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Abstract 
The measurement of strain is a fundamental and widely studied parameter in engineering, rock 

mechanics, construction and materials testing. Contact sensors often used in these fields require 

contact with the target surface throughout the duration of a strain event. Non-contact methods 

typically require that that the measurement surface is prepared and often coated prior to testing. 

This paper considers the potential application of near infrared spectroscopy as a non-contact 

technique for the measurement of strain on natural surfaces. Excellent correlation was found 

between surface measurements of visible-NIR spectra and longitudinal strain taken during indirect 

Brazilian Disc Test for samples of sandstone, marble and basalt.  
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Introduction: Principles and Methodology of Strain Measurements 

The measurement of strain in rocks is important in many fields of engineering and applied 

geoscience. Laboratory measurements of strain enable the derivation of parameters such as Young’s 

Modulus and Poisson’s Ratio, which are important inputs to geotechnical design. Field applications 

where the accurate determination of rock strain is important include the monitoring of natural and 

man-made slopes1–3, tunnels4, mine stability5, accumulation of tectonic strains at faults6 and changes 

to volcanic systems7. Techniques to measure rock strain can be classified as those which require 

contact with the rock surface and those which can be considered non-contact (remote).  

Contact techniques normally involve either electrical strain gauges (ESG) or Fiber Bragg Gratings 

(FBG). Electrical strain gauges consist of electrical contacts that are bonded to the target surface8. 

Changes in electrical resistance allows the changing strain to be derived via a simple calibration. The 

technique is technologically simple, low cost and has found wide application. Fiber Bragg Gratings 
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consist of an optical fibre with a grating etched at known locations along the fibre. Any deformation  

of the grating caused by surface deformation or a change in temperature causes a shift in reflection 

at a Bragg wavelength which can be calibrated against the grating configuration9–11. FBG gauges have 

been successfully applied to monitor the structural health of civil infrastructure including mine 

networks12, roads13 and tunnels14,15. However contact gauges can only measure the strain 

accumulated around a small area and the results become less accurate at high strain rates16. 

Because they are bonded with the target, they cannot be removed from the measurement surface, 

and are therefore single use only, making them susceptible to degradation over long periods of time. 

Remote techniques include digital image correlation (DIC)17, laser speckle correlation (LSC) and 

electronic speckle pattern interferometry (ESPI)18,19. In each, strain is calculated by comparing 

features in images generated before and after displacement, often utilising features in a random 

pattern, either naturally or artificially applied. DIC methods are fairly simple to set up, can require 

relatively little sample preparation, and can be used both in laboratory and field environments at a 

range of measurement resolutions (sub-micron to centimetre)20. DIC has been used to measure 

strain in natural rock21,22 and concrete23. It has been demonstrated that DIC could be a useful 

method to understand the propagation of cracking during rock strain testing of homogenous 

materials24,25. However, the technique relies upon the ability to define a Region Of Interest, (ROI) 

that can be observed consistently at different measurement epochs and from which movement 

patterns can be compared26. LSC or ESPI use a laser to illuminate a target surface. Reflected light 

passes through a beam splitter which may be an interferometer, an image shearing camera or 

prism27. Images are projected together onto a receiving camera/charged couple device (CCD), with 

the speckle pattern resulting from the deformed and un-deformed surfaces superimposed. The 

change (difference) due to strain is then derived from the comparison between the pattern resulting 

from the reflection of the original beam and that of the target surface. ESPI involves little or no 

sample preparation, and can generate strain measurements down to the micron scale28, though the 

interpretation of imagery can be complex29. 

The usefulness of near infrared (NIR) spectroscopy as not just an identification tool but also a 

diagnostic tool has grown exponentially over the past few years. Although applying NIR spectroscopy 

to detect changes within a sample is not a new concept, the application to rock samples is innovative 

and timely. In fact NIR has been used as a non-destructive method to evaluate mechanical 

properties in wood30, flax fibres31 and rubber32. It has also been used to evaluate the change in shape 

of rubber latex during swelling33. 

