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Abstract
Wediscuss variousmicroscopicmechanisms for level attraction in a hybridizedmagnon-photon
systemof a ferromagnet in amicrowave cavity. The discussion is based upon the electromagnetic
theory of continuousmediawhere the effects of the internalmagnetization dynamics of the
ferromagnet are described using dynamical response functions. This approach is in agreementwith
quantizedmulti-oscillatormodels of coupled photon-magnon dynamics.We demonstrate that to
provide the attractive interaction between themodes, the effective response functions should be
diamagnetic.Magneto-optical coupling is found to be onemechanism for the effective diamagnetic
response, which is proportional to photon number. A dualmechanismbased on the Aharonov–
Casher effect is also highlighted, which is instead dependent onmagnon number.

1. Introduction:mode attraction inmicrowave cavities

Microwave cavity resonators are useful for couplingmicrowave photons to various excitations including
mechanical [1], acoustic [2], andmagnetic degrees of freedom [3]. Inmagnetism, hybridization between cavity
modes and ferromagnetic resonances in the formof cavitymagnon-polaritons has been demonstrated and
studied in a number of systems [4–12]. Cavity optomagnonics was proposed recently with analogs to
optomechanics [13–16]. In optomagnonics, cavity photons couple tomagnetic excitations via themagneto-
optical interactions, which allows characterization using awell-established optomechanical Hamiltonian
[15, 16], and, as a consequence, one should be able to observe optomechanical effects inmagnetic systems [17].
Various phenomena have been proposed for coupledmagnon-photon systems insidemicrowave cavities
including Brillouin-scattering-induced transparency inwhispering gallery resonators [18–20], collective
dynamics of spin textures [21, 22], and photon-mediated nonlocal interactions [23–26].

Recently, for certain positions of amagnetic sample amode attraction regime has been observedwithin a
cylindrical [27] or a planar cavity [28].Mode attraction is a general feature know already to be possible in
dynamic optomechanical systems [29]. Naturally, it requires a certain instabilitymechanism being provided,
which in optomechanical context is realized via the negative frequency in the effectiveHamiltonian of a driven
system [29]. In contrast to usualmode hybridization,mode attraction is characterized by a regionwhere the real
parts of the eigenfrequencies coalescemarked by the exceptional points where the eigenmodes collapse [30, 31].
In [27], the level attraction for cavitymagnon-polaritons was interpreted as amanifestation of Lenz’s law in a
phenomenological electrical circuitmodel. Themechanism for level attraction between strongly interacting
spin-photon excitations was also proposed for a systemwith two driving termswith a phase offset [32], which
was recently realized in a re-entrant cavity resonator using two separate drives [33, 34].

The purpose of this paper is to discuss possiblemicroscopicmaterialmechanisms formode attraction in
ferromagnetic systems.Most of thesemechanisms can be thought of in terms of an effective diamagnetic
response of the system. To show this, wewill use the approach based on theMaxwell’s equations in dispersive
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media, where the internalmagnetization dynamics is taken into account through response functions and
constitutive relations [35].

Before going to specific details, we illustrate the essential ideas with a three coupled oscillatormodel. Such a
model is obtained if we take a smallmagnetic specimenwith themagnetization M t( ) in a staticmagnetic field
H0 interacting with themicrowave field h t( ) of the cavity, as schematically shown infigure 1(a). Thismodel
shows the level attraction in the unstable regimewhere themagnetization is opposite to themagnetic field,
which formally corresponds to a negativemagnon frequency. Such configuration is, of course, unphysical.
However, it illustrates a general rule that themode attraction is related to an instability in the system. In the
linear approximation formagnetization dynamics, the total interactingHamiltonian can bewritten as (see
appendix A for details)

a a a a b b g a a b h.c. , 1c L L R R R Lm 0 drv   w= + + W + + + +( ) [( ) ] ( )† † † †

where a† (a) is the creation (annihilation) operator for two degenerated cavity photonmodeswith right (R) and
left (L) polarizations and the frequencyωc, b and b† describe themagnon oscillator with the frequencyΩm, g0
denotes themagnon-photon coupling paramenter, and the last term is the external driving energy at the
frequencyω, a t a ti exp i exp iR Rdrv ex in in* k a w a w= - -[ ( ) ( )]† with the amplitudeαin and coupling
parameterκex.

