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Abstract. Biologically inspired computational techniques play a crucial
role in robotic cognition. Artificial learning agents and robots that inter-
act in complex environments must constantly acquire and refine knowl-
edge over long periods of time. In this paper, we propose a novel recurrent
neural architecture that mimics humans’ declarative memory system for
continuously generating a cognitive map during robot navigation. The
proposed method termed as Declarative Memory Adaptive Recurrent
Model (DM-ARM), and consists of three hierarchical memory courses: i)
Working Memory, ii) Episodic Memory and iii) Semantic Memory layer.
Each memory layer comprises a self-organizing adaptive recurrent incre-
mental network (SOARIN) with a different learning task respectively.
The Working Memory layer quickly clusters sensory information while
the Episodic Memory layer learns fine-grained spatiotemporal relation-
ships of clusters (temporal encoding). Both the memory layer learning
is in an unsupervised manner. The Semantic Memory layer utilizes task-
relevant cues to adjust the level of architectural flexibility and generate
a semantic map that contains more compact episodic representations.
The effectiveness of the proposed recurrent neural architecture is evalu-
ated through a series of experiments. We implemented and validated our
proposed work on the tasks of robot navigation.
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1 Introduction

Spatial cognition is the basic ability of mammals to map, locate and navigate
in different environments [1]. However, up-to-date intelligence computational
models are still far from creating an artificial agent that can accomplish daily
chores in an unstructured environment. This is a common task which requires
semantic information and episodic memory [2].

The semantic memory is known as the brain mechanism for acquiring and
constructing the internal spatial representation. In the meantime, episodic mem-
ory allows people to learn higher-level tasks through self-experience and to plan
actions respectively. In order to perform spatiotemporal tasks, both elements
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play crucial roles for humans. In both cognitive science and neuroscience, exten-
sive research has been carried out to reveal the semantic memory and episodic
memory’s fundamental principles and neural bases [3–5].

The cognitive map is a kind of intelligence description of the external environ-
ment since animal cognition of the environment is an expression of the external
environment. It represents the relative geometric relationship of the external
space features. At present, cognitive map-based robot navigation has drawn the
attention of many researchers. Tian, et al. [6] proposed a brain-inspired SLAM
to build a cognitive map of the office environment by combining odometry infor-
mation with RGB-D sensors data. The cognitive map consists of a set of space
coordinates that the robot has experienced and these nodes used to generate a
global path. Chin et al. [8] proposed an unsupervised learning model of episodic
memory to categorize and encode experiences of a robot to the environment and
generates a cognitive map.

Recently, the Complementary Learning System (CLS) theory has been up-
dated to consolidate additional findings of neuroscience [9, 10]. The first set of
findings considers the role of memory replay stored in the hippocampus as a
mechanism that supports the goal-oriented manipulation of experience statis-
tics as well as the integration of new information. The hippocampus promptly
encodes episodic events that can be reactivated during resting and intentional
or unintentional memory recall. In this way, the information in the neocortex is
consolidated by reactivating encoded experiences in terms of multiple internal
replays. The combination of working memory, episodic memory, and semantic
memory are known as declarative memory.

In this paper, we propose a novel recurrent neural architecture that mimics
humans’ declarative memory system to build a semantic map incrementally for
robot navigation. The proposed architecture consists of three hierarchical mem-
ory layers: i) Working Memory, ii) Episodic Memory and iii) Semantic Memory
layer. Each memory layer comprises a self-organizing adaptive recurrent incre-
mental network (SOARIN) with a different learning task respectively. The Work-
ing Memory layer quickly learns feature vectors from sensors (clustering); while
the Episodic Memory layer learns fine-grained spatiotemporal relationships of
feature vectors (temporal encoding). Both the memory layer learning is in an
unsupervised manner. The Semantic Memory layer utilizes task-relevant cues to
adjust the level of architectural flexibility and generate a semantic topological
map (categorization). For the navigation task, we used text-to-speech to pass
information to the robot for space labeling in Semantic Memory layer. All net-
works in the respective layer can grow or shrink for adapting incoming sensory
information. In order to alleviate the catastrophic forgetting, the Episodic Mem-
ory layer regularly reactivates previously learned temporal neurons activations
and replays to itself and to the Semantic Memory layer (memory replay) during
robot rest time. The memory replay is accomplished without the needs of ex-
ternal sensory information. The memory replay mechanism allows the robot to
continually learn incoming novel sensory input while retaining knowledge that
has been learned previously.
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Contributions of this paper are i) the proposed method, DM-ARM enables a
robot to build a semantic topological map from scratch and continually update
the map for global path planning and navigation; ii) DM-ARM overcomes the
catastrophic forgetting which helps the robot remembers previously explored
environment while moving to new environments; and iii) the robot utilizes the
generated semantic topological map to switch its moving behaviors according
to environmental conditions such as fall-following, obstacle avoidance, and fast-
speed moving.

