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Abstract

We discuss various microscopic mechanisms for level attraction in a hybridized magnon-photon
system of a ferromagnet in a microwave cavity. The discussion is based upon the electromagnetic
theory of continuous media where the effects of the internal magnetization dynamics of the
ferromagnet are described using dynamical response functions. This approach is in agreement with
quantized multi-oscillator models of coupled photon-magnon dynamics. We demonstrate that to
provide the attractive interaction between the modes, the effective response functions should be
diamagnetic. Magneto-optical coupling is found to be one mechanism for the effective diamagnetic
response, which is proportional to photon number. A dual mechanism based on the Aharonov—
Casher effect is also highlighted, which is instead dependent on magnon number.

1. Introduction: mode attraction in microwave cavities

Microwave cavity resonators are useful for coupling microwave photons to various excitations including
mechanical [1], acoustic [2], and magnetic degrees of freedom [3]. In magnetism, hybridization between cavity
modes and ferromagnetic resonances in the form of cavity magnon-polaritons has been demonstrated and
studied in a number of systems [4—12]. Cavity optomagnonics was proposed recently with analogs to
optomechanics [13—16]. In optomagnonics, cavity photons couple to magnetic excitations via the magneto-
optical interactions, which allows characterization using a well-established optomechanical Hamiltonian

[15, 16], and, as a consequence, one should be able to observe optomechanical effects in magnetic systems [17].
Various phenomena have been proposed for coupled magnon-photon systems inside microwave cavities
including Brillouin-scattering-induced transparency in whispering gallery resonators [ 18—20], collective
dynamics of spin textures [21, 22], and photon-mediated nonlocal interactions [23-26].

Recently, for certain positions of a magnetic sample a mode attraction regime has been observed within a
cylindrical [27] or a planar cavity [28]. Mode attraction is a general feature know already to be possible in
dynamic optomechanical systems [29]. Naturally, it requires a certain instability mechanism being provided,
which in optomechanical context is realized via the negative frequency in the effective Hamiltonian of a driven
system [29]. In contrast to usual mode hybridization, mode attraction is characterized by a region where the real
parts of the eigenfrequencies coalesce marked by the exceptional points where the eigenmodes collapse [30, 31].
In [27], the level attraction for cavity magnon-polaritons was interpreted as a manifestation of Lenz’s law ina
phenomenological electrical circuit model. The mechanism for level attraction between strongly interacting
spin-photon excitations was also proposed for a system with two driving terms with a phase offset [32], which
was recently realized in a re-entrant cavity resonator using two separate drives [33, 34].

The purpose of this paper is to discuss possible microscopic material mechanisms for mode attraction in
ferromagnetic systems. Most of these mechanisms can be thought of in terms of an effective diamagnetic
response of the system. To show this, we will use the approach based on the Maxwell’s equations in dispersive
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Figure 1. (a) Schematic picture of a small ferromagnetic sample interacting with circularly polarized electromagnetic wave inside a
microwave cavity. (b) Energy dispersion for the Hamiltonian (1) as a function of €2,,, showing level repulsion near w,and level
attraction at —w,. (c) Phase shift in the equation (2) as a function of w demonstrating 27 jump near —w,.

media, where the internal magnetization dynamics is taken into account through response functions and
constitutive relations [35].

Before going to specific details, we illustrate the essential ideas with a three coupled oscillator model. Such a
model is obtained if we take a small magnetic specimen with the magnetization M (¢) in a static magnetic field
H interacting with the microwave field h(t) of the cavity, as schematically shown in figure 1(a). This model
shows the level attraction in the unstable regime where the magnetization is opposite to the magnetic field,
which formally corresponds to a negative magnon frequency. Such configuration is, of course, unphysical.
However, it illustrates a general rule that the mode attraction is related to an instability in the system. In the
linear approximation for magnetization dynamics, the total interacting Hamiltonian can be written as (see
appendix A for details)

H = Zw(ajay + agag) + 7 Qub'b + fig,[(ar + a))b + h.c.] + Har, (1)

where a' (a) is the creation (annihilation) operator for two degenerated cavity photon modes with right (R) and
left (L) polarizations and the frequency w,, band b describe the magnon oscillator with the frequency .., g
denotes the magnon-photon coupling paramenter, and the last term is the external driving energy at the
frequency w, Hary = i/ /Kex [tinag exp(—iwt) — o af exp(iwt)] with the amplitude oy, and coupling
parameter K.

