
MODULI SPACES OF SHEAVES ON K3 SURFACES AND GALOIS

REPRESENTATIONS

by

SARAH FREI

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Oregon Scholars' Bank

https://core.ac.uk/display/228162252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DISSERTATION APPROVAL PAGE

Student: Sarah Frei

Title: Moduli Spaces of Sheaves on K3 Surfaces and Galois Representations

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Nicolas Addington Chair
Ellen Eischen Member
Alexander Polishchuk Member
Nicholas Proudfoot Member
Roy Chan Institutional Representative

and

Janet Woodruff-Borden Vice Provost and Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2019

ii



c© 2019 Sarah Frei

iii



DISSERTATION ABSTRACT

Sarah Frei

Doctor of Philosophy

Department of Mathematics

June 2019

Title: Moduli Spaces of Sheaves on K3 Surfaces and Galois Representations

We consider two K3 surfaces defined over an arbitrary field, together with a

smooth proper moduli space of stable sheaves on each. When the moduli spaces

have the same dimension, we prove that if the étale cohomology groups with Q`

coefficients of the two surfaces are isomorphic as Galois representations, then the

same is true of the two moduli spaces. In particular, if the field of definition is

finite and the K3 surfaces have equal zeta functions, then so do the moduli spaces,

even when the moduli spaces are not birational. This generalizes works of Mukai,

O’Grady, and Markman, who have studied these moduli spaces of sheaves defined

over the complex numbers.
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CHAPTER I

INTRODUCTION

1.1. Overview

Given a K3 surface S defined over an arbitrary field k, we can study moduli

spaces M of stable sheaves on S with fixed Chern classes. Under mild conditions

on the Chern classes, each such moduli space is a smooth, projective, geometrically

irreducible variety with a natural symplectic structure. The best-studied example

of such a moduli space is the Hilbert scheme of points, S[n], parameterizing zero-

dimensional subschemes of length n in S. These spaces have been well-studied

over C because they are one of the few known families of compact hyperkähler

manifolds. It is a well-known result due to Huybrechts [26], O’Grady [47] and

Yoshioka [60], recently summarized in [51], that when k = C such a moduli

space M is actually deformation equivalent to S[n] for n = 1
2

dimM . This result

was recently generalized to arbitrary fields by Charles in his proof of the Tate

conjecture for K3 surfaces over finite fields [5]. However, these moduli spaces are

typically not birational to the Hilbert scheme.

For a projective variety X defined over a finite field, let Z(X, t) denote the

zeta function of X. We prove here that the zeta function of a moduli space of

sheaves M is determined by the zeta function of S.

Theorem 1. Let S1 and S2 be K3 surfaces defined over a finite field such that

Z(S1, t) = Z(S2, t). Let M1 and M2 be smooth proper moduli spaces of stable

sheaves on S1 and S2, respectively, with dimM1 = dimM2. Then Z(M1, t) =

Z(M2, t).
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Since any two such moduli spaces need not be birational, the equality in

Theorem 1 is surprising. In particular, there need not be a geometric map between

the moduli spaces that realizes this equality in point-counts over finite fields.

Consider the case where S1 = S2. When the moduli space M is fine

and two-dimensional, M is a K3 surface derived equivalent to the original K3

surface. In this case, our result about zeta functions for two moduli spaces on a

fixed K3 surface was already proved by Lieblich and Olsson [36, Thm. 1.2] and

independently by Huybrechts [28, Prop. 16.4.6]. We extend their result to also hold

when M is not a fine moduli space. Their work was also generalized by Honigs

[22] to hold for any derived equivalent surfaces. In higher dimensions, it is an open

question whether any two moduli spaces corresponding to a given K3 surface, under

possible conditions on Chern classes, are derived equivalent once their dimensions

coincide. If we speculate for a moment that they are [28, Ch. 10 Questions and

open problems], then our result is consistent with Orlov’s conjecture that derived

equivalent smooth, projective varieties have isomorphic motives with rational

coefficients [50, Conj. 1]. In particular, this conjecture would imply that derived

equivalent smooth, projective varieties over a finite field have equal zeta functions.