2 Proposed Method: DM-ARM

DM-ARM architecture consists of three hierarchical Self-organizing Adaptive
Recurrent Incremental Network (SOARIN) as shown in Figure. SOARIN is the
evolved version of the Gamma-GWR [11] that adaptively and dynamically gen-
erate new neurons and topology connections according to novel consecutive sen-
sory input. The Working Memory layer (WML) instantly clusters incoming input
vectors in an unsupervised manner. Next, the episodic memory layer (EML) re-
ceives firing neuron weights from WML and encodes the spatiotemporal neurons
activation patterns. Next, the Semantic Memory layer (SML) receives neural
activation trajectories from EML and task-relevant signals (labels) from users
to update the network and generate more compact representations of episodic
experience with semantic meaning. Therefore, WML, EML, and SML mitigate
catastrophic forgetting through continually generate neurons if novel input is
encountered, update neurons weights if received input is similar with previously
learned knowledge. In addition, neurons that are inactive for a long time will be
eliminated automatically for maintaining the storage capacity.

In robot navigation, WML works as a novelty detector where each neuron in
the network represents a group of similar input vectors and generate new neurons
if incoming input vectors do not fit into the network. In EML, the network
encodes the sequence of the robot’s movement and each neuron in the network
stores the robot’s location for local localization. In SML, the network encodes
a set of neurons in EML to define a place of the explored environment. Each
neuron in SML represents an area of the environment and the robot utilizes the
information for switching its moving behaviors such as wall following, obstacle
avoidance or fast-speed moving. The overall architecture as shown as Figure 1

2.1 Working Memory Layer

Each memory layer contains a Self-Organizing Adaptive Recurrent Incremental
Network (SOARIN) which is an adaptive recurrent extension of the Gamma-
Grow-When-Required-Network (Gamma-GWR) [11] self-organizing network. The
SOARIN embeds a self-adaptive learning threshold that allows the network to
dynamically grow or shrink according to input vectors. SOARIN serves as the
short-term memory buffer in which new neurons will be generated to represent
incoming inputs and connections will be generated to link neurons that activated
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Fig. 1. DM-ARM overall architecture

subsequently via competitive Hebbian learning. The notations of the SOARIN
is tabulated in Table 1.

Initially, the network generates 2 recurrent neurons based on received sensory
inputs. Each neuron of the layer consists of a weight vector wj and a number K
of temporal attributes ekj . For subsequent learning, the network computes the
neuron that best matches with the current sensory x(t) using equation 1,2 and
3.

b = argmin(Tj), (1)

Tj = α0 ‖ x(t)− wj ‖2 +

K∑

k=1

αk ‖ Ek(t)− ej,k ‖2, (2)

Ek(t) = β · wb(t− 1) + (1− β) · eb,k−1(t− 1) (3)

Next, the activation value of the best matching neuron b is computed as follows:

ab(t) = exp(−Tb) (4)

If the activation value ab(t) less than a preset threshold aT . A new neuron N is
added to the network with the new weights as below:

wN = 0.5 · (x(t) + wb) (5)
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Table 1. The SOARIN notations

Notation Definition

k Number of temporal attribute
Tj Activation value of neuron j

wb(t− 1) Best matching neuron weights t− 1
Ek(t) Global attribute of the network at t, Ek(t = 0) = 0
ej,k(t) Temporal elements of neuron j