The qualitative behavior of this model can be understood directly from the Hamiltonian (1). For Q,, ~ w,,
the dominant contribution comes from the interaction term proportional to a; b + a; b that describes a
hybridization between the left polarized electromagnetic wave and the magnon mode precessing in the same
direction, while ap remains decoupled [36]. More interesting behavior takes place for 2, ~ —w,, where the
term agb + a}b’ is dominant, which is know as the ‘two-mode squeezing’ regime in optomechanics [1]. In this
case, the level attraction regime is observed between the magnon and the right-polarized cavity mode in the
region (Q, + w.)? < 4g?[29]. The whole picture is summarized in figure 1(b).

Another salient feature in the mode attraction regime of the three oscillator model appears with varying the
frequency of the drive around the pointw = —w,when all three modes are degenerated, w, = {2,,. This appears
as a phase shift between the driving field oy, and the driven cavity mode ag. If we introduce the dissipation in the
magnon channel, 2, — ik, and neglect cavity dissipation, phase shift between the driving term and the
response field is estimated as

2
Km(W? — w?)

tano = >
¢ (W — W)W + M) + 28w,

(©))

which contains contributions from two degenerated cavity modes with different polarizations and the magnon
mode. When all modes are degenerated, £2,,, = —w,, these two contributions provide the phase shifts of +7and
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—maroundw = —w,thatresults in a characteristic 27 phase jump as shown in figure 1(c). We believe that
similar mechanism may be behind the phase shift reported in [27]. We note, however, that within this
illustration, 27 phase shift occurs at negative frequencies, whereas in the physical region w ~ w, itequals to 7.
Below, we will consider the response functions that can bring 27 phase jump to positive w.

As already mentioned, the condition €2, &= —w, represents an unstable configuration where M and H, are
antiparallel. Another possible scenario would require fully dissipative imaginary coupling constant g. Either
possibility explains why level attraction was not observed previously for cavity magnon-polaritons. In this paper,
we discuss physical mechanisms that are not fully dissipative, but instead arise from effective ‘diamagnetic’
responses where the reaction of the system is towards compensating the applied excitation. This can be
somehow from the cavity itself, as proposed in [27, 28], or through some mechanism in the sample response. We
consider here possible mechanisms first via the electromagnetic pressure on the sample through electro-optics,
and second via the magnon pressure on the cavity through the Aharonov—Bohm mechanism.

In the following we construct a classical electromagnetic theory for the measured responses in terms of cavity
and sample impedances. This allows us to define a tensor magnetic response for cavity-magnon coupling
through either magnetic or electro-optical mechanisms. We demonstrate that magneto-optical coupling, or
more specifically, the inverse Faraday effect, provides one possibility for the effective diamagnetic response,
which being quantized, leads to a linearized optomagnonic Hamiltonian [15, 16]. Another possible scenario for
the attractive regime comes from the Aharonov—Casher effect [37]. As we discuss at the end, this effect can be
considered as dual to the magneto-optical coupling. In both scenarios, the magnon-photon interaction is driven
by the cavity electric field.

2. Electromagnetic theory and diamagnetic response

A theory sufficiently complex to allow for different placements within a cavity in an actual experiment can be
obtained using classical electrodynamics. This is most naturally formed in terms of impedances, and provides a
direct connection to the scattering matrix element S,;(w) typically measured in experiment. Frequency shifts
and phase can be obtained from the complex scattering elements. These are obtained using standard classical
electromagnetic theory in terms of energies W, and W,,,, defined over the sample volume Vgas

W, = iw f $ri2(w) — 21E - EF, (3a)

Wy, = iw f Fripw) — o H - HY, (3b)

where the complex electric permittivity, £ = 1 + &, and magnetic permeability, i = 1 + ¥ are different from
those for the free space due to the presence of the sample. The cavity electric and magnetic fields satisfy Maxwell’s
equations in free space and are Ey and Hy. The fields perturbed by the sample are E and H. Together the
energies provide the sample contribution to the measured impedance Zg = W, — W, [38], section 6.10. The
perturbative impedance Zg can then be simply added to a cavity impedance Z, with parameters determined by
unloaded measurements.