 



Near infrared Spectroscopy and the measurement of rock strain 

The use of NIR spectroscopy in the earth sciences is well established, if not widely practised. Though 

spectra are not typically diagnostic of geological surfaces, signatures are often compared to known 

library samples34,35 or calibration tests36. The technique has been used effectively to evaluate many 

properties such as particle size, clay mineralogy37, bulk mineralogy38, moisture content39, organic 

content40, contamination41,42, weathering43 or a combination of several of these factors44. Industrial 

application is primarily mineral exploration45–47, but NIR has also been used to assess masonry48 and 

surface degradation of asbestos49, for example. The value of the technique to remotely evaluate rock 

composition and rock properties in the field of planetary sciences has also been investigated50 

However, there are relatively few reports systematically investigating the use of infrared techniques 

for the measurement of strain. One such study reports how infrared light may be used to examine 

the strength of isolated quartz crystals under high pressure and high temperature (1.64 GPa and 800 

°C)51. The spectral measurements were performed using an Infrared beam and detector measuring 

between 2500 nm and 4000 nm. They found that the Infrared absorption spectrum of quartz 

containing hydroxide (OH) may be separated into two parts - a broad structureless band from 2940 

nm to 3570 nm, and a series of sharp peaks between 2700 nm and 3030 nm. Quartz crystals with an 

increase in absorption within the broad band range correlated directly with a decrease in strength.  

In this paper, we report new data that demonstrates how NIR spectroscopy may complement 

conventional techniques for the measurement of strain in rocks, possessing the advantages that no 

sample contact is required and that measurement and interpretation is relatively simple. Further to 

this, the nature of the measurement may provide fundamental information on sample behaviour 

that is not present in measurements derived from other techniques. Previous work has shown NIR to 

be an effective method for strain measurement in the laboratory on simple rock samples of basalt52. 

This paper presents results of a new and extended series of laboratory experiments designed to test 

whether NIR spectroscopy can be applied to strain measurement in other rock types.  

 

Materials and methods 

Sample Preparation 

Four samples of three different rock types were used to represent a broad range of geological 

materials; an orange, granular sedimentary Darley Dale sandstone; a crystalline metamorphic 

yellowish white Bianco Carrara Marble, and a dark grey, crystalline igneous Basalt taken from Mt 

Etna, Sicily. All the samples were cut from blocks with no visible fractures or evidence of structural 



deformations, defects or weathering (Figure 1a). The four samples of each rock type were cored 

using a diamond-tipped core barrel with a diameter of 40mm (+/-0.20 mm) (Figure 1b). The cores 

were cut into discs 18 mm thick and finally ground with silicon carbide grit on a rotary platform to 

ensure a flat surface. For the purpose of this experiment, each face was inspected and samples 

possessing any obvious inhomogeneity such as mineral veins, or differing grain/crystal sizes were 

rejected. All samples were oven dried at 40˚C for 24 hours prior to testing and compliant with the 

requirements for subsequent mechanical testing to the standards of the International Society for 

Rock Mechanics53. 

 

[Insert Figure 1a/b] 

 

Measurement of NIR Spectra during Strain Testing 

The testing described here combines results from an internationally recognised test for 

measurement of rock deformation/strength and the concurrent measurement of NIR spectra using a 

conventional spectrometer. The rock test chosen was a modified version of the internationally 

accepted method to determine the tensile strength of rocks, the Indirect Brazilian Tensile Test (IBT)53. 

In this test, standard disc samples were placed vertically in a circular incompressible steel rig. The 

sample was in contact with the rig only at the top and bottom of the specimen so that the sides of 

the sample were unrestrained. A vertical load was applied and increased at a strain rate of 5x10-5s-1 

until the rock sample failed due to lateral (tensile) expansion. Knowledge of the change in vertical 

height of the sample at the point of maximum load before failure was used to calculate strain in the 

direction of loading. Importantly, this procedure allowed an unobstructed view to the flat disc 

surface parallel with the axis of longitudinal shortening for the duration of the test, which was used 

to measure surface reflectance.  

Samples were mounted in a standard tensile curved-jaw loading jig and force was applied using an 

Instron 600LX load frame and data logger (Instron, Norwood, MA). An initial load of 100 N was 

applied to ensure the platens of the jig were in contact with the sample and that the sample was 

held firmly. Thereafter, the load upon the sample was increased incrementally to produce a vertical 

change in height (strain) of 0.05% as calculated from an extensometer within the load frame. 

