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Abstract 20 

Nephrolithiasis is one of the most common kidney diseases, with poorly understood 21 

pathophysiology, but experimental study has been hindered by lack of experimentally 22 

tractable models. Drosophila melanogaster is a useful model organism for renal 23 

diseases because of genetic and functional similarities of Malpighian (renal) tubules 24 

with the human kidney. Here, we demonstrate the function of Sip1 (SRY-interacting 25 

protein 1) gene, an orthologue of human NHERF1, in Drosophila MTs, and its impact 26 

on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, 27 

and the phenotype was also observed in renal stellate cell-specific RNAi Sip1 28 

knockdowns in otherwise normal flies, confirming a renal aetiology. This phenotype 29 

was abolished in rosy mutant flies (which model human xanthinuria) and by the 30 

xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This 31 

was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when 32 

the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was 33 

acidifying the tubule. SIP1 was shown to co-locate with Na+/H+ exchanger NHE2, and 34 

with Moesin, in stellate cells. Knockdown of NHE2 specifically to the stellate cells also 35 

increased renal uric acid stone formation and so a model was developed in which 36 

SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid 37 

stone formation. Drosophila renal tubule may thus offer a useful model for urate 38 

nephrolithiasis. 39 

 40 
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Introduction 42 

Nephrolithiasis is a common renal disease, with a high and increasing prevalence 43 

rate (5% in women and 12% in men) (13), but with poorly understood aetiology. 44 

Despite a large amount of investment in treatment, research and medication of the 45 

disease worldwide (>US$ 5.3 billion/year in the US alone) (31), limited progress in 46 

the medical treatment of nephrolithiasis has been achieved in the last few decades 47 

(54) (40). The incidence of nephrolithiasis has been increasing in parallel with other 48 

epidemics such as cardiovascular disease and hypertension (21), depression (28), 49 

diabetes mellitus (71) and metabolic diseases (54). For example, the prevalence rate 50 

of uric acid is increasing globally, i.e. in the US by > 1%, in N. Europe between 0.4% 51 

to 0.7% and in S. Europe by > 3% (60). 52 

Although all the underlying causes behind the formation of kidney stones are not fully 53 

known, the literature suggests genetics as a crucial factor in susceptibility to some 54 

types of nephrolithiasis (4, 18) along with environmental and dietary factors (40, 43). 55 

There are two main models describing the role of genetics in kidney stone formation; 56 

the monogenic co-dominant model (26), in which a single gene actively accelerates 57 

stone accumulation (24), and the polygenic or heterogeneous co-inheritance model 58 

(52, 63) in which two or more genes act coherently to each other to accelerate or 59 

inhibit stone accumulation (25, 51). Thus, basic research to determine the role of 60 

genes in stone formation with new animal models to investigate the pathophysiology 61 

of the disease may play a vital role in the advancement of the field, leading to new 62 

therapeutic agents for the management of the kidney disease (36).  63 

Approximately 70% of D. melanogaster genes have human homologs, many of 64 

which are associated with kidney diseases (18). With its transparent renal system 65 
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and powerful genetic technologies, Drosophila is an ideal system to study several 66 

different types of nephrolithiasis (2, 3, 10, 12, 18, 30, 40, 61, 72, 73). The Drosophila 67 

renal system comprises two pairs of Malpighian tubules (MTs); one anterior and one 68 

posterior (68) with critical roles in excretion and osmoregulation, functionally 69 

analogous to mammalian kidneys. MTs are composed of two major cell types, 70 

principal cells (PCs) and stellate cells (SCs), which are responsible for ion, water and 71 

organic solute transport (5, 17, 40). MTs regulate body calcium, magnesium, 72 

potassium, phosphate and carbonate levels, thereby influencing the formation of 73 

intraluminal stones (18). 74 

Here, we demonstrate a novel role of  the SRY interacting protein 1 (Sip1  or 75 

CG10939) gene, an ortholog of human Na+/H+ exchanger regulatory factor 76 

(NHERF1) (32), in renal uric acid stone formation by selective knockdown of Sip1 in 77 

stellate cells. To identify the intraluminally accumulated stones, we performed 78 

physiological, chemical pharmacological and genetic analyses including the 79 

development of a chemical approach to quantify uric acid accumulation in MTs. Sip1, 80 

