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Abstract. In this paper, we present a real-time human body gesture recognition 

for controlling Automated Guided Vehicle(AGV) in facility. Exploiting the 

breakthrough of deep convolutional networks in computers, we have developed 

a system that can detect the human gestures and give corresponding commands 

to the AGV according to different gestures. For avoiding interference of multi-

ple operational targets in an image, we proposed a method to filter out the non-

operator. In addition, we propose a human gesture interpreter with clear seman-

tic information and build a new human gesture dataset with 8 gestures to train 

or fine-tune the deep neural networks for human gesture detection. In order to 

balance accuracy and response speed, we choose MobileNet-SSD as the detec-

tion network. 

Keywords: Human Gesture, AGV, MobileNet-SSD, Deep Learning. 

1 Introduction 

Goods production flow in  manufacturing p lants has been largely  and deeply automat-

ed in  the last decades. To increase efficiency and reduce the cost of manual operators 

in manufacturing and distributing logistics, companies and organizations use robots as 

an effective tool. The Automated Guided Vehicle (AGV) is type of effeminate mobile 

vehicle that is primarily used to move materials from one place to another. AGVs  are 

commonly used in manufacturing plants, warehouses, distribution centers and termi-

nals. For navigation, an  AGV system usually uses lane paths, signal paths or signal 

beacons. Various main  sensors are also used in  AGV, such as optical sensors, laser 

sensors, magnetic sensors and cameras. 

AGV system has a strict requirement on environment. AGVs cannot work at the 

place where  has no lane or signal. In  this way, we hope that we can propose a new 

control method to break this limitation so that it can be applied to a wide range of 

scenarios, such as rural areas, urban outside, etc. The Natural User Interface (NUI) 

has been proposed recently instead of the physical remote. Visual human gesture is 

one of the most appealing methods to build an AGV system. We present a fast and 
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accurate detector that finds the hands, faces and bodies of multip le people in RGB 

images at the frame-rate, which can be used directly as an input to an AGV system. 

The contributions of this paper are: (i)We create a new way to control AGV with 

deep learning. This method can enable AGVs to get rid of environmental constraints 

and apply them in a wider range of fields. (ii)We propose a filtering algorithm based 

on high level features, which is effective and low time cost, to filter out visual d is-

turbances from non-operators in the image and implement them in our software pro-

gram. The software uses a scalable CNN model that can be resized fo r speed/accuracy 

trade-off based on MobileNet-SSD; (iii)We propose a novel, simple but effective and 

semantically clear static gesture detection method for transmitting instruction com-

mands based on the angle of the hand relat ive to the face; and establish a dataset 

based on the representation method which contains 8 human gestures.  

The rest of the paper is structured as follows: 

Section 2 reviews the development of object detection and the related research sta-

tus of AGV system and human-robot interaction. 

Section 3 presents the overall architecture of our system. 

Section 4 introduces the network structure we choose and compares it with the cur-

rent frequently-used object detection network model. 

Section 5 describes the proposed method of human gestures and introduces the es-

tablishment of the matched dataset. 

Section 6 explains the filtering algorithm of the AGV system and the process of fil-

tering out the interference from non-operators. 

Section 7 is the experimental results of the actual test of the system. 

2 Background 

2.1 Object Detection 

The purpose of object detection is to identify  objects from different backgrounds of 

complexity  and separate the background to complete fo llow-up tasks such as tracking 

and recognition. Therefore, object detection is the basic task of high-level understand-

ing and applicat ion, and its performance will affects the performance of mid - and 

high-level tasks directly such as subsequent target tracking, motion recognition, and 

behavioral understanding. 

Object detection is important in the field of computer vision and image processing 

because of its wide range of applications for v ideo surveillance, intelligent transporta-

tion, medical d iagnostics and vision guidance. Therefore, it’s important to have a 
robust and fast object detection algorithm. There are two branches particularly com-

pelling in many  CNN-based algorithms. The first uses two steps to solve the problem 

such as R-CNN [1], SPPnet [2], Fast R-CNN [3], and Faster R-CNN [4]. In this se-

ries, the first step is to find possible candidate regions, and then predict the corre-

sponding categories and perform a box regression of the boundary candidate regions. 