Increments were continued until the sample failed by the formation of vertical crack across the 

diameter of the disc. For the purpose of this test, strain was defined by the change in diametrical 

height of the tensile disc divided by its original height (Figure 2 and Equation 1). At each strain 



increment, the loading was held for approximately 10 seconds to enable the capture of an NIR 

spectra of the free rock surface. Spectra were captured using an Analytical Spectral Devices (ASD) 

Labspec 5000 spectrometer (Malvern Panalytical ASD, Boulder, CO) that had a spectral resolution of 

3nm @ 700nm and 10nm @ 1400/2100. The spectrometer was used with a 25 mm diameter circular 

‘Hi-Bright’ fore-optic with 1m jumper fibre. The fore-optic, which contained an internal light source, 

was placed directly against the centre surface of the rock sample for the duration of the IBT test 

(Figure 3), with measurements taken at each strain increment. Each scan in the range 350 – 2500 nm 

took approximately 10 seconds, during which 50 full-width radiance scans were taken and averaged. 

Radiance measurements were converted to absolute reflectance by comparison with reference 

measurements periodically taken of a Spectralon panel. 

 

[Insert Figure 2] 

 

 % 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝜀𝜀) = (𝛥𝛥ℎ /𝐻𝐻𝑜𝑜) 𝑥𝑥 100    Equation 1 

 

[Insert Figure 3] 

 

Results and Discussion 

The range of results from the indirect tensile strength test for each rock type are shown in figure 4. 

Etna Basalt has the highest tensile strength of 8.45MPa (mean 7.68MPa). Darley Dale sandstone was 

the weakest material with a maximum strength of 4.25MPa (mean 3.79MPa). Carrara Marble was 

intermediate in terms of tensile strength with a maximum of 6.24MPa (mean 5.68MPa). These 

results are consistent with characteristics expected for each rock type.  

 

[Insert Figure 4] 

 

Example reflectance spectra of each rock type prior to loading are shown in Figure 5. Reflectance of 

the Darley Dale sandstone is typical of a yellow red sandstone with a broad convex spectral 

‘continuum’ upon which are superimposed sharp absorption features around 1400, 1870 and 2200 

nm normally associated with the presence of water bound in clay particles54,55. The sample also 



displays a broad absorption 800-1350 nm which is typical of reddish brown rocks containing iron 

oxide55,56. The Carrara Marble spectrum is typical of a pale coloured marble57, showing a broad 

reduction in reflectance 350-2500 nm with sharp absorptions at 1850 and 2150 nm and two twinned 

absorptions at 1950 and 2350 nm55,58. Etna Basalt demonstrates low reflectance across all 

wavelengths as would be expected of a dark rock50, although there is a broad concave feature at 

1050 nm. 

 

[Insert Figure 5] 

 

Analyses 

Reflectance spectra of each rock type were analysed to identify a common wavelength or group of 

wavelengths that showed consistent variation with increasing strain. Although this process is usually 

achieved by linear or partial least squares regression, visual inspection is useful when comparing 

homogeneous samples of different materials. Regressions between strain and reflectance at specific 

wavelengths were carried out to determine a statistical relationship.  

 

Carrara Marble samples (CM1-4) show a clear relationship between strain and reflectance at 

2050 nm (Figure 6). The reflectance decreases with increasing strain for all four samples. Whilst CM1 

is almost linear, the general pattern is ‘best fit’ with a simple polynomial yielding with R2 between 

0.994 and 0997. Results from the Darley Dale Sandstone samples (DD1-4) showed a positive 

correlation between strain and reflectance at 1970 nm (Figure 7). Polynomial regression was applied 

to the data with R2 ranging between 0.980 and 0.995. The lower overall reflectance (albedo) of the 

Etna Basalt (EB1-4) meant it was not possible to determine a single wavelength that showed a 

consistent pattern with increasing strain. An average of reflectance in the range 1400–1775 nm was 

used (Figure 8). This shows an inverse relationship between reflectance and strain for all four Etna 

Basalt samples. As before, a polynomial regression was applied yielding R2 values of 0.976-0.986. The 

results therefore demonstrate a statistically significant relationship between reflectance and 

longitudinal strain on all rock samples. These results are significant as they indicate that it may be 

possible to measure strain in rock samples using NIR spectroscopy. 

