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Edge-Centric Queries Stream
Management based on an Ensemble
Model

Kostas Kolomvatsos and Christos Anagnostopoulos

Abstract The Internet of Things (IoT) involves numerous devices that can
interact with each other or with their environment to collect and process
data. The collected data streams are guided to the Cloud for further process-
ing and the production of analytics. However, any processing in the Cloud,
even if it is supported by improved computational resources, suffers from an
increased latency. The data should travel to the Cloud infrastructure as well
as the provided analytics back to end users or devices. For minimizing the
latency, we can perform data processing at the edge of the network, i.e., at
the edge nodes. The aim is to deliver analytics and build knowledge close to
end users and devices minimizing the required time for realizing responses.
Edge nodes are transformed to distributed processing points where analytics
queries can be served. In this paper, we deal with the problem of allocating
queries, defined for producing knowledge, to a number of edge nodes. The aim
is to further reduce the latency by allocating queries to nodes that exhibit
low load (the current and the estimated), thus, they can provide the final
response in the minimum time. However, before the allocation, we should
decide the computational burden that a query will cause. The allocation is
concluded by the assistance of an ensemble similarity scheme responsible to
deliver the complexity class for each query. The complexity class, thus, can
be matched against the current load of every edge node. We discuss our
scheme and through a large set of simulations and the adoption of bench-
marking queries, we reveal the potentials of the proposed model supported
by numerical results.
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1 Introduction

In the era of the Internet of Things (IoT), numerous devices form a vast
infrastructure while being capable of performing simple processing tasks and
exchange of data. Devices act in a very dynamic environment and should
perform some processing activities to serve end users. One can identify a re-
search challenge related to the connection of such devices with the network
and three locations of data processing. Data can be processed at the devices,
at the edge of the network (Edge/Fog) or at Cloud. As we move to the up-
per layers of this architecture (from devices to Cloud), we observe improved
computational resources, however, the latency increases as well. Current re-
search activities (e.g., [4], [11], [42]) focus on the data streams management
at the edge to reduce the latency experienced by end users. The power of
data processing and knowledge production is transferred to the edge nodes
instead of relying on the Cloud or a central data warehouse. Hence, a num-
ber of nodes present at the edge become the key actors for the provision of
analytics aligned with end users needs. Every node hosts the data collected /
sent by the devices having the responsibility to react to any query requesting
the delivery of analytics.

The decision of processing data at the edge will increase the network’s per-
formance through the minimization of latency in the provision of responses.
Edge devices process data locally without waiting the collected data to travel
to the back end infrastructure and retrieve the final responses to continuous
queries set by end users or applications. The discussed responses are the
basis for the provided analytics. The described approach can offer multiple
other advantages apart from the minimization of latency. For instance, the
security can be maintained easily due to the distributed nature of storage
and processing. Hence, it is difficult for single disruptions to go the network
down. Edge computing can also limit the costs for expanding the network
and adding more nodes. The autonomous nature of the edge nodes can fa-
cilitate the inclusion of more processing points with the minimum effort and
cost. Edge computing can easily support scalability allowing companies to
expand their computing capacity through a combination of IoT devices and
edge data centers 1. Finally, the adoption of multiple processing points makes
the network more fault tolerant due to the multiple adopted paths to route
the data and perform the envisioned processing when single nodes fail.

Queries are continuously reported by the environment asking for specific
processing activities. The discussed Edge Nodes (ENs) can be considered as
the distributed repositories where queries can be executed to export mean-
ingful analytics. ENs vary from simple routers to complete servers placed at
various locations. ENs are connected with a number of devices and act as the
repository of the data reported by them. However, the collected data can be
also stored in the devices themselves or in the Cloud where ‘intensive’ pro-

1 https://www.vxchnge.com/blog/the-5-best-benefits-of-edge-computing
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cessing tasks can be realized. ENs are responsible to execute the queries and
report the result to the requested entity. The efficient management of the in-
coming queries as well as the provided responses will characterize the success
of the supported applications. Usually, applications demand a response in the
minimum time to provide high quality services to end users. The most signif-
icant challenge is that ENs receive queries from multiple requestors and the
collected data are quickly updated over time. This makes imperative the need
for intelligent methods that will be able to manage the numerous requests (in
the form of queries) and the large volumes of the collected data. Such meth-
ods should allocate the incoming queries to the available processing points
in the minimum time and the maximum performance. As maximum perfor-
mance, we denote the ability of each EN to deliver a qualitative result that
perfectly matches to queries requirements (conditions) as fast as possible.