Moesin and NHE2 were co-localised in wild-type, Sip1 mutant, and Moesin RNAi 81 

flies, suggesting a model in which Sip1 regulates NHE2 to regulate luminal H+, 82 

resulting in a favourable environment for uric acid stone formation.  83 

Materials and Methods 84 

Drosophila stocks 85 

D. melanogaster strains were reared at 22°C, 55% humidity in 12:12 h light: dark 86 

photoperiod on standard cornmeal diet. The following strains were used: Canton-S 87 

(CS) as wild-type, UAS-CG10939 RNAi (BDSC, #65156), UAS-Moe RNAi (BDSC, 88 

#31135), and the rosy1 (ry1) mutant (BDSC, #584) (42) were obtained from the 89 

Bloomington stock centre (Bloomington, IN, USA), UAS-NHE2 RNAi (VDRC 90 
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#106053) from Vienna Drosophila Research centre (Vienna, Austria). UAS-DRIP-91 

eYFP was described in (8). UAS lines were driven by either CapaR-Gal4 - specific to 92 

tubule principal cells (59), or ClC-a-Gal4 - specific to tubule stellate cells (8). The 93 

mutant Sip15a/CyO (49) line was a kind gift from Dr Cédric Polesello (Toulouse, 94 

France). Fly crosses were performed at 26°C to increase the efficiency of the 95 

GAL4/UAS binary system.  96 

Dietary allopurinol assay 97 

Allopurinol [4-hydroxypyrazolo (3,4-d) pyrimidine; Sigma] was dissolved in standard 98 

Drosophila diet to make final concentration 250 ng/ml (75) and kept in vials at room 99 

temperature for one day. 5-7 days old adult flies were transferred in the drug-100 

containing vials and kept for two days before dissection and imaging steps. The 101 

following lines were fed with allopurinol: Wild-type (WT), Sip1(-/-) and ry(-/-). 102 

RNA preparation and qRT-PCR 103 

Knockdown efficiency of the targeted gene relative to parental lines was assessed by 104 

quantitative RT-PCR (qRT-PCR). Tubules were dissected from 50 flies of specified 105 

genotype and RNA was isolated using RNeasy® Mini Kit (Qiagen) following 106 

manufacturers recommendations. cDNA was generated using the protocol as 107 

described elsewhere (7). qRT-PCR was performed using an Opticon DNA engine 4 108 

(Bio-Rad Technologies) using Brilliant III Ultra-Fast SYBR Green QPCR master mix 109 

(Agilent) using the primer sequences, Sip1 (CG10939) F, 110 

GCTGTTCGCTTTCGTTTCGTTTAG, R, TGTCCTGGTTTCACCTTCTCCG; NHE2 111 

(CG9256) F, CACAATGTCCTGGCTGACCTTTC, R,112 

 CTCCACCACCGAGAGATAAAACC, Rpl32 (CG7939), F, 113 

TGACCATCCGCCCAGCATAC, R, ATCTCGCCGCAGTAAACGC. The specificity of 114 

amplicons was verified with melting curve analysis, and the messenger level was 115 
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normalised using Rpl32 as an internal control gene, and expression level was 116 

calculated using the ∆∆Ct method (37).  117 

Imaging and pH sensitivity of renal stones 118 

Adult flies (5-7 days old) were dissected in Phosphate Buffered Saline (PBS, pH 5), 119 

and intact MTs were mounted on glass-slide in PBS adjusted to pH 5 to 10, and the 120 