The qualitative behavior of thismodel can be understood directly from theHamiltonian (1). ForΩm≈ωc,
the dominant contribution comes from the interaction termproportional to a b a bL L+† † that describes a
hybridization between the left polarized electromagnetic wave and themagnonmode precessing in the same
direction, while aR remains decoupled [36].More interesting behavior takes place forΩm≈−ωc, where the
term a b a bR R+ † † is dominant, which is know as the ‘two-mode squeezing’ regime in optomechanics [1]. In this
case, the level attraction regime is observed between themagnon and the right-polarized cavitymode in the
region g4cm

2 2wW + <( ) [29]. Thewhole picture is summarized infigure 1(b).
Another salient feature in themode attraction regime of the three oscillatormodel appears with varying the

frequency of the drive around the pointω=−ωcwhen all threemodes are degenerated,ωc=Ωm. This appears
as a phase shift between the driving fieldαin and the driven cavitymode aR. If we introduce the dissipation in the
magnon channel,Ωm− iκm, and neglect cavity dissipation, phase shift between the driving term and the
responsefield is estimated as

g
tan

2
, 2c

c c

m
2 2

2 2
m 0

2
f

k w w
w w w w

=
-

- + W +
( )

( )( )
( )

which contains contributions from two degenerated cavitymodeswith different polarizations and themagnon
mode.When allmodes are degenerated,Ωm=−ωc, these two contributions provide the phase shifts of+π and

Figure 1. (a) Schematic picture of a small ferromagnetic sample interactingwith circularly polarized electromagnetic wave inside a
microwave cavity. (b)Energy dispersion for theHamiltonian (1) as a function ofΩm showing level repulsion nearωc and level
attraction at−ωc. (c)Phase shift in the equation (2) as a function ofω demonstrating 2πjumpnear−ωc.
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−π aroundω=−ωc that results in a characteristic 2π phase jump as shown infigure 1(c).We believe that
similarmechanismmay be behind the phase shift reported in [27].We note, however, that within this
illustration, 2π phase shift occurs at negative frequencies, whereas in the physical regionω≈ωc it equals toπ.
Below,wewill consider the response functions that can bring 2π phase jump to positiveω.

As alreadymentioned, the conditionΩm≈−ωc represents an unstable configurationwhere M and H0 are
antiparallel. Another possible scenariowould require fully dissipative imaginary coupling constant g0. Either
possibility explains why level attractionwas not observed previously for cavitymagnon-polaritons. In this paper,
we discuss physicalmechanisms that are not fully dissipative, but instead arise from effective ‘diamagnetic’
responses where the reaction of the system is towards compensating the applied excitation. This can be
somehow from the cavity itself, as proposed in [27, 28], or through somemechanism in the sample response.We
consider here possiblemechanisms first via the electromagnetic pressure on the sample through electro-optics,
and second via themagnon pressure on the cavity through the Aharonov–Bohmmechanism.

In the followingwe construct a classical electromagnetic theory for themeasured responses in terms of cavity
and sample impedances. This allows us to define a tensormagnetic response for cavity-magnon coupling
through eithermagnetic or electro-opticalmechanisms.We demonstrate thatmagneto-optical coupling, or
more specifically, the inverse Faraday effect, provides one possibility for the effective diamagnetic response,
which being quantized, leads to a linearized optomagnonicHamiltonian [15, 16]. Another possible scenario for
the attractive regime comes from theAharonov–Casher effect [37]. Aswe discuss at the end, this effect can be
considered as dual to themagneto-optical coupling. In both scenarios, themagnon-photon interaction is driven
by the cavity electric field.