In this paper, we deal with the problem of query allocation to the ap-
propriate ENs. Queries are reported through streams into a set of entities
called Query Controllers (QCs). QCs are located at the Cloud and they have
direct connection with multiple ENs where multi-dimensional (distributed)
datasets are present. QCs maintain a dataset related to the incoming queries
and the ENs’ characteristics. They own the necessary information to con-
clude the most efficient allocation. The discussed information consists of the
knowledge base of QCs that drives their line of actions. The aim is to effi-
ciently allocate every query to the appropriate EN in order to get the final
response in the minimum time. This is a multi-dimensional problem involv-
ing queries and ENs characteristics (e.g., query type, ENs location, ENs load,
the collected data). We assume that ENs are capable of executing the incom-
ing queries through the use of a dedicated query processor (a local database
or a NoSQL framework can be present). In the current effort, we focus on
‘matching’ queries with ENs based on specific characteristics. It should be
noted that, in this paper, we focus on a ‘load balancing approach’ trying to
allocate complex queries to ENs that exhibit a low load. The aim is to reduce
the time required for delivering the final response to the incoming queries.
We propose a methodology for classifying queries into a set of complexity
classes that depict the burden that a query will cause to an EN. Hence, we
can compare the requirements of the query with the ENs’ load and decide if
the specific allocation is productive. A question arises: ‘Why do not we rely
on the selection of ENs with the lowest load? ’. The response is two-fold, i.e.,
(i) we want a mechanism to estimate the computational burden that a query
will add to the selected ENs being difficult to classify a query in a specific
complexity class; (ii) we cannot be based on the current minimum load as
ENs receive queries from multiple QCs, thus, the load is continuously up-
dated. These problems are derived by the dynamic nature of an IoT setup.
The needs of the defined queries and the performance of ENs are continu-
ously updated adding new requirements for the allocation process. Hence,
we also involve forecasting techniques that try to estimate the future load of
ENs facilitating our decision making mechanism to have insights on the cur-
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rent and the future status of ENs. We propose models for both problems; an
ensemble similarity scheme for the estimation of the complexity class based
on historical queries and the decision related to the selection of ENs based
on a ‘combined’ view of their current and future loads. The following list
reports on the contributions of our work: (i) we provide a modeling process
for different types of queries; (ii) we provide an ensemble similarity scheme
for concluding the complexity class; (iii) we provide a ENs selection model
based on their current and the future load; (iv) we provide experimental
evaluation of our ensemble similarity scheme.

The paper is organized as follows. Section 2 presents the related work
while Section 3 discusses the problem under consideration. Section 4 presents
the proposed ensemble similarity scheme and the adopted decision making
technique. Section 5 reports on the experimental evaluation of our mechanism
while Section 6 concludes our paper by giving insights in our future research
directions.

2 Prior Work

The IoT infrastructure seems to be the appropriate setting where data can be
collected in multiple locations. The reason is that devices collecting data are
distributed while some of them are mobile. Data are geospatialy distributed
with multiple nodes hosting the data. The management of these numerous
nodes is a very challenging task. A set of efforts try to reveal opportunities
for the management of the distributed nodes/data. For instance, Dragon [24]
tries to efficiently identify nodes that can reply to user requests based on
static criteria describing nodes themselves or their data. In such settings,
the important is to have a view on the nodes characteristics as well as the
available data. However, IoT nodes exhibit different characteristics not only
in the hardware but also in the software (e.g., their middleware). In [20], the
authors propose a Distributed Data Service (DDS) providing functionalities
for collecting and processing data. The main target is to enable multiple and
distinct IoT middleware systems to share common data services, thus, to
cover interoperability issues.

With the advent of edge computing, various research efforts focus on the
data management and the provision of analytics close to end devices. The
time required for transferring the data to the processing points and the return
of analytics is minimized increasing the performance and end users’ experi-
ences. Almost all kinds of devices will become part of the IoT infrastructure
having a dual role, i.e., data producers as well as data consumers [43]. A
model for data processing at the edge may involve the incorporation of the
docker technology. In [8], the interested readers can find an evaluation of the
technology as a host of edge computing applications. In the evaluation pro-
cess, the authors take into consideration the following criteria: i) deployment
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and termination; ii) resource & service management; iii) fault tolerance; iv)
caching. In [33], the authors discuss a unified cloud and edge data analyt-
ics platform, which extends the notion of serverless computing to the edge
and facilitates joint programmatic resource and analytics management. The
aim is to support a reference architecture and an execution model that will
facilitate the enable of uniform development and operation of analytics func-
tions. Such an approach will alleviate end users from the complexity of the
underlying infrastructure.

The hierarchical approach in the development of the IoT infrastructure
gives us more opportunities to place the processing mechanisms at various
locations of the architecture. In [47], a hierarchical distributed Fog Comput-
ing architecture to support the integration of massive number of infrastruc-
ture components and services is presented. Fog resources, hierarchically, is
over the edge infrastructure adopted to aggregate the data coming from the
underlying layers. Such a model can be applied to various domains, e.g., a
smart city to manage large-scale, geospatial sensing networks and perform
big data analysis. The discussed analysis could involve the identification of
anomalous and hazardous events, and offer optimal responses in real-time.
Another hierarchical model can be found in [46]. The authors propose a fog
computing architecture in each node to provide flexible IoT services while
maintaining user privacy. IoT devices are connected with a proxy VM in fog
nodes. VMs host the appropriate software to collect, classify and analyze raw
data streams and extract the necessary metadata. Afterwards, the proposed
software transmits the metadata to the corresponding application VMs. In
fog nodes, the processing of anonymized information is a major research topic
when the design of machine learning algorithms and applications is the main
focus [32]. Any sensitive information should be encoded by some privacy
protecting methodologies, analysed using machine learning algorithms while
being prepared to participate in an knowledge extraction process. Nebula
is a distributed infrastructure that uses voluntary edge resources for both
computation and data storage [40]. In this setting, it is necessary to adopt
a number of optimizations including location-aware data and computation
placement, replication, and recovery. SpanEdge is another processing frame-
work at the edge that unifies stream processing across the geo-distributed
infrastructure, including the central and near-the-edge data centers [41]. The
framework distributes the stream processing applications across the central
and the near-the-edge data centers. In addition, it provides a programming
environment through which programmers can specify parts of their applica-
tions that need to be close to the data source.