MTs were immediately imaged using a microscope (Axioskop 2, Zeiss) under 121 

polarised light. As the visualisation of the birefringent crystals is transitory, intact 122 

tubule samples, from wild-type and from specified genotypes, were imaged 123 

immediately after dissection. Images were taken every minute for 30 min and were 124 

quantified once the time frame was completed. Imaging conditions were maintained 125 

as described previously (11). Total stones present within the tubule at 0 min were 126 

considered 100% and the stones accumulated after 1, 10, 20 and 30 min were 127 

quantified with respect to the initial quantity.  128 

Quantification of renal stones 129 

Quantification of the stones was achieved by using Image J software as per the 130 

protocol described previously (11). Briefly, the tubular area of interest was outlined, 131 

and the pixel intensity was obtained. Any tubular pixel intensity above the threshold 132 

was considered stones. The total area of stones in the lumen was calculated by 133 

subtracting background intensity. 134 

Immunohistochemistry 135 

Immunostaining procedures were performed as described previously (8). Adult MTs 136 

were dissected in PBS and fixed with 4% (w/v) paraformaldehyde for 30 min at room 137 

temperature. The following primary antibodies were used: rabbit anti-NHE2 (short 138 

isoform), (1:300); rabbit anti-NHE2 (long isoform), (1:300) (15); rabbit anti-MOE-P 139 
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and rabbit anti-SIP1, (1:200) (53). Alexa Fluor 488/546 goat-anti-rabbit (Thermo 140 

Fisher Scientific) was used in a dilution of 1:1000 for visualisation of the primary 141 

antiserum. Incubations in the primary and secondary antibodies were performed 142 

overnight. Tubules were incubated with markers such as 4’,6-diamidino-2-143 

phenylindole (DAPI; Sigma-Aldrich, 1 µg/ml) and/or Rhodamine-Alexa-633-coupled 144 

phalloidin (Thermo Fisher Scientific, 1:100). All samples were mounted in 145 

Vectashield (Vector Laboratories), and images were taken using a confocal 146 

microscope (LSM 800 Zeiss) and processed with Zen software and Adobe 147 

Photoshop/Illustrator CS 5.1. 148 

Uric acid colorimetric assay 149 

Total quantity of uric acid stones accumulated in whole tubules homogenates of wild-150 

type, Sip1 mutant and Sip1/NHE2 knockdown flies was quantified using the 151 

Quantichrome Colorimetric Uric acid kit (DIUA-250, BioAssay Systems) according to 152 

the manufacturer’s instruction. Six adult fly MTs per sample were homogenised in 12 153 

μl of Tween-20 (Sigma-Aldrich), and 200 µl of working reagent was added to 5 μl of 154 

each tubule sample in 96 well plates (3 replicates for each sample). Samples were 155 

incubated for 30 minutes at room temperature and the optical density measured at 156 

590nm using a Mithras LB940 automated 96-well plate reader (Berthold 157 

Technologies). Data were analysed using the MikroWin software. 158 

Statistical analysis 159 

Data are presented as mean ± SEM. The significance of differences was assessed 160 

with Student’s t-test (two-tailed) for unpaired samples or one-way ANOVA followed 161 

by Dunnett’s test, with significance taken as p<0.05, marked graphically with an 162 

asterisk. 163 
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Results 164 

Mutation of Sip1 induces stones accumulation   165 

Mammalian studies have shown that NHERF1 may play an important role in renal 166 

stone formation(35), so we determined the role of the Drosophila orthologue 167 

NHERF1, Sip1, in mediating stone formation in Drosophila MTs. 168 

Immunocytochemical study using anti-SIP1 showed that SIP1 was indeed expressed 169 

in wild-type fly kidney, but specifically in the SCs which are easily recognisable by 170 

their stellar shape (Figure 1 A). No immunostaining was detected in the MTs of 171 

homozygous Sip1 mutants (Figure 1 A), thus confirming that the signal observed in 172 

wild-type corresponds to SIP1 protein, and that SIP1 expression is abolished in the 173 

Sip1 homozygous mutants. 174 

We next investigated the stone phenotype of the MTs of Sip1 mutant flies. Mutation 175 

of Sip1 results in the formation of a very high number of small birefringent stones in 176 

the lumen of both male and female MTs compared to wild-type tubules (Figure 1 B-177 