2. Electromagnetic theory and diamagnetic response

A theory sufficiently complex to allow for different placements within a cavity in an actual experiment can be
obtained using classical electrodynamics. This ismost naturally formed in terms of impedances, and provides a
direct connection to the scatteringmatrix element S21(ω) typicallymeasured in experiment. Frequency shifts
and phase can be obtained from the complex scattering elements. These are obtained using standard classical
electromagnetic theory in terms of energiesWe andWm, defined over the sample volumeVS as

E EW r ai d , 3e
3

0 0*òw e w e= -[ˆ ( ) ˆ ] · ( )

H HW r bi d , 3m
3

0 0*òw m w m= -[ ˆ ( ) ˆ ] · ( )

where the complex electric permittivity, 1e a= +ˆ ˆ , andmagnetic permeability, 1m c= +ˆ ˆ are different from
those for the free space due to the presence of the sample. The cavity electric andmagnetic fields satisfyMaxwell’s
equations in free space and are E0 and H0. Thefields perturbed by the sample are E and H . Together the
energies provide the sample contribution to themeasured impedance Z W WS e m= - [38], section 6.10. The
perturbative impedanceZS can then be simply added to a cavity impedanceZcwith parameters determined by
unloadedmeasurements.

The required properties needed to constructZS from the response functions for the loaded cavity can be
understood in terms of the electromagnetic theory of continuousmedia. In this approach, we ignore at the
beginning thefinite sample size and describe the field inside the cavity by theMaxwell’s equations

E H E a, 0, 4t 0 0m m e e ´ = -¶ =( ˆ ) · ( ˆ ) ( )

H E H b, 0. 4t 0 0e e m m ´ = ¶ =( ˆ ) · ( ˆ ) ( )

By expanding the fields, E E E0 d= + and H H H0 d= + , where Ed and Hd are related to the sample, we
rewrite the equations above in the form

E H H a, 5t t0 0 0d m md m c ´ + ¶ = -¶( ˆ ) ( ˆ ) ( )

H E E b, 5t t0 0 0d e ed e a ´ - ¶ = ¶( ˆ ) ( ˆ ) ( )

where the free space cavity field can be considered as driving terms, which provide the response determined by
thematerial functions of themedium.

Let us consider a situationwhere the plane electromagnetic wave is propagating in a homogeneous
dispersive birefringentmedium along the gyrotropic axis taken as zdirection. In this case, we takemagnetic
susceptibility tensor in the form
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and 1e =ˆ for simplicity. Transforming (5a) and (5b) to theω-domain, and replacing∂z by iωc/c, whereωc is
some characteristic frequency of the cavity, we obtain
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If we include dissipation into account,χ1 andχ2 become complex. In this situation, the equation above has the
exceptional points at the frequencies, which satisfy the relationχ2(ω)−χ1(ω)=2iωc/ω, where thematrix on
the left hand side does not have a diagonal form [31].

Calculating the circular components of the responsemagnetic field from equation (7), we obtain

H
H

1
, 8

c

1 2
2

0

1 2
2 2

d w
c w c w w d
c w c w w w

= -


+  -




( )
[ ( ) ( )]

[ ( ) ( )]
( )( )

( )

where H H Hix yd d d= ( ) , which is directly related to the impedanceof the loaded cavity via equations (3a) and
(3b). Ifwe take the components of the susceptibility for the ferromagnetic resonance [36], Ms1 mc w g= W( )

m
2 2wW -( ) and Ms2 m

2 2c w g w w= W -( ) ( ), weobtain a result consistentwith equations (A.7)–(A.9)

H
M H

M
, 9s

c s

2
0

2 2
m

2
d w

g w d
w w w g w

= -
- W +





( )

( )( )
( )( )

( )

which shows level repulsion behavior aroundω≈Ωm. To obtain level attraction instead of repulsion, we
formally need a ‘diamagnetic’ response here, which corresponds to γMs<0.

