
Visual-based Crack Detection and Skeleton Extraction of 

Cement Surface 

Du Jiang 1, Gongfa Li
1,2,3,

, Ying Sun4, Jianyi Kong 
1
，Bo Tao

2
,Dalin Zhou

5
, Disi 

Chen
5
 and Zhaojie Ju5 

1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry 

of Education , Wuhan University of Science and Technology, Wuhan, 430081, 

China 
2 Institute of Precision Manufacturing, Wuhan University of Science and Tech-

nology, Wuhan University of Science and Technology, Wuhan, 430081, China 
3.Research Center for Biomimetic Robot and Intelligent Measurement and Con-

trol, Wuhan University of Science and Technology, Wuhan, 430081, China 
4. 
Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineer-

ing, Wuhan University of Science and Technology, Wuhan, 430081, China 
5. School of Computing, University of Portsmouth PO1 3HE, UK 

Du Jiang: 1439078161@qq.com 

Gongfa Li: ligongfa@wust.edu.cn 

Ying Sun: sunying65@wust.edu.cn 

Jianyi Kong: 15697188659@wo.com.cn 

Bo Tao: taoboq@wust.edu.cn 

Dalin Zhou: Dalin.zhou@port.ac.uk 

Disi Chen: chendisi@foxmail.com 

Zhaojie Ju: zhaojie.ju@port.ac.uk 

Abstract. In order to realize the design of vision-based cement crack repair ro-

bot, it is necessary to accurately recognize and extract features of cracks. In this 

paper, three kinds of typical crack are selected to study, which are fine crack, 

reticulated crack and dark crack. Firstly, image filtering and image enhance-

ment are used to pre-process the collected image to reduce the influence of 

noise on detection and enhance the contrast between image background and 

crack area. Then, the multi-scale morphological operation is applied to extract 

the fracture edge features effectively. The experimental results show that the 

proposed edge regions are obviously different from the background regions. 

Furthermore, by calculating and selecting the area of the largest connected area, 

the noise can be eliminated to the greatest extent. Finally, the traditional skele-

ton extraction algorithm is improved to eliminate the number of burrs in the tra-

ditional skeleton algorithm. By remapping the cracks images to color images, it 

can be found that the crack recognition and skeleton extraction meet the re-

quirements, which can provide corresponding technical support for the naviga-

tion design of the crack repair robot. 
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1 Introduction 

With the national investment in infrastructure, China's urban underground pipeline 

network has been greatly developed and upgraded. With the increasing complexity of 

urban underground space and pavement construction, the maintenance and manage-

ment of underground pipeline network has become more and more important. At pre-

sent, the underground pipelines are mainly maintained through manual work when 

there is some problems such as burst, leak and so on, which greatly the increase the 

upkeep. Generally, if the sewage pipeline can be treated in time before the problem is 

complicated, it can effectively reduce the loss. Because of the special environment of 

underground sewage pipeline, it is difficult to detect and repair it in time. With the 

development of robotics technology, it brings new methods and solutions to solve this 

problem. Currently, there are mature products on the market to capture video of the 

environment of pipeline, which saves the cost of manpower and equipment needed for 

pipeline detection, however, their level of automation needs to be further replaced 

With the development of computer hardware and digital image processing technolo-

gy, vision-based target location and detection technology have made great progress. 

Because of its accurate recognition and location, it provides a safe and efficient navi-

gation means for the pipeline crack detection and repair robot based on digital image. 

Visually, the enhancement and location of crack image on cement surface belongs 

to linear target detection while it has some unique characteristics, such as low con-

trast, intermittent, bifurcation and background noise. There are many research results 

on crack detection, such as threshold segmentation, edge detection, wavelet transform 

and so on [1]. Hyun-Seok et al. [2] used neural network to detect cracks, which im-

proved the accuracy of crack detection. Shu et al. [3] provided an improved contour 

algorithm for crack detection. Petrik et al. [4] applied fuzzy idea to recognize crack. 

However, due to the poor shooting environment in the pipeline, the quality of the 

collected images will be poor, leading to the inability of the automatic detection algo-

rithm. Therefore, it is necessary to add some image pre-processing before crack 

recognition to improve the quality of the images and reduce the interference of back-

ground noise. Image pre-processing is generally used as a pre-processing based on 

visual recognition whose main purpose is to highlight the features of the detected 

object and the region of interest, eliminate and reduce the interference of noise, such 

as image enhancement, image de-noising and edge feature extraction. Generally, the 

crack image will be disturbed by the environment. At the same time, because of the 

uncertainty of the crack and the uncertainty of the environment, it is difficult for the 

collected image to meet the requirements of detection. As a result, it is often neces-

sary to add image preprocessing before realizing vision-based target recognition and 

detection. 

The main purpose of our research is to study the crack detection on cement surface. 