On the other hand, if we suppose instead that there are two such moduli spaces of

the same dimension which are not derived equivalent, our result suggests that for

this family of varieties, the zeta function is a very coarse invariant.

By the Lefschetz trace formula, the zeta function is determined by the action

of the Frobenius endomorphism on the cohomology ring. Thus we will deduce

Theorem 1 from the following more general statement. Let ` be a prime different

from the characteristic of k, and for any of the varieties X below, let X = X ×k k

where k is the algebraic closure of k.

2



Theorem 2. Let S1 and S2 be K3 surfaces defined over an arbitrary field k such

that H2
ét(S1,Q`) ∼= H2

ét(S2,Q`) as Gal(k/k)-representations. Additionally, let M1

and M2 be smooth proper moduli spaces of stable sheaves on S1 and S2, respectively,

with dimM1 = dimM2. Then for all i ≥ 0, H i
ét(M1,Q`) ∼= H i

ét(M2,Q`) as

Gal(k/k)-representations.

We remark that when the moduli spaces are fine, the isomorphism

H2
ét(M1,Q`) ∼= H2

ét(M2,Q`) follows almost immediately from the work of Charles

[5], who built off of work done by O’Grady [47] over the complex numbers. We

extend their result to non-fine moduli spaces, and then the bulk of the work

required to prove Theorem 2 is to construct the Galois-equivariant isomorphisms

for the higher cohomology groups. This new work comprises the majority of this

dissertation.

1.2. Future Work

The study of moduli spaces of sheaves on K3 surfaces fits into a broader

framework, which is the study of irreducible symplectic varieties over arbitrary

fields: smooth projective varieties with trivial étale fundamental group for which

there is a non-degenerate 2-form spanning H0(X,Ω2
X/k). Over the complex

numbers, these varieties are compact hyperkähler manifolds and have been studied

extensively. They became objects of interest when the Beauville-Bogomolov

Decomposition Theorem was proved in 1983, establishing that every compact

Kähler variety with trivial first Chern class is, up to a finite cover, a product of

abelian varieties, Calabi-Yau varieties, and hyperkähler varieties [2]. They were

recently used in a profound way by Charles in his proof of the Tate conjecture for
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K3 surfaces over finite fields [5], and have only recently begun to be studied more

generally in positive characteristic [11].

Irreducible symplectic varieties are higher-dimensional generalizations of K3

surfaces. These surfaces have many properties analogous to elliptic curves and

have been a popular object of research since the 1950s [28]. In dimension two,

all irreducible symplectic varieties are K3 surfaces. In higher dimensions, despite

being well-studied there are only a few known examples, every one of which is

deformation equivalent to one of the following: a moduli space of stable sheaves

on a K3 surface, a generalized Kummer variety, or one of two sporadic examples in

dimensions six and ten ([48], [49]). For the higher-dimensional examples, much is

still unknown about their arithmetic properties.

Here we discuss some projects and conjectures about irreducible symplectic

varieties which are natural extensions of the main results above.

1.2.1. Generalized Kummer varieties

It is natural to ask whether or not the Theorem 2 also holds for the other

known family of irreducible symplectic varieties: generalized Kummer varieties. For

the Hilbert scheme A[n+1] where A is an abelian surface, we can consider the map

sn+1 : A[n+1] → A

Z 7→
∑
p∈A

`(OZ,p)p.

The generalized Kummer variety is K [n](A) := s−1
n+1(p) for any rational point

p in A. It is a 2n-dimensional irreducible symplectic variety that has been well-
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studied over the complex numbers, and was only recently considered in positive

characteristic in [11].

Conjecture 1.2.2. Let A1 and A2 be abelian surfaces defined over an

arbitrary field k such that H2
ét(A1,Q`) ∼= H2

ét(A2,Q`) as Gal(k/k)-

representations. Additionally, let K [n](A1) and K [n](A2) be smooth generalized

Kummer varieties on A1 and A2, respectively. Show that for all i ≥ 0,

H i
ét(K

[n](A1),Q`) ∼= H i
ét(K

[n](A2),Q`) as Gal(k/k)-representations.