The required properties needed to construct Zs from the response functions for the loaded cavity can be
understood in terms of the electromagnetic theory of continuous media. In this approach, we ignore at the
beginning the finite sample size and describe the field inside the cavity by the Maxwell’s equations

V X E= —0,(yftH), 'V -(g02E) =0, (4a)
V x H = 0,(¢o¢E), V - (u,tH) = 0. (4b)

By expanding the fields, E = E, + 6E and H = Hj, + 6H, where 6E and 6H are related to the sample, we
rewrite the equations above in the form

V X 6E + 0i(pyf10H) = —0,(p1yXHo), (5a)
V X 6H — 9,(£086E) = 0,(cy&Ey), (5b)

where the free space cavity field can be considered as driving terms, which provide the response determined by
the material functions of the medium.

Let us consider a situation where the plane electromagnetic wave is propagating in a homogeneous
dispersive birefringent medium along the gyrotropic axis taken as z direction. In this case, we take magnetic
susceptibility tensor in the form
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X;(w)  ix,(w) 0
XWw) =]-ix,(w) xw) 0} (6)
0 0 0

and & = 1for simplicity. Transforming (5a) and (5b) to the w-domain, and replacing 0, by iw./c, where w, is
some characteristic frequency of the cavity, we obtain

tow (1 4+ xp) ifowyx, 0 we/c)(6H,
—ipowx,  pw( + xp) —we/c 0 |[OH, [ X (w)Ho 7
0 —w,/c Eow 0 SE. | Mow( 0 ) @)

we/c 0 0 gow J\ OEy

If we include dissipation into account, y; and x, become complex. In this situation, the equation above has the
exceptional points at the frequencies, which satisfy the relation y,(w) — x;(w) = 2iw./w, where the matrix on
the left hand side does not have a diagonal form [31].

Calculating the circular components of the response magnetic field from equation (7), we obtain

[mwimwwwﬁz’ ®

SHE®) (w) = —
[1+ x(w) £ x,(Ww)]w? — W

where SH®) = §H, + i6H,, which is directly related to the impedance of the loaded cavity via equations (32) and

(3b). If we take the components of the susceptibility for the ferromagnetic resonance [36], x; (w) = YM;Qy/

(2, — wd)and X, (W) = YMw/ (€22, — w?), we obtain a result consistent with equations (A.7)—(A.9)
’yMSwZ(SHO(i)

(W — W) (U F w) + Mw?’

SHO (W) = — ©

which shows level repulsion behavior around w & €2,,,. To obtain level attraction instead of repulsion, we
formally need a ‘diamagnetic’ response here, which corresponds to yM, < 0.

2.1.Inverse Faraday effect mechanism

From the physical point of view, the effective resonant diamagnetic response may be realized if we consider
nonlinear effects in light—matter interactions. One particular example is the inverse Faraday effect [39], where
circular polarized components of the electric field create an effective magnetic field H () = i, fE(t) x

EX(t) /4, where E(t) is the electric field amplitude in the complex representation, E = (€ + £%)/2, and fis the
material dependent parameter. The effective magnetic field is able to drive the dynamics of the magnetization
towards the resonance, which can be taken into account in Maxwell’s equations through the modulation of the
electric permittivity. Compared to the usual magneto-dipole coupling between the magnetization and the cavity
magnetic field, we expect that this mechanism is dominant in the nodes of the cavity modes, where the magnetic
field is small, while the electric field is maximal. By moving a small specimen inside the cavity, we can tune the
relative strength of different coupling mechanisms, which changes the hybridization picture [27].