 

[Insert Figure 6 - 8] 



 

The results show evidence of strong correlations between reflectance and strain however, it is 

difficult with this limited data set to compare the usefulness of such a measure as an analytical tool. 

A dimensionless relationship, here termed a Rock-Strain-Reflectance Index (RSR) was derived for 

each sample. This is simply the ratio of the change in reflectance between each incremental test 

against the original reflectance prior to the application of load (ref n=0), (Equation 2). 

 

  𝑅𝑅𝑆𝑆𝑅𝑅 = ∆𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛

𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛=0
      Equation 2 

   

Considering the results in this way reveals the changing behaviour of the different rock types and 

can be used to consider what phenomena is actually being observed by the reflectance technique. 

Figure 9 shows that all samples demonstrate a pattern between RSR and strain and that there 

appears to be a consistent relationship for each rock type. There is some variance, which is expected 

when testing geological samples.  

 

[Insert Figure 9] 

 

Discussion 

A plausible reason for the results obtained is that changes in surface topography/ micro-topography, 

which result from strain in the area of the sample under observation give rise to change in reflection 

from the rock surface. The granular Darley Dale Sandstone, comprising grains of sand in a cement-

like matrix demonstrates an increase in reflection (RSR) with strain. Under load, these sand grains 

may become more tightly packed, reducing the space between grains, reducing shadow areas and 

creating a more consistent, specular surface and therefore a higher overall surface (albedo), a 

pattern often seen when soils become more densely packed. The dependency of this relationship on 

wavelength requires further investigation but is likely to be related to particle size distribution and 

by extension, the morphology of sand grain surfaces and inter-granular pores close to the RSR 

wavelength (1970 nm). It is anticipated that further experimentation using contemporaneous high 

resolution topographic sensing (using a blue laser will provide some further indication of whether 

surface changes can be responsible for the variation in surface reflectance). 



An inverse relationship between the RSR and strain is observed for the crystalline rocks tested 

(marble and basalt). The RSR for the Carrara Marble is derived from reflectance at an absorption 

feature at 2050 nm, whereas for the Etnean Basalt (with a much lower albedo) the relationship was 

derived using average reflectance in the range 1400–1775 nm. Both of these samples had smooth, 

crystalline surfaces. Neither rock type exhibits a significant spectral absorption feature at these 

wavelength ranges. It is likely that the cause of the inverse relationship observed in the crystalline 

samples was again, a change in micro-topography. Again, although further experimentation is 

required the data reported here suggests that, under strain, the surface of these rocks exhibits an 

increase in surface roughness in magnitudes related to their RSR and therefore consistent with a 

corresponding reduction in reflectance, as measured in our experiments. It is not discounted that 

the light coloured marble may also be affected by near-surface changes which change internal 

reflectance related to an internal deformation at that scale. 

It is important to consider the fundamental nature of the rock testing performed. The indirect tensile 

test exploits weaknesses in the rock matrix, placing stress upon the contact between individual rock 

crystals. In most rocks, the tensile strength of the matrix between grains or crystals is weaker than 

the grains or crystals themselves, so it is the material between crystals that ultimately fails, rather 

than larger crystals or grains of sand.  

 

Conclusion 

In this paper Visible - NIR spectroscopy has been applied to the measurement and understanding of 

rock strain in different rock types. It is concluded that for the rock types tested; marble, sandstone 

and basalt, there are clearly defined relationships between a reflectance index, here termed the 

Rock-Strain-Reflectance index (RSR) and the applied strain. There is potential for this technique to be 

applied to the contact and non-contact measurement of strain in rocks. Clearly, further laboratory 

work is required to test a wider range of materials, surfaces and illumination geometries and utilise 

multivariate analysis, as well as to transfer the technique into a non-contact strain gauge for 

industrial application. There are a wide number of laboratory tests and industrial applications where 

this may be of use, especially if imaging systems are utilised to capture a spatial pattern of RSR. 

 



Acknowledgements 

The authors would like to thank James Coyne and Michelle Hale for their technical support and 

useful discussions.  