2.1. Inverse Faraday effectmechanism
From the physical point of view, the effective resonant diamagnetic responsemay be realized if we consider
nonlinear effects in light–matter interactions. One particular example is the inverse Faraday effect [39], where
circular polarized components of the electric field create an effectivemagnetic field H t f tieff

0 e= ´( ) ( )
t 4* ( ) , where t( ) is the electric field amplitude in the complex representation, E 2* = +( ) , and f is the

material dependent parameter. The effectivemagnetic field is able to drive the dynamics of themagnetization
towards the resonance, which can be taken into account inMaxwell’s equations through themodulation of the
electric permittivity. Compared to the usualmagneto-dipole coupling between themagnetization and the cavity
magnetic field, we expect that thismechanism is dominant in the nodes of the cavitymodes, where themagnetic
field is small, while the electric field ismaximal. Bymoving a small specimen inside the cavity, we can tune the
relative strength of different couplingmechanisms, which changes the hybridization picture [27].

For illustration, we consider the setup shown infigure 2(a), where the cavity electromagnetic wave is excited
along the x-direction perpendicular to the saturation axis of themagnetization, which is taken as z-axis. In this
case, the displacement field generated by the inverse Faraday effect is given by δDi(t)=iε0fòijxmx(t)Ej(t), where
òijk denotes the Levi-Civita tensor. If we consider only linear terms in the fluctuating parts of the fields, and
transform to the Fourier space, the effective response that takes into account resonantmagnetization behavior
can be estimated as

f

4
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where D 2* w w w= +( ) [ ( ) ( )] , 0 andωL are the amplitude and the frequency of thedrivingfield, andwe
neglected the termswith 2 L w w( ). The details can be found in appendix B. Equation (10) shows that in the
linear approximation the inverse Faraday effect provides an effective dielectric resonant permittivity proportional
to the intensity of thedrivingfield and consistentwith themacroscopic Lenz’s effect.However,wenote that such
power dependenceof theparameters has not been observed in recent experiments [27, 28], whichmeans that these
systems require a differentmicroscopic explanation.Weexpect that the results of this sectionwill be relevant to
optomagnonic systemsdiscussed in [15, 16].

If we apply the formalism of equations (5a), (5b) togetherwith the effective permittivity in (10), excluding
themagneticfield, we obtain the following equations for the fluctuating cavity electric field
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wherewe have introduced effective coupling constants g f 4i i0
1 2

0e= (i=y, z), andwhere Lw wD = -¯
withω being the frequency of the probefield. The equation above shows that themagneto-optical coupling to a
dynamicmagnetization, in the linear approximation, is equivalent to an effective ‘diamagnetic’ response. This
becomes apparent if we consider the equation for zd where themagneto-optical contribution competes with
the ordinary ferromagnetic resonance [∼χyy(ω)] from the y-component of the fluctuatingmagnetic field.

2.2.Magneto-optical couplingmechanism
Apossible origin for the effective diamagnetic contribution in (10) and (11) can be understood froma quantized
optomagnonicHamiltonian [15, 16]. For this purpose, we consider a spin S S r r0d= -( ) coupled to the
electric field through themagneto-optical coupling

r
4

d , 12ij i jmo
0 3*  ò
e

de= - ( )

where f Siij ijk kde = describes the inverse Faraday effect with f c S2 Fq ew= ( ) [15], where θF is the Faraday
rotation angle, c is the velocity of light,ω is the frequency of the electromagnetic wave, and ε is the electric
permittivity of themedium. Inwhat follows, we take the electricfield in the formof cavity standingwaves along
the x axis, ex V nx L asinL R c x, 0