G). Quantification of the mineralised area covered between 70-80% of both anterior 178 

and posterior tubule area of male and female flies (Figure 1 H and I). The anterior 179 

tubules have an enlarged initial segment (58, 69), which handles most of the 180 

organism’s excess calcium (20); however, this region did not develop birefringent 181 

stones in Sip1 mutants, and the stone burden was similar in anterior and posterior 182 

tubules (Figure 1), suggesting that these calculi were not calcium-based. 183 

We next investigated whether renal, cell-specific knockdown of Sip1 resulted in the 184 

same phenotype. The UAS-Sip1RNAi line produced a significant knockdown (>70%) 185 

in overall tubule expression of Sip1 when driven in SCs (ClC-a-Gal4>UAS-Sip1 186 

RNAi) (Figure 2 A). Specific silencing of Sip1 gene in SCs showed marked increase 187 
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of birefringent stones compared to parental control lines (ClC-a-Gal4/+, UAS-Sip1 188 

RNAi/+) (Figure 2 B and C). However, no knockdown was observed when Sip1 RNAi 189 

was driven in PCs (Figure 2 D), suggesting that Sip1 is expressed uniquely in the 190 

SCs. Accordingly, specific knockdown of Sip1 gene in tubule PCs using CapaR-Gal4 191 

driver line resulted in unchanged stone quantity compared to controls (Figure 2 E), 192 

indicating a novel role of Sip1 in tubule SCs in mediating stone formation. Taken 193 

together, these results suggest that mutation of Sip1, and specific knockdown of 194 

Sip1 in SCs, promotes lithiasis.  195 

Modulation of pH affects stone solubility 196 

To determine the chemical nature of the intraluminally accumulated stones, Sip1 197 

mutant tubules were incubated under acid or alkaline load by altering bathing pH 198 

between 5 and 10. At pH 5 and pH 6, no change in the quantity of stones after 30 199 

minutes was noted. However, at pH 7, the total accumulated stones started to 200 

dissolve significantly within 20 mins, and this process occurred faster with increased 201 

pH of the bathing solution, where 90% of the stones were dissolved within 10 min at 202 

pH 10 (Figure 3 A).  203 

To precisely determine at which pH stones start dissolving, the pH of the bathing 204 

solution was altered by 0.1 pH unit ranging between pH 6 and pH 7. We showed that 205 

intraluminal stones start dissolving significantly at pH 6.7 and above (Figure 3 B and 206 

C). Uric acid is a weak acid (pKa 5.5 (38, 55)), that is relatively insoluble compared 207 

with its sodium salt (33, 70). Therefore, the stones accumulated in Sip1 mutant MTs 208 

share similar chemical behaviour with uric acid stones.  209 



 

9 
 

Inhibition of the function of Xanthine Oxidase leads to the disappearance of 210 

the stones in Sip1 mutant tubules 211 

Uric acid is a product of purine metabolism (Figure 4 A). The pathway includes 212 

Xanthine Oxidase (XO) which is responsible for converting hypoxanthine to xanthine; 213 

and xanthine to uric acid. Allopurinol inhibits the function of XO, thereby blocking the 214 

biosynthesis of uric acid (48) and a concomitant increase of hypoxanthine and 215 

xanthine concentration (47). Rosy (ry) is the second mutation discovered in 216 

Drosophila melanogaster (18), and encodes the enzyme xanthine 217 

dehydrogenase/xanthine oxidase. Rosy mutant closely recapitulate the symptoms of 218 

human xanthinuria type I (16, 65). In particular, both ry mutants and allopurinol-219 

treated flies show elevated hypoxanthine and xanthine, and extremely low levels of 220 

urate and allantoin, as shown by metabolomic analysis (1, 34). Therefore, we studied 221 

the formation of calculi in both Sip1 and rosy mutants under feeding treatment with 222 

allopurinol. In standard diet, wild-type and rosy flies (with no XO enzyme activity) do 223 

not produce uric acid stones (Figure 4 B, D and F). Furthermore, wild-type, Sip1 and 224 

rosy mutants were fed allopurinol-containing diet, leading to the disappearance of 225 