Based on this, the information characteristics of crack skeleton need to be extracted, 

to provide the corresponding reference for the trajectory generation of automatic re-

pair robot. In this paper, multi-scale morphological calculation and skeleton algorithm 

are mainly used to identify and extract the skeleton of multiple cracks. The proposed 

method further improves the accuracy of crack detection, and the experimental results 
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show that it is helpful to the design of pipeline crack repair robot. Three typical frac-

ture images are selected for study, as shown in Figure 1. 

                  
(a)                                 (b) 

 
(c) 

Fig. 1. Original image. (a): mesh crack, (b): fine crack, (c) dark crack 

2 Image preprocessing 

2.1 Image filtering 

In order to improve the image quality and increase the accuracy of target detection 

and judgment, it is necessary to filter and de-noise the image by means of image pro-

cessing [5]. In which, the commonly used filtering methods are Gauss filtering, mean 

filtering and median filtering. Because crack images often contain a large amount of 

particle noise, the median filtering method is used [6]. Median filtering is a kind of 

non-linear filtering method, which is simple and efficient. It can effectively remove 

impulse noise and protect edge information. Therefore, this paper uses median filter 

and square template to eliminate most of the noise in the original image and highlight 

the information of crack edge, which is conducive to the subsequent extraction of 

crack features. The effect of middle finger filtering is displayed on Figure 2. 
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Fig. 2. Median filtering effect 

2.2 Image enhancement 

Pipeline image acquisition environment is generally complex, and it is easy to affect 

the quality of the image. The collected image may have a whole dark or low contrast 

image just like Fig.3(c), which will lead to difficulties in subsequent crack detection 

and feature extraction so it is necessary to use image enhancement technology to ame-

liorate the corresponding situation to a certain extent [7-8]. 

Histogram, as a statistical tool, can display the specific information of contrast to a 

certain extent. The gray histogram of the image shows the frequency of different gray 

levels in the gray level type of the image. Histogram equalization mainly uses gray 

histogram to adjust the image contrast, so as to enhance the image. With transfor-

mation, the histogram of the original image is transformed from a small gray scale to 

a uniform distribution in a larger gray scale, so as to enhance the overall contrast of 

the image. 

Crack image area usually belongs to the gray-scale region with darker color, and 

the background area is brighter. However, due to the influence of environment, it is 

difficult to form obvious differences between the background area and the fracture 

area. Thus, histogram equalization can effectively enhance the contrast of images and 

highlight the difference between background and cracks. As can be seen from Fig. 3, 

the fracture area is obviously enhanced. 

 

Fig. 3. Image enhancement effect 
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3 Extraction of cement crack contour based on multi-scale 

morphology 

3.1 Principles of multiscale morphology 

Mathematical morphological image processing is based on set theory [9-10]. Morpho-

logical transformation of images is essentially a set-oriented processing process. Mor-

phological operations can be used to represent the shape of objects, whose shape de-

termines the shape information of objects matched by it. Therefore, the morphological 

operation of the image is to calculate the structural elements in the image and get the 

processing result matrix. The basic morphological operations of mathematical mor-

phological image processing are corrosion and expansion. Their combination can be 

called opening and closing operations. Its basic principles are as follows: 

Expand:  

 

( , )

[ ( , ) ( , )]max
i j

A B A x i y j B i j      (1) 

Corrosion:  

 
( , )
min[ ( , ) ( , )]

i j
A B A x i y j B i j      (2) 

Two combinations of expansion and corrosion operations can be obtained: 

Opening operation: 

 ( )A B A B B    (3) 

Closing operation: 

 ( )A B A B B     (4) 

In the above formulas, ( , )A x y  represents the input image, and ( , )B x y  repre-

sents structural elements.   and  represent Corrosion operation and expansion 

operation in morphology respectively. 

Multiscale morphology is achieved by selecting the type and scale of structural el-

ements, such as processing different images or dealing with different structural ele-

ments, which requires the selection of appropriate scale. Generally, with the increase 

of the scale of structural elements, the amount of computation will increase corre-

spondingly, and even the geometric properties of images will be affected correspond-

ingly, which will affect the final processing results. Selecting appropriate small-scale 

structural elements can improve the operation efficiency to a certain extent. There-

fore, the edge detection of crack image is carried out by structural elements of differ-

ent scales, and then the detected edge information is integrated by weighted fusion, so 

as to reduce the influence of noise in the image. 
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According to the concepts of mathematical morphology, the definition of multi-

scale iterative filters is as follows: 

 
1 2 2 2( ) ( )A A B B B B     (5) 

Multiscale structural elements are defined as: 

 nB B B B     (6) 

Among them, n is a scale parameter. 

Multi-scale edge detection algorithm: 

 ( ) ( )
n

i i i ii
A nB nB A nB nBG       (7) 

Multi-scale edge fusion algorithm: 

 

1

K
n n

i i

i

GA u G


  (8) 

In which, 
i

u  is weighting coefficients for fusion of multi-scale edge detection im-

ages. 

The set of positions where the values around the pixels change sharply is generally 

referred to as the image edge, which is one of the basic features of the image. Image 

edges generally exist between objects, background and regions, so edge extraction is 

one of the key steps in image segmentation. The image edges include the following 

kinds: step edge and roof edge. The gray value of the pixels around the step edge is 

obviously different, showing a step shape; the pixel value around the roof edge will 

have a peak value, showing the roof style. 