For illustration, we consider the setup shown in figure 2(a), where the cavity electromagnetic wave is excited
along the x-direction perpendicular to the saturation axis of the magnetization, which is taken as z-axis. In this
case, the displacement field generated by the inverse Faraday effect is given by 6D(t) = iefe;in.()Ef(t), where
€;jx denotes the Levi-Civita tensor. If we consider only linear terms in the fluctuating parts of the fields, and
transform to the Fourier space, the effective response that takes into account resonant magnetization behavior
can be estimated as

(wy(w)) __&af (10)

D)) 4 X""(w_wL)[

1Eocl —EF,E0: (65y(w))
- >(i)<z‘c;0y |g0y|2 552((.4}) ’

where D(w) = [D(w) + D*w)] /2, & and wy are the amplitude and the frequency of the driving field, and we
neglected the terms with £(w £ 2wy ). The details can be found in appendix B. Equation (10) shows that in the
linear approximation the inverse Faraday effect provides an effective dielectric resonant permittivity proportional
to the intensity of the driving field and consistent with the macroscopic Lenz’s effect. However, we note that such
power dependence of the parameters has not been observed in recent experiments [27, 28], which means that these
systems require a different microscopic explanation. We expect that the results of this section will be relevant to
optomagnonic systems discussed in [15, 16].

If we apply the formalism of equations (5a), (5b) together with the effective permittivity in (10), excluding
the magnetic field, we obtain the following equations for the fluctuating cavity electric field

4
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Figure 2. (a) Experimental geometry for the magneto-optical mechanism of the mode attraction. (b) Energy dispersion (18a), (180) as
afunction of Q.

Wi = W+ g P X (D)w? —8/8 X (D) 5€
( y) =0, (11)

8,8 X (D)w? wi — w? = X, (Ww? + g Px (D)w? J\8E:
where we have introduced effective coupling constants g, = e fE / 4(i = y,z),and where A = w — w;
with wbeing the frequency of the probe field. The equation above shows that the magneto-optical coupling to a
dynamic magnetization, in the linear approximation, is equivalent to an effective ‘diamagnetic’ response. This
becomes apparent if we consider the equation for €7 where the magneto-optical contribution competes with
the ordinary ferromagnetic resonance [~,,(w)] from the y-component of the fluctuating magnetic field.

2.2.Magneto-optical coupling mechanism

A possible origin for the effective diamagnetic contribution in (10) and (11) can be understood from a quantized
optomagnonic Hamiltonian [15, 16]. For this purpose, we consider a spin § = 86 (r — 1) coupled to the
electric field through the magneto-optical coupling

&
Huo =~ [bey€i8 50, (12)

where dej; = ife; Sy describes the inverse Faraday effect with f = 2cfr /(v wS) [15], where 6 is the Faraday
rotation angle, cis the velocity of light, wis the frequency of the electromagnetic wave, and ¢ is the electric
permittivity of the medium. In what follows, we take the electric field in the form of cavity standing waves along
the xaxis, E(x) = >\_; pl/aw: /(g0 WIH/2 sin(mnxg / L,)eyay, where a,, is the cavity photon annihilation
operator, ey = (0, \, i) /~/2 is the polarization vector for the circularly polarized wave with the left (L = —1) or
right (R = 1) polarization ), n is the cavity mode index, V'is the volume of the cavity, L, is the size of the cavity
along the x direction, and x, denotes the position of the sample. We take the z-axis as a quantization axis for the
spin S, as shown in figure 2(a), so that the magneto-optical coupling becomes

Humo = 7gy(ajar — agag)(b + b"), (13)

where g, = c0p§ / /2¢S is the magnon-photon coupling parameter at the node where the electric field is at the

maximum (§ < 1 isa geometric factor). For um sized yttrium iron garnet sample at the optical wavelength

~1 pim, we can estimate 6 = 200° cm™ ' [40], appendix A, ¢ ~ 5and S = 10'°, which gives g, ~ 10> Hz[15].
The interaction energy in (13) is the same as in optomechanical applications. In the rotating wave

approximation (RWA), the total Hamiltonian can be written as

H=—/hAa)a + aja) + 5Qb'b + iigy(ajar — a] @) (b + bY) + i72 JFiex (a] — ic*ay), (14)
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where ovis the amplitude of the driving field, and we have transformed to the linearly polarized basis,
a, = (a; — iay) /2 and ag = (a; + ia,) /~/2. The last term in this expression is the external driving, which
becomes time independent under the RWA [1]. Compared to the magneto-dipole interaction in (1), the

optomechanical coupling in RWA leads to the detuning parameter A =

depending on the ratio of the driving frequency, wy, to w..
The interaction part of the Hamiltonian (14) can be linearized as follows:

1 — w,thatmayhave an arbitrary sign

aja, — ala; ~ NI a) — Jh (ax — aj), (15)
where 1, and n, denote the average numbers of cavity photons. The linearized Hamiltonian is written as
Hin = — A A @) + a3 a5) + 7 Qnb'b + i5g (e — a)) (b + b
— i/ig,(ay — a3)(b + bT) + /i JFex (a| — ic*ay), (16)

where we have introduced renormalized coupling parameters g = g,./n; and g, = g, /7 . Inasituation where
the driving field is coupled only to the cavity photon of one polarization, we would normally expect g, > g.
The Heisenberg equations of motion for the Hamiltonian (16) can be written in the matrix form:

A 0

ig ig,

a 0 ay @
a, 0 -A 0 18 18 ||a) of
a 0 0 A —ig, —i a
SHE el | el I R (17)
aj 0 0 0 -—-A —ig —igl|la 0
b —ig g ig —igy —Om 0 b 0
bT . . . . b’r 0
ig —ig —ig, 1ig, 0 On
which has a pair of trivial eigenvalues wy = +A, and two pairs of hybridized eigenmodes
2 2 2 _ 022
) :i:\/A —;Qm n \/(A 4Qm) _ 4(g12 + gf)AQm ; (184a)
2 2 2 _ 022
W) — :I:\/A —; Qm B \/(A 4Qm) . 4(g12 + gzz)AQm . (lgb)

In accordance with [29], for A > 0,w™ demonstrate level attraction in the region where (A2 — Q%)% <

16(g12 + g22 ) AQ,, which is related to the parametric instability in cavity optomechanics [1]. This region is bounded
by the exceptional points, where the eigenmodes coalesce, and the matrix on the right-hand side of (17) is
characterized by the Jordan form:

-A 0 0 0 0 0
0 A 0 0 0 0
[Q2 + A2
0 0 —, | m TS 1 0 0
2
[+ A
0 0 0 — 0 0 (19)
[QF + A2
0 0 0 0 S A7 1
2

[Q2 + A2

0 0 0 0 0 %

For A < 0, in contrast, we have usual mode repulsion. Remarkably, the energy-level picture for the dispersion
relations (18a), (18b) shown in figure 2(b) becomes similar to that in figure 1(b) for the three-oscillator model
with inverted horizontal axis.

Solutions of equations of motion (17) for the cavity modes have the following form

i AQm + 4g22
a = — 2 PNE [45)
AAQy + 4"+ &)

diag g,

= , 20
A[AQy + 4(8” + g))] 0

where we used real o for simplicity. If g ~ /n, is nonzero, driving of 4, excites also a,. In this situation, if we
take into account the dissipation of the cavity mode, A — A + ik, the response in (20) has 27r-phase shift with
respect to the drive due to the degeneracy of the cavity modes with different polarizations.

6
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Figure 3. Schematic picture of a spin wave inside a small ferromagnetic specimen carrying spin current J along the x direction
interacting with the cavity electric field E polarized along the y axis. The electric field is supposed to be homogeneous on the
specimen’s length scale.

3. Aharonov—Casher effect

Here, we discuss another mechanism of mode attraction for a coupled magnon-photon dynamics inside a
ferromagnetic insulator based on the Aharonov—Casher effect [37]. This effect is related to a dualism between
the electrodynamics of electric charges in a magnetic field and that of charge-neutral magnetic dipoles in an
electric field. When applied to magnon dynamics this leads to, for example, the Landau quantization of the
magnon states under applied electric field gradient [41]. Since the diamagnetism of a conventional electron gas
follows from Landau quantization of electron motion, by analogy, we expect that a sort of ‘diamagnetic’
response should also exist for magnons in the electric field, which. In turn, this provides us with a mechanism for
the level attraction, as explained below.

For this purpose, we consider the following spin Hamiltonian for a small ferromagnetic specimen

] - 0. Y

H= —%[E(Sf 'SPeifi 4 S e il + ]sf”s;z)] = KZ[Si(Z)]Z, 1)
ij i

where ] is the ferromagnetic exchange constant, K is the anisotropy parameter, and the summation is over the

nearest neigbouring sites limited by the size of the specimen. The first term contains a field phase associated with
the cavity electric field. The phase factor is given by [41]

0;(t) = ‘% f x_" [E(r, 1) x 2] - d¢, (22)
where the integration is taken along the path connecting ith and jth sites, and z plays the role of a spin
quantization axis.