As noted, the ultimate goal of edge processing is the fast provision of an-
alytics to end users. In this paragraph, we report on a set of efforts dealing
with mechanisms resulting analytics. In [21], the authors study the placement
of analytics operators in the available network. The operators are adopted to
deliver parts of analytics and produce knowledge. JetStream is a stream pro-
cessing mechanism across a wide-area network [38]. JetStream adopts tech-
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nologies related to adaptive filtering and data aggregation that can adjust the
transferred data according to the available bandwidth. In [14], the authors
propose a model for the optimal placement of operations between edge and re-
mote cloud resources to optimize the performance of a neural network model
inference. The proposed algorithm decides the partitioning of neural network
operations across edge and cloud resources. In [15], the Droplet framework is
discussed. Droplet is adopted to partition the envisioned operations in IoT
applications across shared edge and cloud resources, while minimizing com-
pletion time of the end-to-end operations. The evaluation of the platform
involves real-world applications. Planner is a middleware for uniform and
transparent stream processing across Edge and Cloud [36]. Planner automat-
ically selects which parts of the execution graph will be executed at the Edge
to minimize the network cost.

In any case, the execution of queries, in parallel, can increase the perfor-
mance of the applications. This advantage is provided on top of the separation
of data in a number of partitions. The separation of data may ‘emerge’ as a
natural consequence, e.g., when streams report data in high rates at various
locations. Multiple efforts try to handle the problem of proposing algorithms
for separating the available data. In [5], the authors adopt a sliding window
approach. Streams are partitioned on the fly taking into consideration the
query semantics. A multi-route optimizer is proposed in [9]. The optimizer
tries to exploit the intra- and inter-stream correlations to produce effective
partitions. The authors in [53] propose the separation of streams into a set
of sub-streams over which query operators are executed in parallel. Another
effort that focuses on splitting functions is reported in [17]. The proposed par-
titioning functions are characterized by a set of properties, i.e, balance proper-
ties (e.g., memory, processing, communication balance), structural properties
(e.g., compactness, fast lookup), and adaptation properties (e.g., fast compu-
tation, minimal migration). We have to notice that the collected data can be
geographically separated and distributed imposing additional requirements
in their processing. Currently, the scientific community has already proposed
some tools for data management at the edge like Apache Edgent 2. A survey
of the efforts dealing with the geographically distributed big data processing
can be found in [12]. Some example papers are as follows. In [31], the authors
propose Bohr, a similarity aware geo-distributed data analytics system that
minimizes queries completion time. The main idea of the framework is to build
on top of the similarity of different datasets and transfer similar data from
one node (exhibiting a high load) to others. The authors of [37] focus on the
provision of low latency analytics on geographically distributed datasets and
present Iridium. Iridium tries to optimize the placement of data and queries
towards the minimization of the response time. In [55], the authors present
a dynamic global manager selection algorithm that aims at minimizing en-
ergy consumption on top of the nodes diversities in geography and variation

2 https://edgent.apache.org/
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over time. The proposed mechanism adopts stochastic optimization methods
while achieving performance balance between energy cost and latency.

In addition, various models, originated in the database community, have
been proposed for delivering the similarity between SQL queries. Queries can
be represented at the intentional [50] or at the extensional level [45]. Other
techniques involve Information Retrieval (IR) models, i.e., queries can be de-
picted by vectors of features [2], a set of fragments [1] or graphs [49]. Example
schemes deal with the inner product of vectors [45], the cosine distance [45] or
the Jaccard coefficient [10]. Other more ‘sophisticated’ solutions focus on the
adoption of Support Vector Machines (SVMs) [51], [52]. SVMs aim to learn
the ranking function applied on queries. This way, we are able to sort the
queries and get the top-k of them. Most existing top-k query processing algo-
rithms like [7], [22] assume that the ranking function is defined over absolute
attribute values or they are monotonic. The exploitation of the similarity can
involve index structures (e.g., B-trees) to access the scoring of a sub-region.
Other efforts e.g., [54], focus on relaxing the monotonicity assumption to
include functions whose scores can be bounded in the given attribute value
range.

In our past research, we also deal with the allocation of queries to a set
of processors. In [25], we propose a time-optimized scheme for selecting the
appropriate processor(s) through the use of the Odds algorithm. With the
proposed model, we try to result the optimal allocation, in the minimum time.
In [27], we present a Q-learning scheme to calculate the reward retrieved for
an allocation. In [28], we extend the work presented in [27] and incorporate
into the learning process a load balancer comparing it with a clustering model
that creates groups of processors with similar characteristics. The missing
contributions in our past research activities that we cover with the current
work are: (i) in our previous models, we do not adopt any specific similarity
technique for ‘matching’ queries with the available processors; (ii) Our past
efforts do not deal with an ensemble scheme that identifies the complexity
class of queries; (iii) our past models are mostly ‘static’ meaning that they
are applied on top of static values without taking into consideration the
continuous update of processors characteristics; (iv) our previous research
efforts require a training phase that increases the latency in the provision of
the final response especially when adopted in dynamic environments.

