every follower responding with a like action. The dotted marker indicates the DoF classi¯cation for �1

and the DPmatrix contains the traces where �1 is augmented with a variant of Consent transaction.

A Privacy Awareness System for Software Design 1583

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

0 and 0.1, while (Request1; Consent½2j3j5j7�, Sent2) yields the same utility as �1.

Likewise for F2–F5, the traces that contained variants of Consent resulted in the

same utility as �1. A similar pattern of utility variance with DoF was observed

irrespective of the number of followers associated with F0. It is therefore concluded

that augmenting Twitter fellowship design with variants of Consent transactions

only enhances privacy utility for the subject that tweets a private message. Whereas,

the utility for its followers is not improved.

The second refactoring involved augmenting existing design with a combination

of acknowledged Notice transactions. Hence, PriSAT was used to search the pre-

cedence matrix for traces that start with Request1, followed by Sent2 and may end

with a combination of one or more forms of Notice transactions without acknowl-

edgment. This generated a state space with jDPmatrixj ¼ 64 which contained �1 and

the traces (Request1; Sent2; 2X), where X ¼ fNotice:s–su2, Notice:su–s2, Notice:
r–su2, Notice:su–r2, Notice:s–r2, Notice:r–s2g. The performance of �1 against

Notice-related traces is shown in Fig. 11. For F0, all traces generated utility values

greater than �1. Furthermore, three traces consisting of ðRequest1, Sent2; 2Xþ
),

where Xþ ¼ fNotice:su–r2, Notice:su–s2g generated utility values ranging be-

tween 0.3 and 0.4, respectively. The remaining 60 traces provided signi¯cantly im-

proved utility values that ranged between 0.7 and 0.9, respectively. Likewise, for

F1–F5, 15 traces consisting of (Request1; Sent2; 2Xþþ
), where Xþþ ¼ fNotice:s–su2,

Notice:su–s2, Notice:r–su2, Notice:su–r2g had no improved performance over �1.

Fig. 11. The DoFs in realizing categories of privacy utilities for a private message tweet from F0 to F1–F5

with every follower responding with a like action. The dotted marker indicates the DoF classi¯cation for �1

and the DPmatrix contains traces where �1 is augmented with combinations of Notice transactions.

1584 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Whereas, the remaining 48 traces provided better utility values that ranged between

0.4 and 0.6, respectively. Again, a similar pattern of utility variance with DoF was

observed irrespective of the number of followers associated with F0. Thus, given an

objective to minimize user's unawareness, privacy utility on Twitter followership

design for exchanging private tweets can be enhanced by augmenting inherent dis-

closure protocol with DPtwitter ¼ ðRequest1; Sent2; DPau), where DPau represents the
combination of Notice transactions from the set DPau ¼ X� Xþþ and Xþ � Xþþ.

7.2.2. Discussion

A key insight is that the maximum privacy utility inherent in Twitter followership

design is marginal compared to an alternative design that is augmented with a subset

from a combination of Notice transactions. This makes the latter a preferred design

when the objective is to broadly maximize the visibility of information in the net-

work. For example, the relative improvements in privacy utilities for F0–F5 can be

observed in Fig. 12 where � 0
1 ¼ ðRequest1; Sent2; Notice:s–r2) 2 DPtwitter is used

for interaction, compared to �1 in Fig. 9. A maximum mean utility of 0.6 is reached

when all the followers have liked a tweet using � 0
1 compared to 0.2 that is derived

using �1. We note that refactoring an existing design to achieve a privacy objective

may further require domain-speci¯c design choices. For instance, refactoring the

followership design in Fig. 8 to realize � 0
1 will require that a sender does not only

disclose a message to the recipient, but also inform the recipient of other recipients to

which it discloses the same message (see the design extension in Fig. 13).

Fig. 12. Twitter interaction after a private message is tweeted from F0 to its ¯ve followers and the

subsequent like action executed by each follower using � 0
1 ¼ ðRequest1; Sent2; Notice:s–r2).

A Privacy Awareness System for Software Design 1585

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Alternatively, a privacy objective may be to reduce visibility, for example, making

information less visible for all users in the network or a subset of users. For the

former, �1 is the preferred disclosure protocol compared to � 0
1. Both protocols yield

mean positive and negative utilities of 0.35 and �0.07, respectively, when the privacy

objective is to maximize information secrecy. Whereas, when the privacy objective is to

achieve varying information visibilities, then a followership design which uses a single

disclosure protocol to foster interaction does not necessarily provide an equal amount

of privacy utility for each user on the network. This is illustrated in Figs. 9 and 12

where the privacy utility for the subject F0 tends to di®er signi¯cantly from other users.