3.2 Result Analysis and Processing 

Through multi-scale edge extraction of three kinds of images, the results are as fol-

lows, shown on the Fig.4. By the way, the crack features of three types of crack imag-

es are effectively extracted, and the noise is effectively smoothed. From the analysis 

of the generated three-dimensional pseudo-color image (Fig.5), it can be found that 

there are obvious differences between the crack edge area and the background area, 

which provides a sufficient basis for the subsequent crack skeleton extraction. 
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(a)                                  (b) 

 
(c) 

Fig. 4. Edge Contour Extraction. 

  
(a)                                                                      (b) 
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(c) 

Fig. 5. Pseudo-color three-dimensional display. 

4 Skeleton extraction of cement cracks 

4.1 Adaptive threshold image binarization 

The binarization of an image usually uses a threshold to segment the target area from 

the background. The pixels within the threshold are marked as 1, while the others 

belonging to the background are marked as 0. Through the observation of the results 

of multi-scale edge extraction, we can find that there is a great difference in the gray 

value between the fracture target and the background area. Therefore, in order to 

segment fracture target and background to a greater extent, it is necessary to select 

appropriate threshold. There are two main methods for calculating thresholds: global 

thresholds and adaptive thresholds. 

(1) Global threshold: The threshold is determined based on the histogram or gray 

spatial distribution of the image. 

(2) Adaptive threshold: Based on the gray level change of the image pixel itself 

and its domain, threshold segmentation is carried out, and then the binary segmenta-

tion of gray image is realized. 

The quality of crack image will change because of the change of shooting envi-

ronment. Therefore, it is necessary to select a suitable threshold calculation method to 

achieve effective comparison between the edge area of crack and the background. 

This paper chooses an adaptive threshold calculation method. Fig.6 shows the binari-

zation result of mesh crack with adaptive threshold. 
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Fig. 6. The effect of adaptive image binarization 

4.2 Maximally connected region segmentation 

After binary segmentation, it can be found that there are still many noise points in 

the image. In order to further eliminate the noise in the background and highlight the 

crack area, it is necessary to expand the edge of the crack to form a larger connected 

area. Then, the connected area with the largest area is selected to eliminate the small 

noise points effectively. 

     

Fig. 7. The effect of maximally connected region segmentation 

4.3 Skeleton extraction 

In traditional skeleton extraction algorithms, the image is refined step by step by step 

through iterative etching operation, and skeleton extraction is finally realized [11-12]. 

But this will lead to a lot of burrs in the process of skeleton extraction, as shown in 

the Figure 8. The existence of burrs interferes greatly with the trajectory generation of 

the robot. Therefore, it is necessary to deal with these burrs further. In this paper, a 

simple skeleton extraction algorithm is proposed. The skeleton extraction is realized 

by calculating the mean value of the crack area. 

The flow chart of the algorithm is as follows: 

(1) Judging the direction of cracks in the image area by row/column projection. 

(2) Traversing the image with row/column benchmark to find the index value 

marked as 1. 
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(3) By averaging the index value, the image is taken as the skeleton point of the 

base row/column. 

(4) The skeleton is formed by recording these skeleton points. 

The experimental structure shows that this method can effectively remove skeleton 

burrs. However, there are still some shortcomings, such as the inaccurate judgment of 

traversal by rows and columns when extracting mesh cracks, which leads to the inac-

curate average index value, especially the index value of mesh endpoints. By project-

ing the skeleton information of the crack onto the color image (Fig.10), it can be 

found that the method adopted in this paper can basically realize the marking of the 

crack on the cement surface. 

     

Fig. 8. Skeleton obtained by traditional skeleton algorithm. 

         
 

 

Fig. 9. Skeleton obtained by the improved skeleton algorithm. 
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Fig. 10. Crack mark. 

5 Conclusion 

With the development of image processing technology and robotic technology, the 

requirement of robotic technology for the maintenance of underground sewage pipe-

line is becoming higher and higher. In this paper, visual-based detection of cement 

cracks is studied. The main research objects are mesh cracks, fine cracks and dark 

cracks. Through the comprehensive application of image processing technology, the 

effective extraction of fracture features is realized. The multi-scale edge feature ex-

traction adopted in this paper can effectively realize the feature extraction of fracture 

edge. By calculating the area of the maximum connected area, the further de-noising 

of the fracture image is realized, which is especially suitable for the de-noising of the 

fracture image. Aiming at the problem that there are many burrs in traditional skele-

ton algorithm, this paper proposes a new skeleton algorithm and effectively eliminates 

most of the burrs, which provides corresponding technical support for the subsequent 

design of crack repair robot. The crack identification method adopted in this paper 

can basically meet the requirements, but there are still some shortcomings in the iden-

tification of reticulated cracks and skeleton extraction, which need further experi-

mental research. 
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