3 Problem Definition and High Level Description

In this Section, we provide the description of our problem and the proposed
solution. Table 1 presents the notations adopted throughout the paper.
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Table 1 Nomenclature

Notation Short Description

EN The set of the available edge nodes

eni The ith edge node

QP The set of the query processors placed in every EN
qpi The ith query processor

Di The ith dataset present in the ith EN
x A multivariate data vector

Q The stream of queries

qj The jth query
Cqp The set of query processors’ characteristics

Cq The set of queries’ characteristics

QD The queries training dataset
β The current load of an EN

Θ The set of the available query classes

θ The complexity class of a specific query
sk The statement part of the kth query

qs The similarity vector with the available complexity classes

E The set of the available similarity metrics
ω The function performing the proposed ensemble similarity scheme

Ω The adopted aggregation function to deliver qs

Ts The vector with the number of execution steps for each query class

TE The number of processing steps for a specific query

T̂E The estimated availability for queries execution of an EN

ri The reward/penalty achieved for the allocation at the ith EN

pi The probability of allocation for the ith EN

3.1 Data Processing at the Edge of the Network

We consider a set of ENs, i.e., EN =
{
en1, en2, . . . , en|EN|

}
placed at various

locations (e.g., in a city or around the Globe). A number of IoT nodes (e.g.,
smartphones, sensors) are ‘connected’ with every EN to send their data. This
connection is the basis for the formulation of a complex infrastructure where
numerous end devices can communicate with the network infrastructure. ENs,
on top of the collected data, can build and extend the produced contextual
knowledge supporting decision making. Decision making has to do with the
production of knowledge and the efficient response to the requests of end users
or applications. A Query Processor (QP) is adopted in every EN to respond
to any incoming query. QPs receive the incoming queries and adopt the most
appropriate execution plan for providing the appropriate responses. Let the
set of QPs be QP =

{
qp1, qp2, . . . , qp|EN|

}
. QPs are ‘invoked’ through the

mediation of Cloud where a number of QCs are present. QCs receive queries,
‘invoke’ the appropriate QPs, get their responses and return the final result.
QCs are capable of managing continuous queries serving a high number of
‘clients’, i.e., end users or applications. We consider two types of applications,
i.e., (i) applications that demand responses in real time; (ii) applications that
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do not define any time constraints. In our research, we focus on the former
type.

In each EN, a dataset is formulated by the collected data defining a geo-
distributed local data repository. Each dataset Di, present at the ith EN,
stores multivariate data, i.e., vectors in the form x = 〈x1, x2, . . . , xl〉 where l
is the number of dimensions. Dis are updated over time as streams produced
by IoT devices report data at high rates. In our research, we cannot have any
view on the data present in every dataset and we do not adopt any separation
algorithm for the collected data. Multiple models have been proposed for
splitting the data into a set of partitions [39]. The data separation problem
can be seen as a statistical sampling problem. Some categories that can be
adopted are: (i) Simple random sampling; (ii) Trial-and-error methods; (iii)
Systematic sampling; (iv) Convenience sampling; (v) CADEX-DUPLEX; (vi)
Stratified sampling.

In the upper layer (i.e., the Fog/Cloud), there is a number of QCs that
have to process queries reported through streams Qi = {q1, q2, . . .}. QCs per-
form the selection of the appropriate ENs/QPs and the final aggregation of
the ‘partial’ responses. As partial response, we define the response retrieved
by an EN/QP that should be aggregated with the remaining results reported
by other ENs/QPs. Hence, an ecosystem is present that involves multiple
actors that aim to server end users requests. These actors have direct in-
teractions to meet their goals. In our research, we provide models for the
management of the ecosystem of QCs - ENs/QPs (see Figure 1 [26]) and
define techniques for the efficient allocation of the incoming queries. Our cur-
rent effort tries to ‘match’: (a) queries q1, q2, . . . with; (b) the available QPs
qp1, qp2, . . . , qp|EN|. The matching process is crucial for the final response as
it should not only match the query with the appropriate dataset but also
queries with the appropriate QPs (their performance plays a significant role
in the support of real time applications). In addition, the matching process
could deliver a sub-set of the available QPs based on a complex rationale that
every QC adopts. Hence, becomes obvious that the behavior of QCs should
be supported by an intelligent mechanism capable of realizing the immedi-
ate allocation of queries to the available QPs taking into consideration the
current characteristics of both.

3.2 Matching Queries and Processors

Every EN/QP exhibits specific characteristics Cqp = {cqp1 , c
qp
2 , . . .}, e.g.,

Cqp = {load, speed, language, effectiveness}. A detailed discussion on the
QPs characteristics can be found in [34]. Some of them are: (i) the input
language; (ii) the types of the performed optimizations; (iii) the optimiza-
tion timing; (iv) the effectiveness of processors as depicted by statistics; (v)
the decision sites; (vi) the exploitation of the network topology; (vii) the
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Fig. 1 The generic architecture under consideration.

exploitation of replicated fragments; (viii) the use of semi-joins. The afore-
mentioned characteristics are closely related to the underlying features of
the datasets. We propose to extend the aforementioned list and incorporate
more ‘dynamic’ characteristics that are related to high level features like the
load and the speed of each QP. Such characteristics are delivered as a more
detailed view of the performance depicting the current state of each QP. In
our work, we focus on the load β as an indication of their ability to quickly
perform the execution of a query.