These ¯ndings suggest privacy in Twitter's software design can be enhanced in

one of the two ways. The ¯rst is informing users of their changing privacy utility as

their personal information °ows from one user to another in the network. Users can

then adjust their disclosure behavior to mitigate emerging privacy concerns. Second,

variability in privacy utility can be managed by enabling users to specify their

privacy objectives and expected utilities. Disclosure protocols are then dynamically

selected by the platform during interaction to satisfy a privacy objective.

Fig. 13. Refactoring Twitter followership design to realize Notice:s–r2.

1586 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

We have only considered lightweight refactorings where inherent transactions in

the design are preserved but augmented with variants of Consent or Notice

transactions. Whereas, there are other refactoring options; for example, considering a

combination of Notice transactions before and after Sent1 is executed, as well as

traces that contain Consent and Notice with varying precedence. Again, we as-

sumed that a message has only one subject and after a tweet, the authorship and

attribution of the message do not change. Whereas, it is possible to have a message

associated with multiple subjects; for example, when the message mentions another

user via a UserTag. The structural/semantic changes to the message make the user

that is tagged a co-owner and also a subject.

7.3. The privacy analysis of service-based software design

Interactions between components in distributed software applications are often or-

chestrated as services. A service is a discoverable software entity that can exist as a

single instance and interacts synchronously or asynchronously with applications and

other services through a loosely coupled communication model [42]. This concept is

based on a software architectural style that de¯nes an interaction between three

primary entities: the service producer, who publishes a service description and pro-

vides the implementation for the service; a service consumer, who uses the service;

and the service broker that enables interaction between the producer and consumer

[30]. There are two main interaction patterns involving identi¯ed entities [19, 50].

The ¯rst is a message pattern where all communication (information °ow) that

occurs between a service producer and a consumer is mediated by a service

broker [42]. The alternative pattern is where information °ow occurs in a peer-to-

peer fashion following the \register–¯nd–bind–execute" paradigm [36]. The producer

registers a service contract in a public registry that exists on the broker. This registry

is queried by consumers to ¯nd services that match certain criteria. If the registry has

such a service, the broker provides the consumer with the contract and an endpoint

address to bind directly with the producer. Both interaction patterns are often

constrained by Quality-of-Service (QoS) assurances to satisfy certain nonfunctional

requirements. More importantly, these patterns o®er di®erent interaction patterns

amongst service objects. In this subsection, we articulate a subset of these scenarios

to gain insights into their privacy-preservation capabilities.

7.3.1. Broker-mediated interaction pattern

In broker-mediated service interaction, information °ow is initiated via the broker

using a push/pull mechanism or a hybrid of both as shown in Fig. 14. When the

producer pushes a message to the broker, then the producer grants consent for the

broker to disclose the message to any set of consumers. Where the QoS necessitates

that the broker responds with acknowledgment after the consent is granted, then

the matching transaction it is Consent2, otherwise it is Consent5. Alternatively, the

A Privacy Awareness System for Software Design 1587

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

(a)

(b)

(c)

(d)

Fig. 14. Analysis of broker-mediated architectural models for service-based interaction.

1588 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

broker may pull the message from the producer. In this case, the broker is seeking

consent from the producer to disclose the message to any set of consumers, with

consent subsequently granted by the producer. Typically, the broker and producer

have no knowledge of the consumer at this point. The matching transaction is either

Consent1, Consent4, Consent6 or Consent8, and it depends on whether or not the

QoS guarantees acknowledgment. The broker may then send the message to the

consumer via a push mechanism. The matching transaction is either Sent1 or Sent2

and again depends on the associated QoS assurances. Alternatively, the consumer

may pull the message from the broker. In this case, the consumer ¯rst requests for a

message about the producer from the broker. This matches a variant of Request

transaction. Subsequently, the broker sends the requested message to the consumer

to match Sent1 or Sent2 transaction depending on QoS assurances. MQTT, pop-

ularly used to implement IoT device-to-device interaction, is an example of a stan-

dard messaging speci¯cation based on broker-mediated interaction model [18]. Other

examples include the Java Message Service (JMS) [33] and its implementation such

as Apache ActiveMQ [52]. There are a number of interaction scenarios based on this

pattern. These are as follows.

Scenario 1. Interaction between parties is achieved strictly via a push mechanism.

The producer grants message disclosure consent to the broker. Subsequently, the

message is disclosed by the broker to the consumer. As illustrated in Fig. 14(a),

interaction between parties is realized using one of the four disclosure protocols from

(Consent½2j5�, Sent½1j2�).
Scenario 2. Interaction between parties is achieved strictly via a pull mechanism.