birefringent crystals in the MTs (Figure 4 C, E and G), phenocopying the xanthine 226 

stone (ry flies) (Figure 4 F). Thus, pharmacological inhibition of XO by dietary 227 

exposure of allopurinol led to the disappearance of stones, confirming that the 228 

intraluminally accumulated stones are uric acid stones. 229 

Uric acid quantification in Sip1 knockdown tubules 230 

We next quantified the concentration of the uric acid in the MTs of wild-type, Sip1 231 

mutant and SCs specific Sip1 knockdown flies. The total concentration of uric acid in 232 

the MTs of Sip1 mutant flies was 8.5-fold higher compared to wild-type flies (Figure 5 233 
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A). Similarly, in lines in which Sip1 RNAi is targeted to MT SCs (ClC-a-Gal4>UAS-234 

Sip1 RNAi), a 3-fold increase in the quantity of uric acid compared to the parental 235 

controls was observed (ClC-a-Gal4/+ and UAS-Sip1 RNAi/+) (Figure 5 B).  236 

Taken altogether, these results unambiguously demonstrate the presence of uric 237 

acid stones within MTs of Sip1 mutant and Sip1 knockdown flies, and that Sip1 gene 238 

expression in the SCs mediates proper tubular lumen acidification. 239 

Sip1 and Moesin localise to the apical membrane of tubule SCs 240 

Sip1 encodes a protein that functions as a scaffold linking the plasma membrane 241 

and cytoskeletal linker proteins encoded by Moesin (32), where SIP1 and Moesin 242 

interact with each other to maintain epithelial integrity via phosphorylation (32, 50). 243 

We tested the co-localisation of these proteins in MTs using polyclonal antibodies 244 

raised against both SIP1 and Moesin. SIP1 immunostaining was detected 245 

exclusively in the SCs of ClC-a-Gal4>UAS-DRIP-Venus MTs expressing DRIP-246 

eYFP, a marker of apical membranes in SCs (Figure 6 A). An optical section made 247 

through one of the SCs clearly emphasize that SIP1 and DRIP-eYFP colocalised to 248 

the luminal side of nucleus (Figure 6 B-D).  249 

Moesin is known to participate with Crumbs in development of apical basal polarity, 250 

and to mark the apical domain of epithelia (39, 41) . Immunostaining using anti-251 

Moesin also showed specific labelling of Moesin only in SCs (Figure 6 E), and a z-252 

stack image revealed that the subcellular location was on the apical side of the 253 

plasma membrane (Figure 6 F). As expected, no immunostaining was observed in 254 

tubules from Moesin knockdown flies (Figure 6 G and H), confirming the specificity of 255 

the antibody. These results confirm that SIP1 and Moesin are both localised to the 256 
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apical membrane in polarized epithelial SCs which suggest potential functional 257 

relationship. 258 

SIP1 colocalizes with Na+/H+ Exchanger NHE2 and Moesin in SCs 259 

The function of NHEs was first characterised in isolated cortical brush-border 260 

membrane vesicles showing Na+-driven H+ movement and H+-driven Na+ movement 261 

across the membrane (44). Further, computational modelling of the hydrophobic-262 

hydrophilic nature and predicted structure of NHEs has also shown interaction 263 

between NHEs with NHERF1/SIP1 (46). It is known that SIP1 is a scaffold protein 264 

required for the regulation of several transmembrane receptors and ion transporters 265 

(32, 62), so we hypothesised that SIP1 could regulate the activity of alkali-266 

metal/proton exchanger (NHE) protein family in Drosophila tubules.  267 

NHEs play an important role in the transport of Na+ and H+ across the membrane 268 

(22) as well maintenance of the cellular and epithelial integrity. D. melanogaster has 269 

three NHE genes - NHE1, NHE2, and NHE3, which are expressed in multiple tissues 270 

(Supplementary Figure 1) (22), but NHE2 long isoform is stellate cell-specific (Figure 271 

8) (15). Interestingly, we found that NHE2-long isoform also has clear localisation in 272 