 

Declaration of conflicting interests 

The authors declared no potential conflicts of interest with respect to the research, authorship, 

and/or publication of this article. 

 

Funding 

This research received no specific grant from any funding agency in the public, commercial, or not-

for-profit sectors. 

 

References 

 

1.  Utili S, Crosta GB, Take A, et al. An integrated geophysical approach for investigating hydro-

geological characteristics of a debris landslide in the Wenchuan earthquake area. Eng Geol 

2017; 219: 92–106. 

2.  Ma K, Tang CA, Liang ZZ, et al. Stability analysis and reinforcement evaluation of high-steep 

rock slope by microseismic monitoring. Eng Geol 2017; 218: 22–38. 

3.  Stead D, Eberhardt E, Coggan JS. Developments in the characterization of complex rock slope 

deformation and failure using numerical modelling techniques. Eng Geol 2006; 83: 217–235. 

4.  Cui Y, Kishida K, Kimura M. Prevention of the ground subsidence by using the foot 

reinforcement side pile during the shallow overburden tunnel excavation in unconsolidated 

ground. Tunn Undergr Sp Technol 2017; 63: 194–204. 

5.  Carlà T, Farina P, Intrieri E, et al. On the monitoring and early-warning of brittle slope failures 

in hard rock masses: Examples from an open-pit mine. Eng Geol 2017; 228: 71–81. 

6.  Dobrev ND, Košt’ák B. Monitoring tectonic movements in the Simitli Graben, SW Bulgaria. 



Eng Geol 2000; 57: 179–192. 

7.  Segall P. Earthquake and volcano deformation. Princeton University Press, 2010. 

8.  Higson G. Recent advances in strain guages. J Sci Instrum 1964; 41: 404–414. 

9.  Gage JR, Fratta D, Turner AL, et al. Validation and implementation of a new method for 

monitoring in situ strain and temperature in rock masses using fiber-optically instrumented 

rock strain and temperature strips. Int J Rock Mech Min Sci. Epub ahead of print 2013. DOI: 

10.1016/j.ijrmms.2013.03.007. 

10.  Gage JR, Wang HF, Fratta D, et al. In situ measurements of rock mass deformability using 

fiber Bragg grating strain gauges. Int J Rock Mech Min Sci. Epub ahead of print 2014. DOI: 

10.1016/j.ijrmms.2014.07.021. 

11.  Merzbacher CI, Kersey AD, Friebele EJ. Fiber optic sensors in concrete structures: a review. 

Smart Mater Struct 1996; 5: 196. 

12.  Chai J, Liu J, Qiu B, et al. Detecting deformations in uncompacted strata by fiber Bragg grating 

sensors incorporated into GFRP. Tunn Undergr Sp Technol 2011; 26: 92–99. 

13.  Maaskant R, Alavie T, Measures RM, et al. Fiber-optic Bragg Grating Sensors for Bridge 

Monitoring. Cem Concr Compos 1997; 19: 21–33. 

14.  Moffat R, Sotomayor J, Beltrán JF. Estimating tunnel wall displacements using a simple sensor 

based on a Brillouin optical time domain reflectometer apparatus. Int J Rock Mech Min Sci 

2015; 75: 233–243. 

15.  Klar A, Dromy I, Linker R. Monitoring tunneling induced ground displacements using 

distributed fiber-optic sensing. Tunn Undergr Sp Technol 2014; 40: 141–150. 

16.  Zhang QB, Zhao J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour 

of Rock Materials. Rock Mech Rock Eng 2014; 47: 1411–1478. 

17.  Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane 

displacement and strain measurement: a review. Meas Sci Technol 2009; 20: 62001. 

18.  Yamaguchi I. A laser-speckle strain gauge. J Phys E 1981; 14: 1270. 

19.  la Torre IM De, del Socorro Hernández Montes M, Flores-Moreno JM, et al. Laser speckle 

based digital optical methods in structural mechanics: A review. Opt Lasers Eng 2016; 87: 32–

58. 



20.  Roux S, Réthoré J, Hild F. Digital image correlation and fracture: an advanced technique for 

estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 2009; 42: 214004. 

21.  Lin Q, Labuz JF. Fracture of sandstone characterized by digital image correlation. Int J Rock 

Mech Min Sci 2013; 60: 235–245. 