The broker ¯rst seeks consent to disclose a message from the producer. Subsequently,

consent is granted by the producer. Afterwards, the consumer requests the message

from the broker. Finally, the message is disclosed by the broker to the consumer.

Interaction is realized using one of the 16 disclosure protocols from (Consent½1j4j6j8�,
Request½1j2�, Sent½1j2�) as illustrated in Fig. 14(b).

Scenario 3. Interaction between parties is achieved via a hybrid push–pull mech-

anism. First, the producer grants message disclosure consent to the broker. After-

wards, the consumer requests for the message from the broker. Finally, the message is

disclosed by the broker to the consumer. For this case, the interaction is realized

using one of the eight disclosure protocols from (Consent½2j5�, Request½1j2�,
Sent½1j2�) as illustrated in Fig. 14(c).

Scenario 4. Interaction between parties is achieved via a hybrid pull–push mech-

anism. The broker ¯rst seeks consent to disclose a message from the producer.

Subsequently, consent is granted by the producer. Finally, the message is disclosed

by the broker to the consumer. As illustrated in Fig. 14(d), the interaction between

parties is realized using one of the eight disclosure protocols from (Consent½1j4j6j8�,
Sent½1j2�).

A Privacy Awareness System for Software Design 1589

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

7.3.2. Broker-facilitated interaction pattern

When interaction occurs in a peer-to-peer fashion, then message passing only takes

place during binding and execution. The broker facilitates this by enabling the

producer and consumer to discover each other via a push or pull mechanism, as well

as the hybrid of both. This is initiated when the producer pushes a contract which

typically contains the services it produces and its uniform resource identi¯er to the

broker. This is synonymous to a producer notifying the broker of its capabilities.

Depending on whether there exist QoS guarantees of acknowledgment, the matching

disclosure transaction is a variant of Notice:su–s where the subject is a producer and

the sender a broker. Alternatively, the broker can initiate a pull request for contracts

from the producer, who then responds by publishing the contracts on the broker. In

this case, the matching disclosure transaction is a variant of Request, which is then

followed by a variant of Notice:su–s. Likewise, the consumer discovers service

contracts by initiating a pull request on the broker's matching variants of Request,

followed by a Notice:s–r where the broker acts as a sender and the consumer a

recipient. The broker may also push service contracts to the consumer without prior

request.

Once the consumer discovers a service contract, it then binds with the producer.

At this point, the consumer invokes or initiates an interaction with the producer

using the binding details in the service contract to locate, contact and invoke the

service. The matching disclosure transaction is a variant of Request. The successful

invocation of a service typically results in a functional execution by the producer and

the result is returned to the consumer. This matches Sent1 or Sent2 transactions,

depending on whether there exist QoS guarantees of acknowledgment. Examples of

distributed software frameworks and standards based on broker-facilitated interac-

tion patterns include the Simple Object Access Protocol (SOAP), Representational

State Transfer (REST) for Web services and its reference implementations such as

Java API for RESTful Web Services (JAX-RS) [31] and Jersey [32]. Interaction

scenarios based on this service model include the following.

Scenario 5. Interaction between parties is achieved using a push with binding. The

producer ¯rst noti¯es broker of a service contract. This is followed by the broker

notifying a consumer of the producer's service contract. The consumer then makes a

message request to the producer based on the service contract. Finally, the message is

disclosed by the producer to the consumer. As illustrated in Fig. 15(a), interaction

between parties is realized using one of the 16 disclosure protocols from (Notice:su-

s½1j2�, Notice:s–r½1j2�,Request½1j2�, Sent½1j2�).
Scenario 6. Interaction between parties is achieved using a pull with binding. The

broker ¯rst requests for a contract from the producer, who responds by notifying the

broker of a service contract. Next, the consumer requests for matching contract from

the broker's registry, with the broker responding by notifying the consumer of the

contract o®ered by the producer. The consumer then makes a message request to the

1590 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

(a)

(b)

Fig. 15. Analysis of broker-facilitated architectural models for service-based interaction. Privacy utilities

are determined without cost discount on the disclosure protocols.

A Privacy Awareness System for Software Design 1591

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

producer based on the service contract. Finally, the message is disclosed by the

producer to the consumer. This interaction scenario is realized using one of 64 dis-

closure protocols from (Request½1j2�, Notice:su-s½1j2�, Request½1j2�,
Notice:s–r½1j2�, Request½1j2�, Sent½1j2�) as illustrated in Fig. 15(b).