If we suppose that the characteristic wavelength of the electric field is much larger than the sample size,
then the interaction part in the Hamiltonian (21) can be written in the form —E - J,where J = [igu,]/(27c?)]
(S =) Sj(“ — §M S]H) [£ x r;]is the spin current in the sample (see figure 3). By quantizing the spin operators,
S = J2Sb;, S\ = /28 b;', and choosing the electric field in the form of a linearly polarized cavity standing wave
along the x direction, E, (x) = [/ /(g V)] /2 sin(wnx / L,)(a + a'), the interaction energy can be written as
— 715k g b bi(a + ab), where the interaction constant g, = —[2g4,JS/ (/%c)][/av / (9 V)I'/?
sin(mnx /L)Y _gsin(k - §)(Z x &), generally depends on the position of the sample x, with respect to the
electric field.

If the sample is populated into a state with ng, >> n_g, for some ko, where ny = (b by) is the magnon
number, and magnon states with different k are well separated, we can consider a simplified model

H = Jwea'a + 71Qu,bf b, — /g, by br,(a + a®) + HYY, 23)

where we added the driving term Hfi‘:‘) =i/l /R 8 g;l)bko exp(—iwt) + h.c., with the amplitude of the driving
field 5 g“). The Hamiltonian (23) can be considered as dual to the model with magneto-optical interactions in
equations (13) and (14). It can be interpreted in terms of the pressure force created by the magnon flow with
finite ko on the cavity photon oscillator, with the position operator proportional toa + a'.

Similar to optomagnonic Hamiltonian (14), equation (23) can be transformed to the time-independent
frame by applying the unitary transformation to the magnon operators, by, — exp(b ,:rn by, t) b, [1]. In this
representation, the magnon frequency is replaced by the magnon detuning parameter, €, — —A, where
A=w-0Q k,» With which we can reach the attraction regime in the region A —w) < 4gk2n 1k, We note that,
in contrast to optomagnonic case, the single magnon coupling constant is small compared to (2. For realistic
parameters, ] = 100K,w, = 10257 % and S = 1, we estimate Sk, = 10~* s~ %, which means that the effect is
difficult to realize experimentally. However, we believe that it can be relevant to ultrafast magnetization

7



10P Publishing

NewJ. Phys. 21 (2019) 095003 I Proskurin et al

dynamics in metamaterials with S > 1, and can provide an experimental evidence for the spin current
electrodynamics proposed in [37].

4. Summary

We considered several mechanisms of mode attraction for a coupled magnon-photon system inside a
microwave cavity. Using the Maxwell’s equations of continuous media, we demonstrated how level attraction
can be described in terms of response functions of the medium. In particular, we derived the effective
permittivity for the inverse Faraday effect, and showed that it can be interpreted as an effective diamagnetic effect
in the equations of motion for the electromagnetic fields inside the cavity. This approach has been supported by
the quantum picture based on the optomagnonic Hamiltonian [15, 16], which has reasonable parameter values
for experimental demonstration of the effect.

Also, we discussed another mechanism, which is based on the electro-dipole effect of the magnon spin
current [42]. In the context of level attraction, this mechanism can be considered as dual to optomagnonic
approach because it requires driving of the magnon mode with finite wave vector. This effect is relativistically
small compared to the magneto-optical mechanism.
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Appendix A. Resonant frequencies for the three-oscillator model

In order to derive the Hamiltonian (1), we consider the magnetization M (¢) in the static magnetic field H, along
the z-direction interacting with the microwave field h(¢) (see figure 1(a)). By splitting the magnetization into
staticand dynamic parts, M = [M; — m?/(2M,)]1Z + m(t), where M;is the saturation magnetization and m (t)
is the transverse dynamical component, the magnetic part of the energy, H,, = —M - Hy — h - M, in the linear
approximation, becomes

M, :
Humn = /Qmb'b — — (b + hDbh), Al
ﬁ( ) A.D

where Q,,, = 7 M,H,, h'® = h, + ih,, and the circular components of m are expressed via the Holstein—
Primakoff boson operators, m‘" = \/Ey M;band m) = 2 M;b*. We take the resonant cavity mode in the
form of a plane wave along the z-direction, so that the magnetic field is quantized as follows:

>
h(z, t) =i Z( e ] cos (%) [a\(2 x e) — a) (£ x e))], (A.2)
VN4 L,

where w.and N, denote the frequency and the index of the cavity mode, V'is the volume of the cavity, L, is the size
of the cavity along the z-axis, and a (a; ) is the photon creation (annihilation) operator in the helicity basis
ey = (\, i, 0)/~/2 with A\ = 1(—1) for the right (left) polarized wave. Using this quantization of the magnetic
fieldin (A.1), and adding the electromagnetic energy of cavity photons, we obtain the Hamiltonian (1) with
g = (weM? /731y V)% if the sample is at the position of maximum magnetic field.

The Heisenberg equations of motion for the Hamiltonian (1) with the driving have the following form:

—iag = —wear — gyb" — iJRex aine Y, (A.3)
—ib" = Qb + 20ar + 8,41 (A.4)
—id] = wea + gyb'. (A.5)

The stationary response of the system to the driving at frequency w can be found from the algebraic system of
equations for the field amplitudes
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W—w  —& 0 ar Qin

8o w+ On 8o bl = i "iex( 0 ]) (A.6)
0 £ w4+ w ﬂLT 0

which has the following solutions

iRa il + w) (W + Q) — g

a (A7)
5 (W — W)W + M) + 28w,
bT _ i\/ "Jexaingo(w + wc) (A 8)
W? = W)W + Q) + 287w
. 2
- 1/ Rex Qin
af = rednk (A9)
(W = w) (W + Q) + 2gywe
The resonant frequencies can be obtained from the determinant of the matrix on the left hand side of
equation (A.6), (wW? — w?)(w + Q) + 2g02wc = 0. The solutions have the form
wo = —%[Qm + (A —iC)s + (A + i0)3], (A.10)
1 : . 1 : . 1
Wy = —g[Qm — e™3(A — iC)s — e ™/3(A + i0)3], (A.11)
Wy = —%[Qm — e /34 — iC)s — el™3(A + iC)3], (A.12)
where A = Q) — 9Q,w? + 27g02w5 and B = Q2 + 3w?,and C = +/B® — A?. The frequencies are real in the
region where B> > A2. Otherwise, w; and w, become complex. In the limit gy = 0, we have wy = —Qy,
w; = —wpandw, = W

Appendix B. The effective permittivity for the inverse Faraday effect

In order to derive the effective response for the inverse Faraday effect, we consider the electric displacement field

60D;(t) = ieo feiem. (1) Ej(). (B.1)
In the Fourier space, this expression can be written as
. < duw'’
Di(w) = ey fei f X (W H (W) Ej(w — o), (B.2)
— 00

where the magnetization dynamics in the effective field is taken into account through the ferromagnetic susceptibility,
My (W) = X, (W) H,ﬁff (w), and the Fourier components of the fields are determined as follows F (w) =

L ™ dtel“!F(t). The Fourier component of the effective field is given by

. o ,
ger — of f W ) x E5w — wh, (B.3)
4 —oo 2T
which gives after substitution into (B.2)
2 2 00 ! oo "
D,(u)) = _igijx €kix f di dw Xxx(w/)gk(w”)gl(w/ _ UJ”)
8 —oo 2 —oo 2

X [Eiw — o) + Efw — W) (B.4)

We imply that the electric field is driven by the external field Eo(t) = [Eyexp(—iwrt) + E§exp(iwy )] /2,
and expand (B.4) up to the linear order in the fluctuating field, E = E, + ¢E, which gives after some algebra

22
D) = — 2 0160 x EDMIBE ) + s

+ X (W — WD) EGIETOE W) — E5,6E(w)]

+ X (W + w1 EGIEYOERW) — Enz6E (W)

+ X (w — w1) Egj[E0y6EF(w — 2wr) — 50z55j(w — 2wr)]

+ Xy (W + wL)S’&[é’gzéc‘,’y(w + 2wy) — 5’&66}(@) + 2w)]}. (B.5)

Neglecting the last terms with w £ 2wy and the first term, which corresponds to the static component of the
effective field, we obtain equation (10).
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