1 2
0 w e p= ål l l=( ) [ ( )] ( ) , where aλ is the cavity photon annihilation

operator, e i0, , 2l=l ( ) is the polarization vector for the circularly polarizedwavewith the left (L=−1) or
right (R=1) polarizationλ, n is the cavitymode index,V is the volume of the cavity, Lx is the size of the cavity
along the x direction, and x0 denotes the position of the sample.We take the z-axis as a quantization axis for the
spin S, as shown infigure 2(a), so that themagneto-optical coupling becomes

g a a a a b b , 13L L R Rmo 0 = - +( )( ) ( )† † †

where g c S20 Fq x e= is themagnon-photon coupling parameter at the nodewhere the electric field is at the
maximum (ξ 1 is a geometric factor). Forμmsized yttrium iron garnet sample at the optical wavelength
∼1μm,we can estimate θF=200° cm−1 [40], appendix A, ε≈5 and S=1010, which gives g0≈105Hz [15].

The interaction energy in (13) is the same as in optomechanical applications. In the rotatingwave
approximation (RWA), the totalHamiltonian can bewritten as

a a a a b b g a a a a b b a ai i i , 141 1 2 2 m 0 2 1 1 2 ex 1 1*    k a a= - D + + W + - + + -( ) ( )( ) ( ) ( )† † † † † † †

Figure 2. (a)Experimental geometry for themagneto-opticalmechanismof themode attraction. (b)Energy dispersion (18a), (18b) as
a function of mW .
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whereα is the amplitude of the driving field, andwe have transformed to the linearly polarized basis,
a a ai 2L 1 2= -( ) and a a ai 2R 1 2= +( ) . The last term in this expression is the external driving, which
becomes time independent under the RWA [1]. Compared to themagneto-dipole interaction in (1), the
optomechanical coupling in RWA leads to the detuning parameterΔ=ωL−ωc thatmay have an arbitrary sign
depending on the ratio of the driving frequency,ωL, toωc.

The interaction part of theHamiltonian (14) can be linearized as follows:

a a a a n a a n a a , 152 1 1 2 2 1 1 1 2 2- » - - -( ) ( ) ( )† † † †

where n1 and n2 denote the average numbers of cavity photons. The linearizedHamiltonian is written as

a a a a b b g a a b b

g a a b b a a

i

i i i , 16

lin 1 1 2 2 m 1 1 1

2 2 2 ex 1 1*

  
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k a a

=- D + + W + - +

- - + + -

( ) ( )( )
( )( ) ( ) ( )

† † † † †

† † †

wherewe have introduced renormalized coupling parameters g g n1 0 2= and g g n2 0 1= . In a situationwhere
the drivingfield is coupled only to the cavity photon of one polarization, wewould normally expect g g2 1 .

TheHeisenberg equations ofmotion for theHamiltonian (16) can bewritten in thematrix form:
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which has a pair of trivial eigenvaluesω0=±Δ, and twopairs of hybridized eigenmodes
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In accordancewith [29], forΔ>0,ω(±)demonstrate level attraction in the regionwhere 2
m
2 2D - W <( )

g g16
1
2

2
2

m+ DW( ) , which is related to theparametric instability in cavity optomechanics [1]. This region is bounded
by the exceptional points,where the eigenmodes coalesce, and thematrix on the right-hand side of (17) is
characterizedby the Jordan form:
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ForΔ<0 , in contrast, we have usualmode repulsion. Remarkably, the energy-level picture for the dispersion
relations (18a), (18b) shown infigure 2(b) becomes similar to that infigure 1(b) for the three-oscillatormodel
with inverted horizontal axis.