Scenario 7. Interaction between parties is achieved using a hybrid push–pull with

binding. The producer ¯rst noti¯es broker of a service contract. Next, the consumer

requests for a matching contract from the broker's registry, with the broker

responding by notifying the consumer of the contract o®ered by the producer. The

consumer then makes a message request to the producer based on the service con-

tract. Finally, the message is disclosed by the producer to the consumer. This is

illustrated in Fig. 16(a), and realized using one of the 32 disclosure protocols from

(Notice:su-s½1j2�, Request½1j2�, Notice:s–r½1j2�, Request½1j2�, Sent½1j2�).
Scenario 8. Interaction between parties is achieved using a hybrid pull–push with

binding. The broker ¯rst requests for a contract from the producer, who responds by

notifying the broker of a service contract. The broker then noti¯es the consumer of

the contract o®ered by the producer. The consumer then makes a message request to

the producer based on the service contract. This ends with the message being dis-

closed by the producer to the consumer. This is illustrated in Fig. 16(b), and realized

using one of the 32 disclosure protocols from (Request½1j2�, Notice:su-s½1j2�,
Notice:s–r½1j2�, Request½1j2�, Sent½1j2�).

7.3.3. Discussion

A key insight from carrying out the scenario analysis of service interaction patterns

relates to the DoF in realizing a design. Scenarios 1–4 can be realized using one of the

4, 16, 8 and 8 disclosure protocols, respectively. Whereas, Scenarios 5–8 can be

realized using one of the 16, 64, 32 and 32 disclosure protocols, respectively. Hence, it

can be inferred that the °exibility in designing a service-based distributed software is

dependent on whether the interaction is modeled using push or pull mechanism or a

combination of both, and also with or without message binding.

Furthermore, there is a limit to the privacy-preserving capability of each inter-

action pattern. It is observed that the choice to design a software system based on a

pattern may inhibit or enhance the ability of producer, broker and/or consumer to

realize a privacy objective. For example, the plot in Fig. 14(a) shows privacy utilities

realized by the producer, broker and consumer for the visibility and secrecy objec-

tives in Scenario 1. When the objective is to maximize message visibility, then the

maximum privacy utility realized by the producer is 0.01, and is achieved using

(Consent5, Sent½1j2�). This is insigni¯cant, compared to the mean utilities of 0.33

and 0.43 realized by the broker and consumer across all the disclosure protocols that

can be used in the scenario. Conversely, the same producer would realize a maximum

privacy utility of 0.63 using (Consent2, Sent½1j2�) when the objective is to maximize

secrecy. The broker and consumer also realize relatively signi¯cant privacy utilities.

1592 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Hence, it is concluded that when a service-oriented design is achieved strictly using a

push mechanism, then the maximum privacy utility is realized when the objective is

to maximize message secrecy across interacting parties.

Again, the plot in Fig. 14(b) illustrates the privacy utilities realized by parties in

Scenario 2. It is observed that any disclosure protocol used in this scenario o®ers a

(a)

(b)

Fig. 16. Analysis of broker-facilitated architectural models for service-based interaction. Privacy utilities

are determined without cost discount on the disclosure protocols.

A Privacy Awareness System for Software Design 1593

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

negative privacy utility to the producer when the objective is to maximize message

visibility. Whereas, the broker and consumer will satisfy the same objective irre-

spective of the disclosure protocol used, with mean utilities of 0.19 and 0.42, re-

spectively, across the 16 disclosure protocols that can be used in this scenario. This

suggests that a pull mechanism is less suitable for a service-oriented design when the

objective is to maximize the extent the information is visible to the producer. Con-

versely, when the objective is to maximize secrecy, mean privacy utilities of 0.56, 0.07

and 0.30 are realized by the producer, broker and consumer, respectively. This

suggests that it is less e±cient to achieve a service-oriented design using a pull

mechanism when the privacy objective is to maximize the extent the message

remains secret to the broker. Similar reasoning can be applied to Scenarios 3–8 to

evaluate their suitability in realizing a privacy objective in a software design.

Observed variance in privacy utilities implies that instantiating a pattern in a

service-oriented design may involve some compromise in privacy by either the pro-

ducer, broker and/or consumer. A plot of mean utilities across all the disclosure

protocols for each analyzed scenario is illustrated in Fig. 17. When the software is

designed based on pull, push or a hybrid of both (marked S1–S4, respectively, in

Fig. 17), then the broker and consumer would signi¯cantly know more about the

message than the message producer. Similarly, when the design strategy is to ensure

that the message being disclosed is least visible to the broker, then the appropriate

design choice is a push with binding interaction pattern (marked S5 in Fig. 17).