Second is single stage series, including You Only Look Once (YOLO) [5], YOLOv2 

[6], Single Shot Mult iBox Detector (SSD) [7], which aim to remove the region pro-

posal stage and then predict confidence and offset for every default box. The SSD 
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network provides a new neural network model for deep learning. In this architecture 

mode, some researchers replaced the front network VGG-16[8] with other types of 

networks such as Residual-101 [9] and inception[10], which  are much deeper and 

more powerfu l to achieve a higher accuracy. The deepening of the network structure 

means more calcu lation parameters, which  will bring the loss of calcu lation speed. So 

we hope to use a network to balance calculat ion speed and accuracy. Recently Mo-

bileNet [11] has been proposed to establish a real-time-capable object locator, provid-

ing the possibility of implementing neural networks on mobile devices. 

2.2 The Development of AGV 

The world's first automated guided vehicle was developed by Basrrett Electron ics in 

the United States in 1953. It was converted from a towed tractor with a car hopper. It 

worked based on the routine of the wire set in the air. In the late 1950s and early 

1960s, there were many types of towed AGVs used in factories and warehouses. Re-

cently, there are about 20,000 AGVs  in the world running in thousands of large and 

small warehouses. 

Starting from the electromagnetic induction guidance technology of underground 

embedding in the United Kingdom in 1954, the early AGVs were driven along the 

signals on the ground. The sensors on the AGV are selected the electromagnetic sig-

nals of a certain frequency to provide guidance for the AGV accord ing to the strength 

of the signal. With the rapid development of electronic technology and microproces-

sor technology, AGV's intelligent technology has been generally developed. In the 

late 1980s, wireless guidance technology was introduced into  the AGV system, such 

as laser and inertia guidance, greatly  improving the flexib ility and accuracy of the 

AGV system. The introduction of computer technology allows AGV to  handle almost 

all manually controlled material handling processes. Fig.1 shows an example of an 

AGV from the internet. 

  
Fig. 1. An AGV in the factory. 

 
2.3 Human-robot interaction 

Using gestures to achieve human-computer interaction has recently become popular. 

Many researchers have done relevant research. In[12][13][14], authors use Microsoft 
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Kinect to capture images of operators which contain RGB and depth data. With this 

data, localmachine can derive the skeletal model of the operator and match the corre-

sponding vocabulary based on the skeletal features. But RGB-D sensors have frustrat-

ing problems, involv ing the Kinect with its driver and API library makes the system 

costlier and has a noticeable latency. Motion-based detection is one of the ways of 

implementation such as waving[15]. These recognition methods work slowly and are 

vulnerable to frame loss in the video stream, so they are hard to apply in real-time 

detection. Some researchers use more obvious objects, such as arm gestures[16] and 

colored gloves[17], to avoid the effects of the environment. 

3 System Architecture Overview 

Fig. 2 shows high level arch itecture of the system. Images are captured by on -board 

camera, then forward through pretrained neural network model. The outputs of the 

model are boxes including face, hands and body. According to the position of these 

boxes, local machine can interpret the gesture operator want to express, and then send 

matched command to the AGV. After receiving the command, the AGV will send 

feedback message to the local machine. The entire system works in a Wi-Fi environ-

ment. 

 
Fig. 2. High level architecture. 

4 CNN Model 

The network model we choose is MobileNet-SSD, which is an improvement of stand-

ard SSD model. Single Shot MultiBox Detector (SSD) is one of the fastest algorithms 

in the current object detection field, which uses fully convolutional neural network to 

detect all scaled objects in  an image. This method discretizes the output space of 

bounding boxes into a set of default boxes over different aspect ratios and scales per 

feature map location. The network outputs a predicted score for each object category 

in each defau lt box and adjusts the output box to better match the shape of the object. 
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In addition, the network extracts features from feature layers with different resolu-

tions and combines prediction results of multip le feature maps together to identify 

natural objects in different sizes. 

The architecture of the network presents in Fig.3. The front layers of standard SSD 

is VGG-16 while the network we chose is MobileNet. According to [11], the author 

has made the comparison of MobileNet to other popular models. The result shows in 

Table 1. We can see, the parameters of the MobileNet are greatly reduced, and the 

accuracy is reduced a little . We can conclude that MobileNet loses a small amount of 

accuracy to achieve a higher speed increase, which is the key of real-t ime detection. 

The system works based on three objects - hands, faces and bodies. In order to cater 

for the requirement, we changed the number of filters in the last convolutional layer 

of the model.  