SCs of wild-type MTs; whilst NHE2-short antibody labels the apical membrane of 273 

tubule PCs (Supplementary Figure 2). Further, when Moesin was specifically 274 

knocked down in MT SCs, no birefringent crystals were observed in Moesin RNAi 275 

lines (ClC-a-Gal4>UAS-Moesin RNAi) (data not shown) compared to parental 276 

controls (ClC-a-Gal4/+ and UAS-Moesin RNAi/+) suggesting the absence of the role 277 

of Moesin alone in the formation of uric acid stones. However, specific knockdown of 278 

NHE2 in SCs (∼70%) resulted in higher intraluminal accumulation of birefringent 279 

stones (∼30% of the tubule area (Figure 7 A), and the solubilised uric acid levels 280 
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quantified using the colorimetric assay were significantly increased compared to 281 

parental lines (Error! Reference source not found.Figure 7 B-D). Interestingly, no 282 

such phenotype was observed in PCs specific NHE2 knockdown (Figure 7 E). Taken 283 

together, these results demonstrate the roles of Sip1 and NHE2 in renal urate 284 

nephrolithiasis. 285 

Consistent with the co-localisation of SIP1, Moesin and NHE2 proteins, we 286 

investigated a putative functional relationship between these proteins. To achieve 287 

this, we used an immunocytochemistry approach using anti-NHE2 long and anti-288 

NHE2 short rabbit polyclonal antibodies to stain tubules of Sip1 and Moesin mutant 289 

flies. Interestingly, no immunostaining using both NHE antibodies was observed in 290 

tubules from Sip1 and Moesin mutant flies, suggesting that SIP1, Moesin and NHE 291 

proteins are part of a scaffold linking the plasma membrane and cytoskeleton of 292 

tubule stellate cells (Figure 8 and Supplementary Figure 2).  293 

Discussion 294 

Mammalian NHERF1 was first characterised in rabbit border membrane as an 295 

essential cofactor for cyclic AMP inhibition of Na+/H+ exchanger (45, 66). Here, the 296 

role of the Drosophila orthologue NHERF1, Sip1, in mediating uric acid stone 297 

formation in Drosophila MTs. was characterised by biochemical, pharmacological 298 

and genetic assays. Insects, like birds, are considered to have uricotelic excretory 299 

systems, in which waste nitrogen is dumped as uric acid, in order to conserve water, 300 

and so uric acid calculi are constitutive in most terrestrial insects (19). However, 301 

adult Drosophila tubules express very high levels of urate oxidase (uricase) (64), and 302 

so urate crystals are not normally abundant. In this context, the extreme 303 

accumulations observed here in Sip1 mutants are remarkable. 304 
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What mediates precipitation of uric acid stones in the tubule? In mammals, 305 

interaction between SIP1 and urate transporters has been suggested (14); our 306 

results suggest SIP1 connects plasma membrane proteins such as NHE2, with 307 

members of the ERM (Ezrin, Radixin, Moesin) family, thereby regulating lumen 308 

acidification (32, 62). In mammals, ERM protein complex interacts with the plasma 309 

membrane and actin cytoskeleton (29, 67) within specific domains to systematise the 310 

plasma membrane (27) and thereby providing a regulated linkage between the 311 

plasma membrane and the actin cytoskeleton. Recent genetic and biochemical 312 

studies have shown that NHERF1/Sip1 plays an essential role in the activation of 313 

ERM proteins in mammals (6) and also in D. melanogaster (32). Intriguingly, 314 

targeted deletion of NHERF1 in mouse elevates intestinal deposition of calcium and 315 

also triggers calcium oxalate and uric acid crystal formation (57). However, loss of 316 

ERM proteins results in mislocalization of NHERF1 in mouse (56). In D. 317 

melanogaster, Moesin is the sole representative of the ERM family (53).  Sip1 318 

promotes Moesin function by affecting interaction with Slik Kinase; genetic and 319 

functional interactions between Sip1, Moesin and Slik kinase has been shown in 320 