Alternatively, the design strategy may be to ensure that the message disclosed is

equally visible to the parties involved. Then the appropriate design choice is a hybrid

push–pull with binding interaction pattern (marked S7 in Fig. 17). This pattern

o®ers the least variance in privacy utility between interacting parties.

This exploration of service-oriented design patterns provides insights on how a

designer can select a design pattern based on a privacy objective, the privacy utility

that a pattern provides and the satisfaction of desired functional requirements.

8. Threats to Validity and Future work

In our case studies, we leveraged on alternative documentation available in the

public domain and observed the behavior of running systems to build the interaction

Fig. 17. Mean utilities across all the disclosure protocols for Scenarios 1–8.

1594 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

models. In future work, we intend to automate this task by augmenting the design

artifacts familiar to designers in their daily work with insights on privacy implica-

tions. We expect that such automation will reduce the knowledge gap required to

consider privacy during early-stage software design.

Our technique precludes factors such as the adversarial or cooperative tendencies

of objects and also the level of sensitivity of disclosed information. Also, memory

transformations during object interaction and implied awareness are solely deter-

mined by the executed disclosure protocols. This means that by only relying on

transactions in the disclosure protocol suite, there are memory states that cannot be

reached from an assumed initial state of full unawareness. For example, it is im-

possible to realize a disclosure protocol that renders all elements in the memory of a

principal tenable. Whereas, it is easy to see that such a memory state is unintuitive

from a socio-technical viewpoint, since this will infer an object denies its awareness

after disclosure even though it is tenable that it is aware. Hence, it can be concluded

that a disclosure protocol that makes an object to realize such a state should not be

allowed in a software design. The open research question is to determine whether all

unreachable memory states are also unintuitive from a socio-technical context, and

therefore not relevant for privacy management.

The analysis of a disclosure protocols state space is a reachability problem of

determining whether there is a disclosure protocol that makes a certain awareness

state reachable from an initial state of full unawareness. Addressing this problem

requires: (1) identifying all memory states that an object can assume based on Table 1;

(2) determining which identi¯ed states are intuitive from a socio-technical viewpoint;

(3) inferring whether there is a disclosure protocol that makes the state reachable; and

¯nally (4) the impact that such reached/unreachable state has on privacy. A memory

leak then exists when there is an unreachable state that is intuitive from a socio-

technical viewpoint. Otherwise, the disclosure protocol suite can be considered as

complete. Therefore, we do not claim in this research that the disclosure protocol suite

is complete and prevents all memory leaks. Making such a claim by addressing

highlighted tasks is beyond the scope of this paper and the focus of future work.

A broader picture of the relationship between end users, software designers and

regulations is multi-dimensional, whereas this research only sets the foundation for

understanding this relationship from a designer's viewpoint. Finally, although we

assume that the (un)awareness modeled in objects is the same as their users', this

deterministic assumption may sometimes not hold.

9. Conclusions

This paper presents a technique for analyzing the privacy-preserving capabilities of

software design. First, possible world semantics are used to demonstrate how the

memory of user objects in a behavioral design representation transforms during

interaction, where an object's memory is de¯ned in terms of what its respective users

are aware or unaware of the disclosed information. The more unaware an object is

A Privacy Awareness System for Software Design 1595

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

about the disclosed information, the more secret the information is to its user.

Conversely, the more aware an object is about the disclosed information, the more

visible the information is to its user. Privacy engineering during software design then

involves determining the appropriate disclosure protocol that can be used in the

design to ensure a level of information secrecy or visibility when objects are inter-

acting. Hence, we de¯ne a disclosure protocol that constitutes information Request,

Consent, Sent and Notice transactions, and characterize ensuing object memory

transformations when any of the transaction is triggered as part of information dis-

closure. Finally, given a privacy objective to maximize information visibility or

secrecy, a privacy awareness system is used to determine the privacy utility that users

derive when interaction between objects is designed based on a disclosure protocol.

Our approach was evaluated based on two case studies. First, we carried out an

analysis of the followership design on the Twitter social networking platform. We

demonstrated the variability in the range of privacy utilities that a followed user and

its followers can derive as a message is tweeted, retweeted or liked in the network. We

then investigated a refactoring of the followership design with variants of Consent

and Notice. The results showed that with a privacy objective to maximize message

visibility, refactoring the Twitter followership with Consent did not signi¯cantly

improve privacy utility. Whereas, for the same privacy objective, refactoring the

design with Notice showed a signi¯cant improvement in privacy utility across

interacting parties. The broader insight is that the design of software where user

objects are associated with emergent properties and therefore changing privacy

objectives needs to be adaptive privacy ready [41].