We consider that every QP maintains a queue where the incoming queries
are placed and wait for processing. The size of the queue is adopted to deliver
β which represents the percentage of the maximum load that can be afforded
by the corresponding QP. Without loss of generality, β is defined in [0,1]
(a maximum queue size Qmax is adopted for such purposes). When β → 1
means that the corresponding QP exhibits a high load. The load is directly
‘connected’ with the throughput of each QP and the velocity in which queries
arrive in the discussed queue. A complex query (e.g., a join query - see below)
may demand for more time and resources to be answered compared with a
simple query (e.g., a select query). Usually, a complex query requires a high
number of steps (a discussion on the query execution plans and the required
steps can be found in the upcoming sections). The ‘classification’ of the com-
plexity of a query and its ‘combination’ with the load of a QP is the main
subject of the current work. Future extensions involve the modeling of more
QPs’ characteristics as well as a complex ‘matching’ scheme for delivering
the final allocation.

Every query reported to a QC also has a set of characteristics depicted by
Cq = {cq1, c

q
2, . . .}, e.g., Cq = {class, deadline, type, size}. According to [18],

‘generic’ characteristics are: (i) the type of the query (e.g., repetitive, ad-
hoc); (ii) the query shape; (iii) the size of the query (e.g., simple, medium,
complex). Based on Cq, specific execution plans could be defined in the form
of a processing tree [18]. Leaf nodes represent base relations while internal
nodes depict operations on data. A study on the processing of queries and
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their optimization can be found in [34]. QPs undertake the responsibility
of hiding the complexity of the query optimization process. We propose to
extend the aforementioned list and incorporate more characteristics that de-
pict the complexity and the need for instant response. Such characteristics
affect queries’ execution in terms of the resources required to produce the
final response. In the current work, we focus on the query class θ; it depicts
the complexity of a query. θ is aligned with the complexity performed by the
operations required for producing the final result. For instance, the opera-
tions required by a select query may be easier than the operations required
by a Cartesian product. Various research efforts deal with the complexity of
queries [3], [44], [48].

3.3 Delivering the Query Complexity Class

The aim of our current work is to ‘match’ the requirements that a query’s
execution imposes with the load that QP exhibits. Based on the above discus-
sion, our aim is to combine β with θ and support the decision if a query can
be efficiently executed in a QP. The focus is on the burden that the execution
of a query will add in QPs indicating the amount of resources and the time
that should be spent. However, a QP exhibiting a high load may delay the
delivery of the response especially in the case of a complex query.

Initially, we have to assign the incoming query to a complexity class θ. The
assignment of a query to a complexity class retrieved by a set of predefined
classes, it is a typical classification task. However, it is difficult to ‘match’ any
query against a single class due to the increased number of constraints that
could be adopted in each query statement. For instance, we cannot be sure
if a query will have a complexity of O(nlogn) due to the increased number of
constraints that could be adopted in each query statement. The assignment
process is complicated and does not depend only on the number of constraints
or the type of constraints and so on. The final complexity should be defined
based not only on quantitative (e.g., number of constraints / conditions) but
also on qualitative (e.g., type of operations / constraints) characteristics. For
handling this complicated process, we propose a ‘fuzzy’ approach and define
a Fuzzy Classification Process (FCP). The FCP is the process of grouping
individuals having the same characteristics into the same fuzzy set based on a
membership function that indicates whether a query is a member of a class or
not. The FCP results the membership of a query in each of the pre-defined
classes, thus, we could be able to estimate the computational burden that
will be added to the selected QP. A dataset of historical queries (i.e., a set
of tuples) together with their corresponding classes is available for the FCP.
The training dataset is common to the entire set of QCs. Every tuple depicts
the correspondence of an example query to a specific complexity class. In the
training dataset, the same class may be involved in multiple tuples, thus, in
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multiple queries. The queries dataset is defined by database experts and its
creation is not the focus of the current work.

For evaluating the final complexity class θ for qj , we adopt Information
Retrieval (IR) and Data Mining (DM) techniques. We prefer to adopt fast
similarity techniques to deliver the final result in real time instead of adopting
a classification approach that requires a training phase. Our model can be
easily executed, even if the queries dataset is updated; this is not the case
in the majority of the classification algorithms (the training phase should
be executed again). The set Θ =

{
θ1, θ2, . . . , θ|Θ|

}
depicts the pre-defined

classes where a query can/should be classified. Let the queries dataset be
QD with tuples in the form 〈sk, θk〉 ,∀k ∈ {1, 2, . . . , |QD|}. sk represents
the query’s statement and θk ∈ Θ. An example query statement could be
{Select price from stocks where id =′ RBS′}. The function f gets the qj and
based on QD delivers a vector that depicts the ‘similarity’ of qj with every
class in Θ, i.e., f(qj ;QD) → qs ∈ R|Θ|. qs contains values in [0,1] forming
the basis of our FCP. An example vector could be qs = 〈0.2, 0.8, 0.3〉 for
Θ =

{
θ1 = O(nlogn), θ2 = O(n), θ3 = O(n2

}
. qs shows that the qj ‘belongs’

by 20% to the first complexity class, by 80% to the second and by 30% to the
third. Based on qs, we can estimate θ and match it with QPs characteristics
(i.e., β in this effort).