 
Fig. 3. Architectures of MobileNet-SSD 

Table 1. MobileNet comparison to popular models 

Model ImageNet Accuracy Million Mult-Adds Million Parameters 

MobileNet 70.6% 569 4.2 

GoogleNet 69.8% 1550 6.8 

VGG 16 71.5% 15300 138 

 

5 Human Gestures 

5.1 Gesture Interpreter 

Many researchers have proposed multip le ways of gesture representation. 

In[18][19][20], researchers have presented different sets of gestural vocabularies. Due 

to little semantic in formation  and real-time problems, they are not suitable for an 

AGV system. Some researchers defined some motion-based gestures such as waving-

based gestures[15], based on sequence of different postures for frames. However, 

these detection methods are too slow to widely meet the requirements for real -time 

detection under the conditions of existing hardware devices in  industrial environment. 

Relying on skin detection enabled detection of a user’s arms and to generate richer 

commands[16], but skin detection lacks robustness and is not always feasible. The 
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gestures we need are those stable enough to be uninterrupted by environmental fac-

tors, they should contain clear semantic informat ion, so that users do not need calibra-

tion or t rain ing. And they should be easy to be understood by AGV system. In this 

way, we use static (posture) not dynamic gesture recognition in  our p roposal, make 

the system identify the command expressed by each frame and regard every four 

frames as a sequence. If the four commands contained in the sequence are all same, 

the command will take effect, which  can avoid the unexpected effect caused by the 

loss or misidentification of certain frame to the current AGV state. 

5.2 Gesture Design 

Our static gesture detection works based on the angle of each hand box’s center to 
that of face’s box. Different angles represent different gestures. We define ∠α1 as the 

angle between the line from the center point of the right-hand box to the center point 

of the face box and the line in the center of the face box. While ∠α2  is defined as the 

left  one.(Fig.4) These two angles can present 8 human gestures with the different 

ranges of each one. We believe that gestures should have clear semantic information 

in practical applications, so we divide the gesture set into four one-hand gestures and 

four two-hand gestures. One-hand gestures present AGV movement commands(move 

forward, move backward, move left, move right), and two-hand gestures indicate 

function commands(lift up, lift down, turn CW 180°, focus on operator) as illustrated 

in Fig.5. We div ide the 360° two-dimensional area into eight areas in each 45°, which 

represent the one-hand gesture area and the two-hand gesture area alternately, aiming 

to overcome the wrong interpretation of the instruction in the process of gesture for-

mat ion caused by a high degree similarity of the same type gestures. Table 2 summa-

rizes the correspondence between postures and AGV con trolling commands. ‘Stop’ is 
a default command when the operator gesture does not satisfy any threshold men-

tioned in Table 2. 

 

Fig. 4. (a)(b) Demonstrates of how the angles ∠α1 and ∠α2 are determined from the bounding 

boxes. (c)Areas of controlling commands. 

 

(a) 

(b) 

(c) 
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Table 2. The correspondence between postures and the AGV controlling commands. 

∠α1 ∠α2 corresponding command 

One-hand gestrues Movement commands  

0°：22.5° Or 0°：22.5° Move forward 

67.5°：112.5° -- Move left 

157.5°：180° Or 157.5°：180° Move backward 

-- 67.5°：112.5° Move right 

Two-hand gestures Function commands  

22.5°：67.5° 22.5°：67.5° Lift up 

22.5°：67.5° 112.5°：157.5° Turn CW 180° 

112.5°：157.5° 22.5°：67.5° Focus on operator 

112.5°：157.5° 112.5°：157.5° Lift down 

 

 
Move forward           Move backward               Move left               Move right 

 
Lift up                         Lift down                Turn CW 180°         Focus on operator 

Fig. 5. Different gestures are designed to control the AGV. 

6 Classification Filtering 

Considering the actual working environment of AGV, the v ideo frames captured by 

the on-board camera may contain more than one person, which can be recognized as 

misleading commands. We use high level features to filter the output classification to 

solve this problem. The main idea of classification filtering is to match the results of 

the model and filter out the output boxes that have not been matched. A complete 

gesture consists of three parts: hands, face and body. If the output box cannot be part 

of the three parts then it will be filtered out. We use two parameters Ahb, Afb to indi-

cate how well the hand and face match the body. The parameters are defined as 

shown: 
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The agreement score Ahb for the functionality hb is calculated with the square of 

the common part of hand output box and body output box and the square of hand 

output box. In this way, the agreement score Afb for the functionality fb is calculated 

with the square of the common part of face output box and body output box and the 

square of face output box. If the value of Ahb (or Afb )is close to 1, we can think that 

the hand (or face) output box is in the body output box, so that these two output boxes 

can be regarded matched. Fig.6 shows the process of filtering. MobileNet-SSD model 

outputs predicted boxes for faces, hands and bodies. The first loop matches the faces 

and bodies. The second loop matches the hands and bodies. Finally  check if each 

matched body box contains face and hand, if not remove them all. 