22.  Li D, Zhu Q, Zhou Z, et al. Fracture analysis of marble specimens with a hole under uniaxial 

compression by digital image correlation. Eng Fract Mech 2017; 183: 109–124. 

23.  Ramos T, Furtado A, Eslami S, et al. 2D and 3D Digital Image Correlation in Civil Engineering – 

Measurements in a Masonry Wall. Procedia Eng 2015; 114: 215–222. 

24.  Abshirini M, Soltani N, Marashizadeh P. On the mode I fracture analysis of cracked Brazilian 

disc using a digital image correlation method. Opt Lasers Eng 2016; 78: 99–105. 

25.  Stirling RA, Simpson DJ, Davie CT. The application of digital image correlation to Brazilian 

testing of sandstone. Int J Rock Mech Min Sci 2013; 60: 1–11. 

26.  Sutton MA, Orteu JJ, Schreier H. Image correlation for shape, motion and deformation 

measurements: basic concepts, theory and applications. Springer Science & Business Media, 

2009. 

27.  Francis D, Tatam RP, Groves RM. Shearography technology and applications: a review. Meas 

Sci Technol 2010; 21: 102001. 

28.  Chen HHN, Su RKL, Fok SL, et al. Fracture behavior of nuclear graphite under three-point 

bending tests. Eng Fract Mech. Epub ahead of print 2017. DOI: 

https://doi.org/10.1016/j.engfracmech.2017.09.030. 

29.  Meda A. Tensile behaviour in natural building stone: Serena sandstone. Mater Struct 2003; 

36: 553. 

30.  Ma T, Inagaki T, Tsuchikawa S. Non-destructive evaluation of wood stiffness and fiber 

coarseness, derived from SilviScan data, via near infrared hyperspectral imaging. J Near 

Infrared Spectrosc 2018; 26: 398–405. 

31.  Faughey GJ, Sharma HSS. A Preliminary Evaluation of near Infrared Spectroscopy for 

Assessing Physical and Chemical Characteristics of Flax Fibre. J Near Infrared Spectrosc 2000; 

8: 61–69. 

32.  Pornprasit R, Pornprasit P, Boonma P, et al. A study on prediction performance of the 

mechanical properties of rubber using Fourier-transform near infrared spectroscopy. J Near 



Infrared Spectrosc 2018; 26: 351–358. 

33.  Lim CH, Sirisomboon P. Near infrared spectroscopy as an alternative method for rapid 

evaluation of toluene swell of natural rubber latex and its products. J Near Infrared Spectrosc 

2018; 26: 159–168. 

34.  Clark RN, Swayze GA, Wise RA, et al. USGS Digital Spectral Library splib06a. Reston, VA, 

http://pubs.er.usgs.gov/publication/ds231 (2007). 

35.  Viscarra Rossel RA, Behrens T, Ben-Dor E, et al. A global spectral library to characterize the 

world’s soil. Earth-Science Rev 2016; 155: 198–230. 

36.  Ben-Dor E, Ong C, Lau IC. Reflectance measurements of soils in the laboratory: Standards and 

protocols. Geoderma 2015; 245–246: 112–124. 

37.  Post JL, Crawford SM. Uses of near-infared spectra for the identification of clay minerals. Appl 

Clay Sci 2014; 95: 383–387. 

38.  Ben-Dor, E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate 

several soil properties. Soil Sci Soc Am J 1995; 59: 364–372. 

39.  Lobell, DB, Asner G. Moisture Effects on Soil Reflectance. Soil Sci Soc Am J 2002; 66: 722–727. 

40.  Gomez C, Viscarra Rossel RA, McBratney AB. Soil organic carbon prediction by hyperspectral 

remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008; 

146: 403–411. 

41.  Douglas RK, Nawar S, Alamar MC, et al. Rapid prediction of total petroleum hydrocarbons 

concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Sci 

Total Environ 2018; 616–617: 147–155. 

42.  Ng W, Malone BP, Minasny B. Rapid assessment of petroleum-contaminated soils with 

infrared spectroscopy. Geoderma 2017; 289: 150–160. 