Yoshioka shows in [60] that for a moduli space of sheaves on an abelian

surface, M(v) with dimM(v) ≥ 6, a fiber K(v) of the albanese map av : M(v) →

A×Â, where Â is the dual abelian surface, is deformation equivalent to K [v2/2−1](A)

and is also an irreducible symplectic variety. Thus by studying moduli spaces of

sheaves on abelian surfaces, we hope to gain insight into the arithmetic properties

of generalized Kummer varieties.

In particular, Theorem 2 should hold for moduli spaces of sheaves on

abelian surfaces under mild constrants on the Mukai vector. Since de Cataldo and

Migliorini’s work [6] holds for any smooth algebraic surface, we can again reduce to

the case of a single abelian surface A and a geometrically primitive Mukai vector

v. Work of Honigs, Lombardi, and Tirabassi can be easily modified to identify

when the moduli space M = M(v) is a smooth projective variety [24, Thm. 2.10].

Additionally, it would be interesting to generalize Markman’s most recent work [41,

Sec. 8], which uses an isometry of the Mukai lattice to construct a ring isomorphism

between the cohomologies of two moduli spaces of sheaves on a complex abelian

surface.

The cohomology of K [n](A) is much richer than the cohomology of the moduli

space of sheaves on A. It not only depends on the cohomology of A, but also on
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A[n], the n+ 1-torsion points of A. For example, Hassett and Tschinkel show in [19,

Prop. 4.1] that for X a smooth projective complex variety deformation equivalent

to K [2](A), the Lie algebra so(4, 5) acts on H∗(X), giving the decomposition

H∗(X) = Sym((H2(X))⊕ 180
X ⊕ (H3(X)⊕H5(X)).

In the case where X = K [2](A), they construct 81 distinguished rational surfaces

in X whose classes in H∗(X) span an 81-dimensional subspace containing the

summand 180
X . These surfaces correspond bijectively to the 81 points in A[3]. We

expect that over non-algebraically closed fields (of any characteristic), the Galois

group does not act trivially on this 80-dimensional subspace of H∗(X) but rather

permutes the classes of the surfaces according to the Galois action on A[3].

1.2.3. Chow motives of moduli spaces

The theory of motives was first introduced by Grothendieck in the 1960’s in

an attempt to unify various cohomology theories for smooth projective varieties.

It would be interesting, especially in light of Orlov’s conjecture [50, Conj. 1],

to better understand the motives of moduli spaces of sheaves on K3 surfaces.

There is a growing collection of closely related work in this direction. In 2017,

Huybrechts showed in [29] and [30] that isogeneous and derived equivalent K3

surfaces have isomorphic Chow motives. Recently, Bülles showed that the Chow

motive of a moduli space of sheaves on a complex projective K3 or abelian surface

is a direct summand of motives of various powers of the surface [4]. The Chow rings

of irreducible symplectic varieties have similarly been widely studied in the last
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decade (see, for example, [59], [52], [58]) and continue to be a subject of interest to

many algebraic geometers.

The objects of the category of Chow motives Mot(k) are smooth projective

varieties over the field k along with some extra data. Roughly speaking, morphisms

between objects X and Y are given by elements of the Chow ring CH∗(X × Y )Q.

The Chow motive of a smooth projective variety X is denoted h(X). Isomorphic

Chow motives immediately implies isomorphic rational Chow groups, but not

necessarily rational Chow rings. If an isomorphism of Chow rings is given by an

invertible class in CH∗(X × Y ), then such a class also induces an isomorphism of

Chow motives.

For each prime ` 6= char k, there is a functor from the category Mot(k) to the

category of Gal(k/k)-representations over Q` which sends h(X) to H∗ét(X,Q`), and

from this it follows that two varieties with isomorphic Chow motives automatically

have isomorphic étale cohomology groups as Galois representations. It would be

a notable strengthening of Theorem 2 to show that the isomorphism of Galois

representations actually comes from an isomorphism of motives.