Drosophila pupae and cultured S2 cells (32). We demonstrated expression of SIP1 321 

and Moesin in the MT SCs, potentially suggesting an interaction in SCs. 322 

Na+/H+ exchangers (NHEs) are integral membrane proteins which comprises 323 

multiple transmembrane domains and a large cytosolic carboxyl-terminal domain 324 

(74). Studies in the mammalian model have shown that NHERF1 phosphorylates 325 

NHEs thereby affecting their activity (9). Interestingly, rabbit NHERF1 is involved in 326 

the regulation of the renal brush border NHEs (23). Also, computational modelling of 327 

the hydrophobic-hydrophilic nature and predicted structure of NHEs has also shown 328 

the interaction between NHEs with NHERF1 (46). In support with these previous 329 
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findings, our immunocytochemistry experiments reveal that NHE2 (long) is localised 330 

to MT SCs but are not expressed in Sip1 and Moesin mutant MTs. Thus, all three 331 

proteins; SIP1, Moesin, and NHEs are localised specifically in stellate cells with 332 

potential functional interactions.  333 

Collectively, our experimental results allow a model for the formation of uric acid 334 

stones in the MTs of D. melanogaster (Figure 9). Although our model does not allow 335 

us to distinguish uric acid stones from hyperuricosuria alone (rare), aciduria (very 336 

common) or both, we demonstrate that a common class of kidney stones can 337 

usefully be studied in the Drosophila renal system, where it can benefit from the 338 

uniquely powerful genetic interventions characteristic of this organism.  339 
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Figure legends 540 

Figure 1. Mutation of Sip1 causes accumulation of stones intraluminally. (A) 541 
SIP1 protein is specifically expressed in MT SCs of wild-type (WT) fly, while no 542 
expression was detected in Sip1 mutant flies. DAPI (blue), SIP1 (green), scale bars: 543 
10 μm. (B-G) Representative polarised microscopy images of WT and Sip1(-/-) mutant 544 
flies, immediately after dissection (at time 0). Sip1(-/-) MTs show intraluminal 545 
accumulation of birefringent stones.  Bars represent the percentage of total stones in 546 
the anterior and posterior MTs of male (H) and female (I). Sip1 mutant flies 547 
compared to wild-type MTs. Bar diagrams were constructed by considering the 548 
accumulated stones at time 0 as 100%. Data are presented as mean ± SEM, N=5. 549 
Where *p<0.05, one-way ANOVA followed by Dunnett’s test. In panels B-G, scale 550 
bars: 500 μm. 551 

 552 

Figure 2. Quantification of stones accumulated in the lumen of Sip1 553 
knockdown MTs. (A) The expression of Sip1 was significantly decreased in Clc-a-554 
Gal4>UAS-Sip1 MTs as compared to parental lines, ClC-a-Gal4/+ and UAS-Sip1 555 
RNAi/+. (B) Representative polarised microscopy images of Clc-a-Gal4>UAS-Sip1 556 
RNAi knockdown flies compared to parental controls. (C) Quantification of stones 557 
accumulated in the MTs of knockdown (SCs specific) and control conditions. (D) The 558 
expression of Sip1 shows no downregulation when specifically knockdown in PCs. 559 
(E) Representative polarised images of MTs of PCs Sip1 knockdown flies (CapaR-560 
Gal4>UAS-Sip1 RNAi) as compared to parental lines, CapaR-Gal4/+ and UAS-Sip1 561 
RNAi/+. Data are presented as mean ± SEM, N=5, *p<0.05, one way ANOVA 562 
followed by Dunnet's test. In panels B and E, scale bars: 500 μm. 563 

 564 

Figure 3. pH modulates solubility of MT stones. (A) The graph represents the 565 
percentage of undissolved stones corresponding to the pH change of the bathing 566 
solution. (B-C) Bar diagram represents the pH (pH 6.6 and 6.7) at which stones start 567 
dissolving over a 30 min period. Data are expressed as mean ± SEM, N=5. *p<0.05, 568 
which One-way ANOVA followed by Dunnett’s test, NS stands for non-significant.  569 