The second case study involved the scenario analysis of service-based software

design patterns. Two categories involving a broker either mediating or facilitating

interaction between information producers and service providers were analyzed.

Our study results showed that °exibility in designing a privacy-preserving service-

oriented system is also dependent on the design pattern used to mediate or facilitate

interactions. These patterns include pull, push as well as their hybrid combined with

or without binding. We demonstrated the strengths and weaknesses of each pattern

in satisfying a privacy objective. The broader insight is the relationship between

software design patterns and the satisfaction of a privacy objective.

The use of proposed technique in practice depends on two steps. First, the soft-

ware designer articulates the features to be implemented using a model-driven design

technique. Second, the designer de¯nes a privacy objective to be realized in the

design. This is speci¯ed in terms of the desired level of information secrecy or visi-

bility. A subset of disclosure protocols that minimize privacy risk in the design is then

proposed.

Acknowledgments

We thank the anonymous reviewers for their careful reading of our manuscript and

their insightful comments and suggestions. This research is supported by the

1596 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Innovate UK CyberASAP program, EPSRC Institutional support grant award EP/

P51133X/1 and EPSRC DTA.

Appendix A

Table A.1. Tenable instances in the memory of recipient and sender at tn as a result of Request.

Table A.2. Tenable instances in the memory of sender and recipient at tn as a result of Sent.

A Privacy Awareness System for Software Design 1597

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Table A.3. Tenable instances in the memory of subject, sender and recipient at tn as a result of Notice.

1598 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Table A.4. Tenable instances in the memory of subject and sender at tn as a result of Consent.

Note: *Speci¯c consent.

A Privacy Awareness System for Software Design 1599

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Table A.5. Tenable instances in the memory of subject, sender and recipient at tn after the

Acknowledgment of Request-, Sent-, Notice- and Consent-related processes.

1600 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

T
ab

le
A
.6
.

P
ro
ce
ss

tr
an

sf
or
m
at
io
n
ov

er
ri
d
in
g.

N
o
te
:
a
fx
;.
..
g:

H
er
e,

a
is
ov

er
ri
d
d
en

b
y
th
e
te
n
ab

le
in
st
an

ce
(s
)
re
su
lt
in
g
fr
om

ei
th
er

x
or

(.
..
).

a
ðf
x
;.
..
g;
fy
;.
..
gÞ
:
H
er
e,

a
is
ov

er
ri
d
d
en

b
y
te
n
ab

le
in
st
an

ce
(s
)
re
su
lt
in
g
fr
om

ei
th
er

x
or

(.
..
).
ot
h
er
w
is
e
b
y
te
n
ab

le
in
st
an

ce
(s
)
re
su
lt
in
g
fr
om

ei
th
er

y
o
r
(.
..
).

A Privacy Awareness System for Software Design 1601

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

References

1. S. Abu-Nimeh, S. Miyazaki and N. R. Mead, Integrating privacy requirements into
security requirements engineering, in Proc. Twenty-First Int. Conf. Software Engineering
and Knowledge Engineering, 2009, pp. 542–547.

2. R. Anderson and M. Tyler, The economics of information security, Science 314(5799)
(2006) 610–613.

3. I. Adjerid, A. Acquisti, L. Brandimarte and G. Loewenstein, Sleights of privacy: Framing,
disclosures, and the limits of transparency, in Proc. Ninth Symp. Usable Privacy and
Security, 2013.

4. P. Anthonysamy, P. Greenwood and A. Rashid, Social networking privacy: Under-
standing the disconnect from policy to controls, Computer 46(6) (2013) 60–67.

5. P. Anthonysamy and A. Rashid, Software engineering for privacy in-the-large, in Proc.
2015 IEEE/ACM 37th IEEE Int. Conf. Software Engineering, 2015.

6. G. Aucher, B. Guido and L. van der Torre, Privacy policies with modal logic: The
dynamic turn, in Proc. Int. Conf. Deontic Logic in Computer Science, 2010.

7. A. Barth, D. Anupam, M. John and H. Nissenbaum, Privacy and contextual integrity:
Framework and applications, in Proc. 2006 IEEE Symp. Security and Privacy, 2006.

8. M. Benantar, Access Control Systems: Security, Identity Management and Trust Models
(Springer Science & Business Media, 2006).

9. K. Bernsmed, Applying privacy by design in software engineering: An European per-
spective, in Proc. Second Int. Conf. Advances and Trends in Software Engineering, 2016.