αi, β ∈ [0, 1] Contributing factors
rj Regularity counter of neuron j

τj , λ Decay factors for regularity counter
ρ Learning threshold

P(m,n) Temporal connection between neuron m and n
V Associative matrix for labeling
b Index of best matching neuron

ek,N = 0.5 · (Ek(t) + ek,b) (6)

A new connection is created to connect the neuron b and the second best match-
ing neuron. If the ab(t) larger than aT , it means that the neuron b can represents
the input x(t). Thus, the neuron b and its neighbor neurons n is updated ac-
cording to input x(t) as follows:

wj(new) = γj · rj · (x(t)− wj(old)) (7)

ej,k(new) = γj · rj · (Ek(t)− ej,k(old)) (8)

If there is no connection between best matching neuron ab(t) and second best
matching neuron, a new connection will be created to connect them. Each edge
has an age counter that increases by one at each iteration. The age of the connec-
tion between between best matching neuron and second best matching neuron
is reset to zero. Connections with an age larger than a preset threshold will be
removed, and neurons without connections are deleted from the network.

We introduce a self-update threshold that allows the threshold to adjust its
value adaptively in response to sensory input. The self-adjust equation as follows:

ρ(new) = (1− rb) · ab(t) + rb · ρ(old) (9)

The self-update equation adjusts the threshold value that closes to the best
matching neuron activation value. This means that the threshold value is chang-
ing dynamically. This is because the robot observes the environment sequentially,
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based on the nature of SOARIN learning, it is able to recognize the sequential
sensory data and lower the threshold allows the network to update itself with-
out adding new neurons. Thus, it helps to overcome the node proliferation is-
sue. However, the threshold is reset to the baseline if a mismatch occurs in the
network. The best matching neuron’s weight are feed forward to the episodic
memory layer as input vector.

2.2 Episodic Memory Layer

In episodic memory layer, the network learning is similar to WML with ad-
ditional conditions. First, in each iteration, the input of the network is WML
best matching neuron’s weight. Next, each episodic neuron contains a regular-
ity counter rj ∈ [0, 1] indicating its firing strength over time. Newly generated
episodic neuron has value of rj = 1. In each iteration, the regularity value of best
matching neuron and its neighbor neurons decrease using equation as follows:

∆rj = τj · λ · (1− rj)− τj (10)

In addition, a new episodic neuron will only be added to the network if aemb (t) <
ρema and remb < ρemr . Thus, the episodic network resets its threshold value and
sends a feedback signal back to WML to reset its threshold ρwm

a is send. If the
activation and regularity value are fulfilled the threshold, the episodic neurons
update using equation 7 and 8.

In episodic memory structure, a sequence of events forms an episode to store
specific past experiences and episodes are correlating to each other. We imple-
ment temporal connections that learn activation patterns of recurrent neurons
in the network.

The temporal connections encode the sequence of neurons that have been
activated during the learning stage. For each learning iteration, a temporal link
will be increased by 1 between two neurons that are sequentially stimulated.
Specifically, when best matching neuron b that triggered at time t and t − 1
subsequently, the temporal link between them is reinforced as follow:

P new
(b(t),b(t−1)) = P old

(b(t),b(t−1)) + 1, (11)

In this way, for each recurrent neuronm, the next neuron g can be retrieved from
the encoded temporal sequence by choosing the largest value of P as below:

g = argmaxP(m,n) (12)

where n are the neighbors of m. As a result, the activation sequence of recurrent
neurons can be restored without requiring any input data.

In order to generate meaningful sequential data for the playback purpose, we
utilize the spatiotemporal relationship of neurons that encoded in the episodic
memory layer. The sequential data playback can be generated in episodic mem-
ory layer for each episodic neuron whenever the network receives incoming sen-
sory data. For example, if the winner episodic neuron b is triggered by input
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data, we can determine the next temporal neuron by choosing the neuron that
has the largest activation value of P . A set of neurons playback with length
Ksm +Kem + 1 for each neuron j is computed as follows:

Uj = 〈wem
u(0), w

em
u(1), · · · , wem

u(Ks), 〉 (13)

u(i) = argmaxP(j,u(i−1)) (14)

where P (i, j) is the episodic temporal connection matrix and s(0) = j.