Solutions of equations ofmotion (17) for the cavitymodes have the following form

a
g

g g
a

g g

g g

i 4

4
,

4i

4
, 201

m 2
2

m 1
2

2
2 2

1 2

m 1
2

2
2

a a
=

D

DW +

DW + +
=

D DW + +( ) [ ( )]
( )

wherewe used realα for simplicity. If g n1 2~ is nonzero, driving of a1 excites also a2. In this situation, if we
take into account the dissipation of the cavitymode,Δ→Δ+iκc, the response in (20) has 2π-phase shift with
respect to the drive due to the degeneracy of the cavitymodes with different polarizations.
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3. Aharonov–Casher effect

Here, we discuss anothermechanismofmode attraction for a coupledmagnon-photon dynamics inside a
ferromagnetic insulator based on the Aharonov–Casher effect [37]. This effect is related to a dualismbetween
the electrodynamics of electric charges in amagnetic field and that of charge-neutralmagnetic dipoles in an
electric field.When applied tomagnon dynamics this leads to, for example, the Landau quantization of the
magnon states under applied electric field gradient [41]. Since the diamagnetism of a conventional electron gas
follows fromLandau quantization of electronmotion, by analogy, we expect that a sort of ‘diamagnetic’
response should also exist formagnons in the electric field, which. In turn, this provides uswith amechanism for
the level attraction, as explained below.

For this purpose, we consider the following spinHamiltonian for a small ferromagnetic specimen

J
S S S S JS S K S

2
e e , 21

ij
j j

z
j
z z

i
i

i
i

i
i

i
2ij ij å å= - + + -q q

á ñ

- + + - -⎡
⎣⎢

⎤
⎦⎥( ) [ ] ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

where J is the ferromagnetic exchange constant,K is the anisotropy parameter, and the summation is over the
nearest neigbouring sites limited by the size of the specimen. Thefirst term contains afield phase associatedwith
the cavity electric field. The phase factor is given by [41]

E r zt
g

c
t, d , 22

r

r

ij
B
2

i

j

 òq
m

= ´ ℓ( ) [ ( ) ˆ] · ( )

where the integration is taken along the path connecting ith and jth sites, and z plays the role of a spin
quantization axis.

Ifwe suppose that the characteristicwavelengthof the electricfield ismuch larger than the sample size,
then the interactionpart in theHamiltonian (21) canbewritten in the form E J- · ,where J g J ci 2B

2m= [ ( )]
z rS S S Sij i j i j ijå - ´á ñ

- + + -( )[ ˆ ]( ) ( ) ( ) ( ) is the spin current in the sample (seefigure 3). Byquantizing the spinoperators,

S S b2i i=+( ) , S S b2i i=-( ) †, andchoosing the electricfield in the formof a linearlypolarizedcavity standingwave
along the xdirection, E x V nx L a asiny c x0

1 2w e p= +( ) [ ( )] ( )( )† , the interactionenergy canbewrittenas

g b b a ak k k k- å +( )† † ,where the interaction constant g g JS c V2k B c
2 2

0
1 2 m w e= -[ ( )][ ( )]

k znx Lsin sinx y0 d dp å ´d( ) ( · )( ˆ ) generally dependson thepositionof the samplex0with respect to the
electricfield.

If the sample is populated into a state with n nk k0 0- for some k0, where n b bk k k= á ñ† is themagnon
number, andmagnon states with different k arewell separated, we can consider a simplifiedmodel

a a b b g b b a a , 23k k k k k kc dr
m

0 0 0 0 0 0   w= + W - + +( ) ( )† † † † ( )

wherewe added the driving term b ti exp i h.c.k kdr
m

ex
in
0 0

 k b w= - +( )( ) ( ) , with the amplitude of the driving

field k
in
0

b ( ). TheHamiltonian (23) can be considered as dual to themodel withmagneto-optical interactions in
equations (13) and (14). It can be interpreted in terms of the pressure force created by themagnon flowwith
finite k0 on the cavity photon oscillator, with the position operator proportional to a+a†.