For calculating qs, we can be based on various efforts that deliver the simi-
larity between queries. The interested reader can refer in [29] for more details.
We propose the use of an ensemble scheme for evaluating the final similar-
ity between qj and every tuple 〈sk, θk〉 in QD. The ensemble model aims
at avoiding the disadvantages of each individual metric. We process all the
available tuples in QD classified to θk. The ensemble scheme adopts the set
E =

{
e1, e2, . . . , e|E|

}
of similarity metrics. For instance, E could involve the

Hamming distance [35], the Jaccard coefficient [1], the Cosine similarity [35]
or any other metric. Any distance metric available in the corresponding liter-
ature could be transformed to depict the similarity between qj and 〈sk, θk〉.
For instance, if ed is the Euclidean distance between qj and a tuple, their
similarity can be calculated by 1

1+ed
.

4 Allocating Queries to Processors

4.1 The Ensemble Scheme

The adopted similarity metrics are applied on each tuple classified to θk ag-
gregated to a successive step for the finalization of qsk, i.e., the final similarity
of qj with θk. Formally the ‘2D aggregation’ is calculated as follows:

qsk = Ω(ω {ei(qj , 〈sk, θk〉)} ,∀i,∀ 〈sk, θk〉 (1)
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ω realizes the envisioned ensemble similarity scheme while the aggregation
operator Ω produces the qsk through multiple ω values. Hence, the calculation
of qsk (the kth value in the qs vector), is delivered by the two aforementioned
functions, i.e., (a) ω, which is responsible to realize the ensemble similarity
scheme, and (b) Ω, which aggregates the multiple ω values into a single,
final similarity qsk. For both techniques, we propose the use of fast, however,
reliable models that are capable of resulting the final value in the minimum
time.

For ω, we consider that every single result (i.e., ei(qj , 〈sk, θk〉) represents
the membership of qj to a ‘virtual’ fuzzy set. We have |E| membership degrees
that should be combined to get the final similarity for the each tuple. For
instance, if we get e1 = 0.2, e2 = 0.5 and e3 = 0.3, qj ‘belongs’ to the e1
fuzzy set by 0.2, to the e2 by 0.5 and to the e3 by 0.3. In that sense, ω is a
fuzzy aggregation operator, a |E|-place function ω : [0, 1]|E| → [0, 1]) that takes
into consideration the membership to every fuzzy set and returns the final
value. Aggregation operators are well studied in various efforts, e.g., [16], [19].
Through a high number of experiments [16], [19], a number of aggregators
are identified to exhibit the best performance, i.e., the Einstein product,
the algebric product, the Hamacher product [19] and the Schweizer-Sklar
metric [16].

In the proposed model, we adopt the Hamacher product as it gives us more
opportunities to ‘tune’ the result through the parameter α ≥ 0. The final ω
realization for a tuple is defined as:

ωi =
ė · ë

a+ (1− a)(ė+ ë− ė · ë)
(2)

where ė and ë are two similarity values. As those values may be dispersed in
[0,1], i.e., similarity metrics may ‘disagree’, we propose the use of the top-n
similarity values based on their significance level. The Significance Level (SL)
depicts if a value is ‘representative’ for many other results. We borrow the
idea from the density based clustering where the centroids are points being
connected with many other objects. We propose the use of the radius γ and
calculate the SL for each similarity result as follows:

SLei =
1

1 + e−(δ1|d(ei,ej)≤γ|−δ2)
,∀j (3)

where δ1 and δ2 are parameters adopted to smooth the sigmoid function.
With the sigmoid function, we want to eliminate the SL of values with a low
number of ‘neighbors’ in the radius γ. We consider that such values are not
significant to be incorporated in the calculation of ω. Finally, the results are
sorted in descending order of the SL and the top-n of them are processed
with the Hamacher product to deliver the final aggregated similarity value.

The Ω operator builds on top of the ω values produced for each tuple in
QD classified in θk. Let ω1, ω2, . . . , ωm are those values. For their aggregation,



14 K. Kolomvatsos and C. Anagnostopoulos

we rely on a Quasi-Arithmetic mean, i.e.,

qsk =

[
1

m

m∑
i=1

ωαi

] 1
α

(4)

where α is a parameter that ‘tunes’ the function. When α = 1, the function
is the arithmetic mean, when α = 2, it is the quadratic mean and so on.
After calculating the final values for each θk, we get qs =

〈
Ω1, Ω2, . . . , Ω|Θ|

〉
depicting the memberships in every fuzzy set.