2.3 Semantic Memory layer

The semantic memory layer is hierarchically connecting with episodic memory
layer. It consists of an ar-GWR network which receives bottom-up inputs from
the episodic memory layer, top-down inputs such as labels or tags for developing
representations that contain semantic knowledge across a wider temporal scale.
The semantic knowledge can be retrieved by providing cues from the top-down
signals.

The neural activities mechanism in the semantic memory layer is similar to
the episodic memory layer with an additional condition for generating a new neu-
ron. In this layer, neuron learning happens if the network accurately predicts the
class label of a labeled input sequence from the episodic memory layer through
the learning process. A new neuron will be created if the predicted class label
from the network is incorrect. Thus, this is the additional factor that modulates
the neurons update rate. In addition, each semantic neuron encodes information
over higher temporal sequences than episodic neurons due to the hierarchical
learning of input data.

Episodic memory is formed by a sequence of activation events. In previous
work, authors only calculate the distance difference of the semantic best match-
ing neuron’s weight and bottom-up episodic inputs for semantic learning without
measuring the inter-relationship of events between them. The inter-relationship
of episode neurons is important for recognition and retrieval purpose. There-
fore, we introduce a new equation to measure the inter-relationship between the
best matching neuron’s weight and bottom-up inputs for improving the semantic
learning performance. Thus, Equation 1-3 becomes:

bs = argmin(T sm
j ), (15)
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T sm
j = α1 ‖ wem

b − wsm
j ‖2 +

K∑

k=1

αsm
k ‖ Esm

k (t)− esmk,j(t) ‖2 ·

exp

(
−
(
1−

wem
b · wsm

j

‖ wsm
j ‖ · ‖ wem

b ‖+

K∑

k=1

(
Esm

k (t) · esmk,j(t)
‖ esmk,j ‖ · ‖ Esm(t)

k ‖

)))
, (16)

Esm
k (t) = β · wsm

J−1 + (1− β) · esmk−1,J−1 (17)

With these equations, the selected neuron either is expected to be the correct
semantic neuron for the particular sequence of episodic inputs or it is more
notable than other semantic neurons or both.

The semantic memory layer receives input neural data from the episodic
memory layer which means the BMNs of the episodic memory layer with re-
spect to x(t). Hence, BMNs in this layer are calculated using equations 15-17.
Note that, the input is from bottom-up neural episodic weights, therefore x(t) is
substituted by wem

b for the network learning. The labeling method is similar to
episodic memory layer where each neuron in semantic memory layer is assigned
to a label that obtains from x(t) using equation 12 and ??.

As a result, a new semantic neuron is generated only if the BMN b does not
fulfill 3 conditions: 1) asmb (t) < ρa; 2); r

sm
b < ρr; and 3) BMN’s label ζsmb is

not identical with the data input’s label ζ (equation ??). Note that, this label
matching condition in semantic memory layer is not taken into account if the
data input is not labeled. If the winner semantic neuron b predicts the label ζb
that same with the class label ζ of input x(t), then the neuron learning process
is triggered with an additional learning factor ψ = 0.001. Therefore, Equation 7
and 8 become:

wsm
j(new) = ψ · γj · rj · (wem

b − wsm
j(old)), (18)

esmk(new) = ψ · γj · rj · (Esm
k (t)− esmk,j(old)) (19)

As such, the semantic memory layer learns more compact representations
with respect to data input labels. The data labels control the layer stability
and plasticity where new semantic neurons are generated only if the network is
unable to predict the correct class label of data input. In addition, the network
learning rate of bottom-up measurements is decreasing if the class prediction is
correct. Since semantic neurons learn from episodic neurons’ weight, it means
that each semantic neuron encodes episodic events in a larger temporal size.
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Fig. 2. (a) Robot attached with various sensors (b) Visual SLAM with surf features

Since episodic neurons will activate for a number Kem + 1 of incoming data,
whereas each of semantic neurons will activate for a number Ksm+1 of neurons
activated in episodic memory layer. Therefore, the total input size that encoded
in semantic neurons is Ksm +Kem + 1.