 570 

Figure 4. Biochemical pathway for uric acid formation and blockade by 571 
allopurinol. (A) Uric acid biosynthesis pathway. Uric acid is the end product of 572 
purine metabolism catalysed by different enzymes, including Xanthine Oxidase. (B-573 
G) Representative images of MTs from Sip1 and ry mutants in normal or allopurinol 574 
diet. In all cases, flies fed with allopurinol did not accumulate stones. In panels B-G, 575 
scale bars: 500 μm. 576 

 577 

Figure 5. Concentration of uric acid in Sip1 mutant and knockdown flies. (A) 578 
Solubilized levels of uric acid in Sip1 mutant MTs are significantly higher compared 579 
to control tubules. (B) Uric acid concentration is significantly higher in MTs of Sip1 580 



 

20 
 

knockdown flies (Clc-a-Gal4>UAS-Sip1 RNAi) compared to parental lines. Data are 581 
presented as mean ± SEM, N=5. *p<0.05, Student’s t-test (A), one way ANOVA 582 
followed by Dunnett’s test (B). 583 

 584 

Figure 6.  SIP1 protein is expressed in the apical membrane of SCs. (A) 585 
Immunostaining of adult MTs using anti-SIP1 antibody in ClC-a-Gal4>UAS-DRIP-586 
Venus expressing DRIP-eYFP, a marker of apical membranes in stellate cells. (B-D) 587 
Cross section of a single SC showing colocalization between SIP1 and DRIP-eYFP 588 
in the apical membrane. (E) Expression of Moesin protein in MT SCs. (F) Moesin is 589 
specifically expressed in the apical membrane of the MT SCs of wild-type flies while 590 
no expression was seen in Moesin knockdown (KD) flies respectively (G-H). DAPI 591 
(blue), SIP1 (red), Moesin (green), Scale bars: (A and E): 100 μm, (B-D and F-H): 10 592 
μm. 593 

 594 

Figure 7. Silencing of NHE2 in SCs of MTs causes accumulation of stones. (A) 595 
The expression of NHE2 was significantly decreased in knockdown flies ClC-a-596 
Gal4>UAS-NHE2 RNAi compared to parental controls ClC-a-Gal4/+ and UAS-NHE2 597 
RNAi/+. (B) Representative polarized microscopic images of NHE2 knockdown flies 598 
and parental controls. Scale bars: 500 μm. (C) Quantification of the stones 599 
accumulated in NHE2 knockdown MTs. (D-E) Quantification of the uric acid 600 
concentration accumulated in SCs and PCs specific NHE2 knockdown MTs. Data 601 
are presented as mean ± SEM, N=5. *p<0.05, one-way ANOVA followed by 602 
Dunnett’s test. NS stands for non-significant.  603 

 604 

Figure 8. Expression of NHE2-long in wild-type, Sip1 mutant and Moesin 605 
knockdown flies. NHE2-long isoform shows clear localization in the apical 606 
membrane of MT SCs. Thin bright lines represent nonspecific staining of trachea, 607 
which are known to be sticky to antibodies. DAPI (blue), NHE2-short (green). Scale 608 
bars: 20 μm. 609 

 610 

Figure 9. Model illustrating the role of SIP1 protein in uric acid stone formation 611 
in Drosophila Malpighian tubules. MTs contain two main cell types, principal 612 
(grey) and stellate (yellow) cells and the transport processes cell are described 613 
elsewhere (5) . In principal cells, the apically localized V-type H+ ATPase energizes 614 
transepithelial secretion, providing electrogenic transport of H+ into the lumen, 615 
coupled with a cation/H+ antiporter. In stellate cells, chloride ions move down an 616 
electrochemical gradient through chloride channels in SCs and water follows by 617 
osmosis through water channels in SCs (Cabrero et al., 2019, in prep.). The apically 618 
located SIP1 interacts with NHE2 and activates the efflux Na+ and influx of H+. 619 
Mutation of Sip1 and NHE2 lead to accumulation of H+ ions intraluminally and tubular 620 
lumen acidification, mediating uric acid stone formation. 621 
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