10. D. Bonnay and P. Egre, Inexact knowledge with introspection, J. Philos. Log. 38(2)
(2009) 179–227.

11. D. Breaux, H. Hanan and R. Ashwini, Eddy, a formal language for specifying and ana-
lyzing data °ow speci¯cations for con°icting privacy requirements, Requir. Eng. 19(3)
(2014) 281–307.

12. D. Budgen, Software Design (Pearson Education, 2003).
13. G. Calikli, M. Law, A. Bandara, A. Rusoo, L. W. F. Dickens, B. Price, A. Stuart,

M. Levine and B. Nuseibeh, Privacy dynamics: Learning privacy norms for social soft-
ware, in Proc. 11th Int. Symp. Software Engineering for Adaptive and Self-Managing
Systems, 2016.

14. A. Cavoukian, Privacy by design: The 7 foundational principles, Document, Information
and Privacy Commissioner of Ontario, Canada (2009).

15. A. Cavoukian, Operationalizing privacy by design: A guide to implementing strong pri-
vacy practices, Document, Information and Privacy Commissioner of Ontario, Canada
(2012).

16. B. Curtis, H. Krasner and N. Iscoe, A ¯eld study of the software design process for large
systems, Commun. ACM 31(11) (1988) 1268–1287.

17. H. van Ditmarsch, T. French and F. Velazquez-Quesada, Action models for knowledge
and awareness, in Proc. 11th Int. Conf. Autonomous Agents and Multiagent Systems,
Vol. 2, 2012, pp. 1091–1098.

18. OASIS, MQTT Version 3.1.1 Plus Errata 01, OASIS Standard Incorporating Approved
Errata 01 (2015).

19. T. Eugster, P. Felber, R. Guerraoui and A. Kermarrec, The many faces of publish/
subscribe, ACM Comput. Surv. 35(2) (2003) 114–131.

20. R. Fagin and J. Halpern, Belief, awareness, and limited reasoning, Artif. Intell. 34(1)
(1987) 39–76.

21. B. Friedman, P. Lin and J. K. Miller, Informed consent by design, in Security and
Usability (O'Reilly Media, 2001), pp. 495–521.

1602 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

22. T. Gilb and S. Finzi, Principles of Software Engineering Management (Addison-Wesley,
1988).

23. M. Green and M. Smith, Developers are not the enemy!: The need for usable security
APIs, IEEE Secur. Priv. 14(5) (2016) 40–46.

24. S. Gürses, T. Carmela and D. Claudia, Engineering privacy by design reloaded, in Proc.
Amsterdam Privacy Conf., 2015.

25. W. Hartzog, Privacy's Blueprint: The Battle to Control the Design of New Technologies
(Harvard University Press, 2018).

26. Q. He and A. Antón, A framework for modeling privacy requirements in role engineering,
in Proc. Ninth Int. Workshop Requirements Engineering: Foundations of Software
Quality, 2003.

27. A. Heifetz, M. Meier and B. Schipper, Interactive unawareness, J. Econ. Theory 130(1)
(2006) 78–94.

28. J. Hintikka, Knowledge and Belief: An Introduction to the Logic of the Two Notions
(Cornell University Press, Ithaca, 1965).

29. H. Hoepman, Privacy design strategies, in Proc. IFIP Int. Information Security Conf.,
2014.

30. N. Huhns and M. Singh, Service-oriented computing: Key concepts and principles, IEEE
Internet Comput. 9(1) (2005) 75–81.

31. GitHub, JAX-RS speci¯cation (2019), https://github.com/jax-rs.
32. GitHub, JAX-RS speci¯cation using Jersey (2019), https://jersey.github.io/.
33. Oracle, Java Message Service (2019), https://docs.oracle.com/cd/E19957-01/816-5904-

10/816-5904-10.pdf.
34. R. Jennings, On agent-based software engineering, Artif. Intell. 117(2) (2000) 277–296.
35. N. R. Mead, Bene¯ts and challenges in the use of case studies for security requirements

engineering methods, in Security-Aware Systems Applications and Software Development
Methods (IGI Global, 2012), pp. 89–107.

36. J. McGovern, S. Tyagi, M. Stevens and S. Mathew, Java Web Services Architecture
(Elsevier, 2003).

37. J. Ransome and A. Misra, Core Software Security: Security at the Source (Auerbach,
Boston, 2013).

38. H. Nissenbaum, Privacy in Context: Technology, Policy, and the Integrity of Social Life
(Stanford University Press, 2009).