3 Experimental Setup & Results

We validate our proposed method using a iRobot Roomba robot that attached
with a Hokuyo Laser scanner, Intel RealSense stereo camera, and Intel i5 pro-
cessor computer as shown in Figure 2. The laser scanner signal was sampled at
10 Hz. Since the robot has to traverse the environment autonomously, we de-
veloped a Fuzzy motion movement behavior that allows the robot for obstacle
avoiding and wall-following. The moving speed of the robot varies from 0.05m/s
to 0.5m/s. The episodic memory layer receives a surf features vector with a tem-
poral resolution of 3 scans (Kem = 2). As mentioned in section 2.3, the semantic
memory layer will encode for a total of 5 scans in the experiment. For the se-
mantic topological map building, classification and retrieval, we determine the
predicted label of a new input data using the Equation 15 from semantic layer’s
best matching neuron. A place label is predicted for each incoming sensory in-
formation.

The experiments were conducted in the 7th floor of university corridor, study
area, and rest area that connecting with each other. The grid map of the ex-
perimental place as shown in Figure 3(a). We conduct the experiment in such
environmental conditions is to validate our proposed method is able to work in
natural environment with moderate changing of environmental conditions.

We commanded the robot to traverse the experimental place starting from
the study area and travel to the rest area through the corridor then back to the
start point again. During the traverse, DM-ARM continually learns incoming
sensory information and generates the semantic map for representing the envi-
ronment. After each traverse, the robot will go for charging and then memory

ICIRA2019, 463, v3 (final): ’Navigate to Remember: A Declarative Memory Model for . . . 9



10 Wei Hong Chin et al.

Fig. 3. (a) Experimental environment (b) Built Semantic Map

replay is triggered for semantic map memory consolidation. Once the robot is
fully charged, memory replay is deactivated and the robot starts traversing and
continuously learns and updates the semantic map again. For space labeling, we
developed a speech-to-text iOS application to obtain the space labels for labeling
the semantic map. As shown in Figure 3, the semantic map is segmented into
2 regions, the study area is colored in black and the corridor is colored in blue
respectively.

After the first traverse, with the semantic information, the robot navigates
the environment with different moving behaviors according to the region. For
example, the robot is switched to obstacle avoidance mode in the study area
where the place populated with moving people and furniture. When it traversed
to the corridor, the moving behavior is then switched to the wall following mode
and fast-speed mode since the corridor is a straight path.

We repeated the experiment for ten times and the generated spatial map
quality was measured by Total Quantization Error (TQE) and localization rate.
Figure 4 illustrates the total number of neurons in the map that generated by
SOARIN and [11] for each traverse. TQE measures the similarity between sen-
sory information and weights of episodic neurons in the spatial map. Figure 5
shows the TQE of the learning approach for each traverse. Next, the localization
rate is measured by computing the euclidean distance between the winner neu-
ron’s encoded location and robot current location that obtained from the SLAM
algorithm. The robot is localized successfully if the euclidean radius is within a
threshold value (0.01m).The localization rate result is shown in Figure 6. Results
showed that the proposed method able to generate a semantic topological map
that can be used for path planning and robot moving behavior switching.

4 Conclusion

In this paper, we proposed a model termed as DM-ARM that models human
declarative memory which can continually learn the spatiotemporal relationship
of sensory data from both active sensors and proprioceptive indications to gen-
erate a semantic map incrementally. DM-ARM updates the semantic map by ex-
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Fig. 4. Total number of generated neurons for each traverse

Fig. 5. Total Quantization Error of the learning method for each traverse

panding or shrinking its memory structure autonomously. In addition, DM-ARM
consolidates the episodic semantic map through its self episodic memory play-
back without the needs of external sensory cues. DM-ARM has been validated
through real robot implementation. In the future, we will integrate DM-ARM
with path planning algorithm to utilize the topological structure of the spatial
map for goal-directed navigation. Lastly, we will further improve and validate
the performance of DM-ARM in more challenging and larger environments.
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