4.2 The Matching Process

The next step is to estimate the required processing steps to conclude the
response for the qj , thus, to identify its computational burden. The required
processing steps will be matched against the load of each QP to deliver the
final decision related to its selection in the processing of the corresponding
query. We consider an additional vector Ts =

〈
T1, T2, . . . , T|Θ|

〉
which rep-

resents a ‘typical’ number of processing steps (an upper bound) for each
class. These steps can be easily retrieved by database experts. However, the
methodology for calculating the required steps for each type of query is be-
yond the scope of the current research. The expected number of processing
steps for qj is defined by

TE =

|Θ|∑
i=1

ΩiTi (5)

Recall that β depicts the current load of a processor, thus, 1− β depicts the
room for ‘hosting’ additional queries. The most common execution approach
is the creation of an execution tree where the required steps are connected
3. A statistical study for the average required steps TE in various query
execution plans can assist us to define the room for additional queries in
QPs. TE should be compared with T̂E = (1− β)TE to identify if qj can be

executed in the specific QP. When TE ≤ T̂E , we assign a reward r1 to the
specific QP, otherwise, r1 corresponds to a penalty.

In addition, we want to incorporate in the decision process, our view on the
future load of QPs. Hence, we maintain historical β values and apply a single
linear estimator to identify the future load as described in [28]. The idea is
to see if the current (through T̂E) and future load can support the execution
of qj . For the latest W β observations βt−1, βt−2, . . . , βt−W , we estimate the

future load β̂ through the linear combination of βt−k, k = 1, 2, . . . ,W with
real-valued ak coefficients. The set {ak} is estimated to minimize the error

3 https://docs.oracle.com/database/121/TGSQL/tgsql sqlproc.htm#TGSQL186
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between β̂ and β. In our effort, we adopt the Levinson-Durbin algorithm [30],

[13]. Based on β̂, if TE ≤
(

1− β̂
)
TE , we assign a reward equal to r2 to the

specific processor, otherwise, r2 corresponds to a penalty.
The ith QP gets a reward/penalty equal to

ri =

|R|∑
j=1

sgn(ri)ri (6)

where |R| is the number of rewards and sgn(ri) is the positive sign if the ri
deals with a reward; otherwise, it corresponds to the negative sign. For each
QP, we calculate the probability of allocation pi delivered by the softmax
function [6], i.e.,

pi =
eri∑|EN|
i=1 eri

(7)

qj is allocated in the processors that their probability exceeds a pre-defined
threshold pT . This secures the optimal allocation based on the Probability
Ranking Principle [23], i.e., if QPs are ordered by decreasing pi, then the
model’s effectiveness is the best to be gotten for the qj .

5 Experimental Evaluation

5.1 Experimentation Setup

We report on the performance of the proposed scheme through a large set
of simulations. Our simulator is written in Java and manages a number of
queries retrieved by a real dataset. We rely on two benchmarking datasets,
i.e., TPC-DS and TPC-H (http://www.tpc.org/). TPC-DS is the de-facto
industry standard benchmark for measuring the performance of decision sup-
port solutions. The TPC-H is a decision support benchmark that consists of
a suite of business oriented ad-hoc queries. For each of the adopted queries,
we define its class as described in [48] where a survey of databases experts
define their view on the complexity of every query. In [48], the ranking of each
query is based on: (i) ground truth query complexity score; (ii) complexity
score computed using experts rating of a set of metrics; (iii) complexity score
computed using the Halstead measure; (iv) complexity score computed using
a formula obtained from regression. Finally, the Kendall’s rank correlation
coefficient and Spearman’s rank correlation coefficient tests are adopted to
measure the correlation between complexity ranks. In our experimental eval-
uation, we classify our evaluation queries in six (6) classes (|Θ| = 6).

We adopt three (3) performance metrics: (i) the time required for con-
cluding a query allocation depicted by Ψ measured in seconds. The lower the
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Ψ is the more efficient the model becomes; (ii) the difference between β of
the first selected QP compared to the lowest β observed in the group of QPs
Ξ. Ξ → 0 means that the proposed model selects the best possible QP; (iii)
the difference of β between the lowest value in the group and the average β
of the top-n selected QPs Φ. We want Φ close to zero which means that the
proposed model selects the best possible QPs. Ξ and Φ depict the correct
matching between the qj and the available QPs. When we meet ‘ties’, i.e.,
QPs with the same pi, we experiment with two scenarios:

� Scenario A. the random selection of the QPs for the final allocation;
� Scenario B. the selection of the lowest possible β.

In the latter case, there is the risk of possible bottlenecks (consider the sce-
nario where all the QCs select QPs with the lowest load when ‘ties’ arise).

We get |EN | ∈ {10, 100, 1000, 10000} and consider β following: (a) the
Uniform; (b) the Gaussian distributions. With the Uniform distribution, we
simulate a very dynamic environment where β continuously changes. The
Gaussian distribution assumes a ‘smooth’ environment where abrupt changes
in β are absent. In each simulation, we randomly select a query and apply the
proposed model. The adopted parameters are as follows: γ = 0.1, δ1 = 5.0,
δ2 = 7.0, a = 1.5, α = 10.0, W = 20, r1 = r2 = 10.0.