43.  Nasser M, Gibson A, Koor N, et al. VIS/NIR Spectroscopy to determine the spatial variation of 

the weathering degree in Paleogene clay soil-London Clay Formation. In: EGU General 

Assembly Conference Abstracts. 2017, p. 12700. 

44.  Viscarra Rossel RA, Walvoort DJJ, McBratney AB, et al. Visible, near infrared, mid infrared or 

combined diffuse reflectance spectroscopy for simultaneous assessment of various soil 

properties. Geoderma 2006; 131: 59–75. 



45.  Afzal P, Yasrebi AB, Saein LD, et al. Prospecting of Ni mineralization based on geochemical 

exploration in Iran. J Geochemical Explor 2017; 181: 294–304. 

46.  Andrews WL, Tardio J, Bhargava SK, et al. Development of a new near infrared (NIR) tool for 

quantifying coffinite (USiO4) in a moderately complex uranium ore analogue. J Geochemical 

Explor 2017; 182: 80–93. 

47.  Magendran T, Sanjeevi S. Hyperion image analysis and linear spectral unmixing to evaluate 

the grades of iron ores in parts of Noamundi, Eastern India. Int J Appl Earth Obs Geoinf 2014; 

26: 413–426. 

48.  Gallello G, Ghorbani S, Ghorbani S, et al. Non-destructive analytical methods to study the 

conservation state of Apadana Hall of Persepolis. Sci Total Environ 2016; 544: 291–298. 

49.  Bassani C, Cavalli RM, Cavalcante F, et al. Deterioration status of asbestos-cement roofing 

sheets assessed by analyzing hyperspectral data. Remote Sens Environ 2007; 109: 361–378. 

50.  Gurgurewicz J, Mège D, Carrère V, et al. Inferring alteration conditions on Mars: Insights from 

near-infrared spectra of terrestrial basalts altered in cold and hot arid environments. Planet 

Space Sci 2015; 119: 137–154. 

51.  Ord A, Hobbs B. Experimental Control of the Water-Weakening Effect in Quartz. In: Hobbs B, 

Heard H (eds) Mineral and Rock Deformation: Laboratory Studies. American Geophysical 

Union, 1986. 

52.  Butcher E, Gibson A, Benson P. Initial development of an NIR strain measurement technique 

in brittle geo-materials. In: EGU General Assembly Conference Abstracts. 2016, p. 13013. 

53.  Bieniawski ZT, Hawkes I. Suggested Methods For Determining Tensile Strength of Rock 

Materials. Int Soc Rock Mech Comm Stand Lab F Tests 1978; 15: 99–103. 

54.  de Linaje VA, Khan SD. Mapping of diagenetic processes in sandstones using imaging 

spectroscopy: A case study of the Utrillas Formation, Burgos, Spain. Sediment Geol 2017; 353: 

114–124. 

55.  Clark RN, King TV V, Klejwa M, et al. High spectral resolution reflectance spectroscopy of 

minerals. J Geophys Res Solid Earth 1990; 95: 12653–12680. 

56.  Murphy RJ, Monteiro ST. Mapping the distribution of ferric iron minerals on a vertical mine 

face using derivative analysis of hyperspectral imagery (430–970nm). ISPRS J Photogramm 

Remote Sens 2013; 75: 29–39. 



57.  Crowley JK. Visible and near-infrared spectra of carbonate rocks: Reflectance variations 

related to petrographic texture and impurities. J Geophys Res Solid Earth 1986; 91: 5001–

5012. 

58.  Gaffey SJ. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–

2.55 um): Anhydrous carbonate minerals. J Geophys Res Solid Earth 1987; 92: 1429–1440. 

 



Figure 1a/b



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9


	Final_version_Pure
	Near infrared spectroscopic measurement of strain in rocks
	Abstract
	Keywords
	Introduction: Principles and Methodology of Strain Measurements
	Near infrared Spectroscopy and the measurement of rock strain

	Materials and methods
	Sample Preparation
	Measurement of NIR Spectra during Strain Testing

	Results and Discussion
	Analyses
	Discussion

	Conclusion
	Acknowledgements
	Declaration of conflicting interests
	Funding
	References


	Figure1ab
	Figure2_tiff
	Figure3_tiff
	Figure4
	Figure5
	Figure6
	Figure7
	Figure8
	Figure 9