 

𝐴ℎ𝑏 = 𝑆ℎ ∩ 𝑦𝑆ℎ  𝐴𝑓𝑏 = 𝑆 ∩ 𝑦𝑆  
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In order to enable the network to adapt to different distance to the operator, all these 

images were taken in the range from 0.5m to 5m. We used MobileNet-SSD model 

pretrained on COCO 90-class dataset, and got applied model after 200000 steps of 

iteration. The ground station is a desktop PC (with an Intel Core i7-3820 @ 3.60GHz 

× 8 and equipped with NVIDIA GPU GeForce GTX 690), which performs not so 

good in calculation but closes to industrial computers.  

7.2 Experiments on Human-AGV Interaction 

We create a test dataset with the same distribution as the training dataset for evalua-

tion, which contains all eight gestures. There are 200 images for each gesture. The test 

frames in this section all contain single operator without background interference 

from non-operators. Table 3. p resents the accuracy of MobileNet-SSD and some pop-

ular object detection models working based on our proposed gesture method. From 

table 3. obviously, MobileNet-SSD achieves the real-time requirement for gesture 

detection beside preserving the detection accuracy in terms of gesture interaction. 

InceptionV2-SSD are also fast enough with 14.23 fps to be applied in practice, but 

MobileNet-SSD can work at a h igher speed, which  means it can be applied  to a wider 

scope of environments and have less requirement for hardware devices.  

Table 3. The accuracy of MobileNet-SSD compared with popular models 

network 
model 

move 
forward  

move 
backward  

move 
left  

move 
right  

lift up  
lift 
down  

turn 
CW 
180°  

focus 
on 
operator  

total  fps_mean 

MobileNet-
SSD 

88% 92% 95.5% 95.5% 75.5% 95% 82.5% 86.5% 88.81% 27.74 

InceptionV2-
SSD 

93% 100%  87.5% 90.5% 85.5% 97% 91% 89% 91.69% 14.23 

Faster-rcnn-
InceptionV2 

96.5% 95.5% 91% 100% 94% 100% 99.5% 98.5% 96.88% 1.17 

Faster-rcnn-
resnet50 

97% 76.5% 94.5% 92.5% 97.5% 100% 99.5% 99.5%  94.63% 0.29 

 
7.3 Experiments on Classification Filtering 

We have established a dataset specifically for evaluating the filtering effect, which 

has 2000 images. Each gesture has 250 images, of which 20% have interferences from 

non-operators. Table 4. lists the comparison results of the filtering algorithm applied  

in MobileNet-SSD model. It can be clearly seen that our proposed algorithm can ef-

fectively eliminate interference from non-operators, because the algorithm utilizes 

high level features without involving too many calculations, so it has less impact on 

real-time performance. There are comparisons of two frames in Fig.7. 

Table 4. The results of the filtering algorithm 

 
move 
forward  

move 
backward  

move 
left  

move 
right  

lift up  
lift 
down  

turn 
CW 
180°  

focus 
on 
operator  

total  fps_mean 

unfiltered 75.6% 82% 78.8% 80.4% 64% 82.4% 72.4% 73.6% 76.15% 27.76 
filtered  88% 90% 92% 91.2% 72% 97.6% 81.2% 83.6% 86.95% 27.44 
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(a) 

   
(b) 

Fig. 7. (a)The output frame without being filtered. (b)The output frame after being filtered. 

8 Conclusion  

In this paper, we introduce a system to control AGV through a series of human ges-

tures successfully, which can work at a high accuracy and fast speed even if the 

hardware devices are not so powerful. With our new co llected dataset built fo r human 

gestures, we design an interpreter mapping each  gesture to a controlling command. In 

addition, the gesture method and classification filtering algorithm we designed get 

better results in the experiment, which  can achieve real-time and preserve high ges-

ture detection accuracy.  
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