5.2 Performance Assessment

Initially, we report on the complexity of the proposed scheme which depends
on: (i) the complexity of the ensemble similarity model; (ii) the complexity
of the QPs selection process. The first complexity is affected by |Θ| and the
|QD| (the size of the dataset). Hence, the complexity for (i) is O(|Θ)| · |QD|.
In addition, when we produce the similarity values with every metric in E , we
require O(|E|2 +m) to calculate the Ω value. O(|E|2) is required to produce
the SL for each metric and, additionally, O(m) to produce the Ω. Hence, the
final complexity of our scheme is O

(
|Θ| · |QD| ·

(
|E|2 +m

))
. In Figure 2, we

plot the complexity of our scheme. At the left, we observe that a combination
of a high number of training queries with a high number of |Θ| increases the
computational time. At the right, we see that the number of similarity metrics
does not mainly affect the complexity. However, when Θ remains low (e.g.,
below 20), the required time for concluding an allocation is low as well.

In Table 5.2, we present the conclusion time for various numbers of QPs
(Ψ metric). The distribution of β does not affect the result; The adoption
of the Uniform mainly results lower conclusion time than the adoption of
the Gaussian distribution. In any case, our results are below 0.3 seconds no
matter the |EN |. This depicts the efficiency of our model and its ability to
support real time decisions.



Edge-Centric Queries Stream Management based on an Ensemble Model 17

0
4000

1

100

2

108

3

2000

4

50

0 0

0
100

2

200

4

108

150

6

50

8

100
50

0 0

Fig. 2 The complexity of the proposed scheme.

Table 2 The conclusion time of our model.

Ψ

|EN | Uniform Gaussian

10 0.008 0.008

100 0.012 0.010
1,000 0.055 0.370

10,000 0.251 0.276

In Figure 3, we depict our results for the Ξ metric. We observe that,
as natural, the Scenario A leads to a higher difference with the lowest β
than the Scenario B. The random selection of a QP, in the case of ties, does
not secure the optimality of the selection but it focuses only in the ‘load
balancing’ aspect of the problem. We also observe that the difference is high
as |EN | → 10, 000, The higher the |EN | is, the higher the difference becomes.
These results stand for the Scenario A. In the Scenario B, we see that the
increased |EN | positively affects the performance as Ξ approaches zero. In
the Scenario B, our model relies on the minimum β, however, under the risk
of bottlenecks if this decision is adopted by the majority of the QCs.

Fig. 3 Our results for the Ξ metric.
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In Figure 4, we present our results for the Φ metric. Now, the difference is
higher than in the Ξ case. The reason is that the remaining selected QPs in
the top-n list and their load negatively affect the statistics. In any case, the
load of the selected QPs remains low in Scenario B.

Fig. 4 Performance results for the Φ metric.

We increase the number of β observations taken into consideration to esti-
mate the future load of QPs and get W = 40 while recording the performance
of the proposed model. In Table 5.2, we report our results related to the time
required for the conclusion of the desired allocations. We retrieve similar re-
sults as in Table 5.2 when the Uniform distribution is adopted. These obser-
vations stand for |EN | ≤ 1, 000. When |EN | → 10, 000, the increased window
adopted for the calculation of the estimated β leads to 65% (approx.) more
time for the envisioned allocations. The same observation is realized when
we adopt the Gaussian distribution. In general, the increased window size W
requires to more time for the calculation of the estimated β, thus, affecting
the total allocation time. This becomes more intense when the number of
nodes is high.

Table 3 The conclusion time of our model when W = 40.

Ψ

|EN | Uniform Gaussian

10 0.009 0.009

100 0.014 0.011
1,000 0.049 0.051

10,000 0.413 0.417

In Figure 5, we present our results for the Ξ metric and the increased
window size. In the majority of the experimental scenarios, the increased W
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leads to an increased Ξ as well. This means that the load of the selected node
is higher than the lowest load in the group. Some differences are obtained
when the Gaussian is adopted, |EN | < 10, 000 and Scenario B gives us the
final list with the selected nodes. Again, similar to the case where W = 20,
the adoption of the Uniform distribution leads to less difference with the
optimal load compared to the scenario when the Gaussian distribution feeds
our experimental parameters.

Fig. 5 Our results for the Ξ metric (W = 40).

Finally, in Figure 6, we plot our results for the Φ metric. The use of the
Uniform distribution leads to slightly less difference with the average of the
selected nodes than the adoption of the Gaussian distribution. Comparing
the depicted results with the results retrieved through the use of W = 20, we
observe that the increased window size leads to an increased difference com-
pared to the previous presented experimental scenario (W = 20). However,
when the Uniform distribution is adopted and |EN | = 10, 000, the increased
window size leads to the best performance.

6 Conclusions and Future Work

The efficient management of queries adopted to provide analytics comes,
more intensively, into scene in the IoT era. Queries should be immediately and
efficiently responded to support high quality services. In this paper, we discuss
a setting where queries are set into the Cloud and responded in multiple
edge nodes. We propose a model for depicting the complexity of a query and
an allocation process to the edge nodes. The complexity class defines the
computational burden that a query imposes to a node and it is delivered
by an ensemble similarity scheme. Our model does not impose any training
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Fig. 6 Performance results for the Φ metric (W = 40).

process and does not require an increased time to deliver the final result.
Our evaluation process reveals the pros of the model and through numerical
results confirms the increased performance. Our future research plans involve
the incorporation of more parameters into the decision making process. For
instance, we can take into consideration the deadline defined for the final
execution of a query or the statistics of data hosted in each edge node. This
way, we will be capable of providing a mechanism fully adapted to the queries
and nodes characteristics together with the requirements defined by end users.
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