Similar to optomagnonicHamiltonian (14), equation (23) can be transformed to the time-independent
frame by applying the unitary transformation to themagnon operators, b b b t bexpk k k k0 0 0 0

 ( )† [1]. In this

representation, themagnon frequency is replaced by themagnon detuning parameter, k0
W  -D̃, where

k0
wD = - W˜ , withwhichwe can reach the attraction regime in the region g n4 k kc

2 2
0 0

wD - <( ˜ ) .We note that,

in contrast to optomagnonic case, the singlemagnon coupling constant is small compared to k0
W . For realistic

parameters, J 100= K,ωc=1012 s−1, and S=1, we estimate g 10k
4

0
= - s−1, whichmeans that the effect is

difficult to realize experimentally. However, we believe that it can be relevant to ultrafastmagnetization

Figure 3. Schematic picture of a spinwave inside a small ferromagnetic specimen carrying spin current J along the x direction
interacting with the cavity electricfield E polarized along the y axis. The electric field is supposed to be homogeneous on the
specimen’s length scale.
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dynamics inmetamaterials with S 1 , and can provide an experimental evidence for the spin current
electrodynamics proposed in [37].

4. Summary

Weconsidered severalmechanisms ofmode attraction for a coupledmagnon-photon system inside a
microwave cavity. Using theMaxwell’s equations of continuousmedia, we demonstrated how level attraction
can be described in terms of response functions of themedium. In particular, we derived the effective
permittivity for the inverse Faraday effect, and showed that it can be interpreted as an effective diamagnetic effect
in the equations ofmotion for the electromagnetic fields inside the cavity. This approach has been supported by
the quantumpicture based on the optomagnonicHamiltonian [15, 16], which has reasonable parameter values
for experimental demonstration of the effect.

Also, we discussed anothermechanism,which is based on the electro-dipole effect of themagnon spin
current [42]. In the context of level attraction, thismechanism can be considered as dual to optomagnonic
approach because it requires driving of themagnonmodewithfinite wave vector. This effect is relativistically
small compared to themagneto-opticalmechanism.
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AppendixA. Resonant frequencies for the three-oscillatormodel

In order to derive theHamiltonian (1), we consider themagnetization M t( ) in the staticmagnetic field H0 along
the z-direction interactingwith themicrowave field h t( ) (see figure 1(a)). By splitting themagnetization into
static and dynamic parts, M z mM m M t2s s

2= - +[ ( )] ˆ ( ), whereMs is the saturationmagnetization and m t( )
is the transverse dynamical component, themagnetic part of the energy, M H h Mm 0 = - -· · , in the linear
approximation, becomes

b b
M

h b h b
2

, A.1s
m m = W - +- +( ) ( )† ( ) ( ) †

where M Hsm
1

0W = - , h(±)=hx±ihy, and the circular components of m are expressed via theHolstein–
Primakoff boson operators, m M b2 s=+( ) and m M b2 s=-( ) †.We take the resonant cavitymode in the
formof a planewave along the z-direction, so that themagnetic field is quantized as follows:

h z e z ez t
V

N z

L
a a, i cos , A.2c c

z0

1
2

*å w
m

p
= ´ - ´

l
l l l l

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) [ ( ˆ ) ( ˆ )] ( )†

whereωc andNcdenote the frequency and the index of the cavitymode,V is the volume of the cavity, Lz is the size
of the cavity along the z-axis, and aλ (al

†) is the photon creation (annihilation) operator in the helicity basis
e i, , 0 2l=l ( ) withλ=1 (−1) for the right (left) polarizedwave. Using this quantization of themagnetic
field in (A.1), and adding the electromagnetic energy of cavity photons, we obtain theHamiltonian (1)with
g M Vc s0