39. H. Nissenbaum, A contextual approach to privacy online, Daedalus 140(4) (2011) 32–48.
40. I. Omoronyia, The case for privacy awareness requirements, Int. J. Secur. Softw. Eng.

7(2) (2016) 19–36.
41. I. Omoronyia, L. Cavallaro, M. Salehie, L. Pasquale and B. Nuseibeh, Engineering

adaptive privacy: On the role of privacy awareness requirements, in Proc. Int. Conf.
Software Engineering, 2013.

42. M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, Service-oriented computing:
State of the art and research challenges, Computer 40(11) (2007) 38–45.

43. S. Petronio, Communication privacy management theory, in The International Ency-
clopedia of Interpersonal Communication, Vol. 1 (Wiley-Blackwell, 2015), pp. 353–360.

44. A. Poller, K. Laura, T. Sven, E. Felix and K. Katharina, Can security become a routine?:
A study of organizational change in an agile software development group, in Proc.
Computer Supported Cooperative Work and Social Computing, 2017.

45. NOKIA, Privacy Engineering and Assurance: The emerging engineering discipline for
implementing privacy by design (2014), https://iapp.org/media/pdf/resource center/
Privacy Engineering+assurance-Nokia 9-14.pdf.

A Privacy Awareness System for Software Design 1603

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

46. Microsoft, Privacy guidelines for developing software products and services (2008),
https://download.microsoft.com/download/9/3/5/935520EC-D9E2-413E-BEA7-
0B865A79B18C/Privacy%20in%20Software%20Development.ppsx.

47. J. Sabo and M. Willett, OASIS privacy management reference model and methodology
(PMRM) Version 1.0, OASIS Committee Speci¯cation 2 (2013).

48. D. C. Schmidt, M. Fayad and R. E. Johnson, Software patterns, Commun. ACM 39(10)
(1996) 37–39.

49. E. Semino, Book Review: Possible Worlds, Arti¯cial Intelligence and Narrative Theory,
Lang. Lit. 2(2) (1993) 146–148.

50. R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman and
D. Ward, Gryphon: An information °ow based approach to message brokering, preprint
(1998), arXiv:cs/9810019 [cs.DC].

51. Twitter, Twitter Help Manual (2019), https://help.twitter.com/en/using-twitter.
52. Twitter, Twitter Help Manual (2019), http://activemq.apache.org.
53. A. Whitten and D. Tygar, Why Johnny can't encrypt: A usability evaluation of PGP 5.0,

in Proc. USENIX Security Symp., 1999.
54. D. Wright and P. De Hert, Introduction to privacy impact assessment, in Privacy Impact

Assessment (Springer, Dordrecht, 2012), pp. 3–32.
55. T. Williamson, Knowledge and Its Limits (Oxford University Press, 2002).
56. S. S. Yau and J. J.-P. Tsai, A survey of software design techniques, IEEE Trans. Softw.

Eng. SE-12 (1986) 713–721.
57. I. Yevseyeva, C. Morisset and A. van Moorsel, Modeling and analysis of in°uence power

for information security decisions, Perform. Eval. 98 (2016) 36–51.
58. H. Ziegeldorf, M. Oscar and W. Klaus, Privacy in the Internet of Things: Threats and

challenges, Secur. Commun. Netw. 7(12) (2014) 2728–2742.

1604 I. Omoronyia, U. Etuk & P. Inglis

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

9.
29

:1
55

7-
16

04
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F
G

L
A

SG
O

W
 o

n
03

/1
0/

20
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

	A Privacy Awareness System for Software Design
	1. Introduction
	2. Background
	3. Related Works
	4. Modeling Awareness, Unawareness and Privacy
	4.1. Behavior modeling with role-based interaction history
	4.2. The (un)awareness of objects
	4.3. Object memory
	4.4. Awareness differential

	5. Memory Transformation
	5.1. Request
	5.2. Consent
	5.3. Sent
	5.4. Notice
	5.5. Process acknowledgments

	6. Disclosure Protocol Suite
	6.1. Memory consistency
	6.2. Properties of disclosure protocols
	6.2.1. Unawareness level
	6.2.2. The cost of a disclosure protocol
	6.2.3. Degree of freedom

	7. Case Studies
	7.1. Methodology
	7.2. The design of private interactions on Twitter
	7.2.1. Followership design on Twitter
	7.2.2. Discussion

	7.3. The privacy analysis of service-based software design
	7.3.1. Broker-mediated interaction pattern
	7.3.2. Broker-facilitated interaction pattern
	7.3.3. Discussion

	8. Threats to Validity and Future work
	9. Conclusions
	Acknowledgments
	Appendix A.
	References