2
0

1 2w m= ( ) if the sample is at the position ofmaximummagnetic field.
TheHeisenberg equations ofmotion for theHamiltonian (1)with the driving have the following form:

a a g bi i e , A.3R c R
t

0 ex in
iw k a- = - - - w-˙ ( )†

b b g a g ai , A.4R Lm 0 0- = W + +˙ ( )† † †

a a g bi . A.5L c L 0w- = +˙ ( )† † †

The stationary response of the system to the driving at frequencyω can be found from the algebraic systemof
equations for thefield amplitudes
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g

g g

g

a

b

a

0

0

i 0
0

, A.6

c
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0

0 m 0

0

ex

in
w w

w
w w
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+ W
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which has the following solutions
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2
, A.7R
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c c

ex in m 0
2

2 2
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2

k a w w w

w w w w
=
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+
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g

i

2
. A.9L

c c

ex in 0
2

2 2
m 0

2

k a

w w w w
=

- + W +( )( )
( )†

The resonant frequencies can be obtained from the determinant of thematrix on the left hand side of
equation (A.6), g2 0c c

2 2
m 0

2w w w w- + W + =( )( ) . The solutions have the form

A C A C
1

3
i i , A.100 m

1
3

1
3w = - W + - + +[ ( ) ( ) ] ( )

A C A C
1

3
e i e i , A.111 m

i 3 i 31
3

1
3w = - W - - - +p p-[ ( ) ( ) ] ( )

A C A C
1

3
e i e i , A.122 m

i 3 i 31
3

1
3w = - W - - - +p p-[ ( ) ( ) ] ( )

where A g9 27c cm
3

m
2

0
2w w= W - W + and B 3 cm

2 2w= W + , and C B A3 2= - . The frequencies are real in the
regionwhere B A3 2 . Otherwise,ω1 andω2 become complex. In the limit g0=0, we haveω0=−Ωm,
ω1=−ωc, andω2=ωc.

Appendix B. The effective permittivity for the inverse Faraday effect

In order to derive the effective response for the inverse Faraday effect, we consider the electric displacement field

D t f m t E ti . B.1i ijx x j0 d e=( ) ( ) ( ) ( )

In the Fourier space, this expression can bewritten as

D f H Ei
d

2
, B.2i ijx xx x j0

eff òw e
w
p
c w w w w=
¢

¢ ¢ - ¢
-¥

¥
( ) ( ) ( ) ( ) ( )

where themagnetizationdynamics in the effectivefield is taken into account through the ferromagnetic susceptibility,
m Hx xx x

effw c w w=( ) ( ) ( ), and theFourier components of thefields aredeterminedas follows F w =( )
t F td e tiò w

-¥

¥
( ). TheFourier componentof the effectivefield is givenby

H
fi

4

d

2
, B.3eff 0 * ò

e w
p

w w w=
¢

¢ ´ - ¢
-¥

¥
( ) ( ) ( )

which gives after substitution into (B.2)

D
f
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d

2
. B.4

i ijx klx xx k l

j j

0
2 2

*
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 
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e w

p
w
p

c w w w w

w w w w
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¢ ¢¢

¢ ¢¢ ¢ - ¢¢
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[ ( ) ( )] ( )

We imply that the electric field is driven by the externalfield E t t texp i exp i 20 0 L 0 L* w w= - +( ) [ ( ) ( )] ,
and expand (B.4) up to the linear order in thefluctuating field, E E E0 d= + , which gives after some algebra

D
f

8
0

2 2

2 2 . B.5

i ijx xx x j j

xx j z y y z

xx j y z z y

xx j y z z y

xx j z y y z

0
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0 0

L 0 0 0

L 0 0 0

L 0 0 L 0 L

L 0 0 L 0 L

* *

* *

* * *

* *

* * *
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    
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    

d w
e

c d w d w

c w w d w d w

c w w d w d w

c w w d w w d w w

c w w d w w d w w
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+ - -

+ + -
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( ) { ( )( ) [ ( ) ( )]

( ) [ ( ) ( )]

( ) [ ( ) ( )]

( ) [ ( ) ( )]

( ) [ ( ) ( )]} ( )

Neglecting the last termswithω±2ωL and thefirst term,which corresponds to the static component of the
effective field, we obtain equation (10).
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