Conjecture 1.2.4. Let S1 and S2 be K3 surfaces defined over an arbitrary field

k such that h(S1) ∼= h(S2), and let M1 and M2 be smooth proper moduli spaces of

stable sheaves on S1 and S2, respectively, with dimM1 = dimM2. Then h(M1) ∼=

h(M2).

One way to approach this question is to apply the strategies used in the

proof of Theorem 2 described in Chapter III. Immediately, [6, Thm. 6.2.4] implies

h(S
[n]
1 ) ∼= h(S

[n]
2 ), so we can again consider the case of a single K3 surface S and

compare h(S[n]) to h(M) for M a smooth projective moduli space of sheaves on S

of dimension 2n.

7



In Section 3.7 we will make use of a cohomology class constructed by

Markman [40, Sec. 3.4] which induces a ring isomorphism on cohomology rings.

This class is the middle Chern class of a class from K-theory, and can be considered

as an element of CH2n(M × S[n]). An approach to proving Conjecture 1.2.4 is to

show that this class induces an isomorphism of Chow rings. Since the isomorphism

is given by a correspondence, it would imply that the motives are isomorphic.

Even over the complex numbers, this would be an interesting new result. Over C,

CH∗(M1) ∼= CH∗(M2) when M1 and M2 are birational [52, Thm. 3.2], so solving

Conjecture 1.2.4 in this way would be a strengthening of that result.

1.2.5. The Beauville-Bogomolov form

Let X be a compact complex hyperkähler manifold of dimension n and let

σ ∈ H0(X,Ω2
X) be such that

∫
X

(σσ̄)n = 1. Using the Hodge decomposition, any

α ∈ H2(X,C) can be written α = λσ + β + µσ̄ with β ∈ H1,1(X), and then the

Beauville-Bogomolov form qX : H2(X,C)→ C is defined by

qX(α) = λµ+
n

2

∫
X

β2(σσ̄)n−1.

We will discuss this form in further detail in Section 2.7, and it will arise a

number of times as a tool for studying the moduli spaces of sheaves on K3 surfaces.

Beauville [2] and Fujiki [12] prove that there is a positive constant cX ∈ R such

that cXqX is a primitive integral quadratic form on H2(X,Z).

This construction depends heavily on working over the complex numbers.

However, in [5, Thm. 2.4] and [11, Prop. 4.5, Prop. 7.1], it is shown that there is a

canonical quadratic form on `-adic and crystalline cohomology satisfying the same
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defining property as the original form. Thus for arbitrary irreducible symplectic

varieties, we expect that the associated quadratic form has similar properties to

that in the complex setting. For example, we would like to be able to use it to tell

when these varieties are birational.

Conjecture 1.2.6. The Beauville-Bogomolov form for irreducible symplectic

varieties defined over arbitrary fields is a birational invariant.

In particular, we give an example in Section 4.1 where we have found two

moduli spaces of sheaves on a K3 surface which, assuming this conjecture is true,

are not birational.

This fact is well known over the complex numbers [26, Lem. 2.6], but the

tools used to prove it do not easily generalize to the arbitrary setting. First,

the original definition of the Beauville-Bogomolov form relies on the Hodge

decomposition and no longer makes sense over an arbitrary field. Additionally,

given X and X ′ two birational compact hyperkähler varieties, if we let Z ⊂ X ×X ′

be the closure of the graph of the birational morphism, then Huybrechts studies

the quadratic forms induced by qX and qX′ on Z̃, where Z̃ → Z is a resolution of

singularities. The question of how to resolve singularities in positive characteristic

is still open, so Huybrechts’ methods cannot be applied directly.

1.3. Outline

In Chapter II, we review the key objects and tools used in this dissertation.

This includes K3 surfaces, moduli spaces of sheaves, zeta functions of schemes,

and Galois representations. A number of examples are given and results are stated

that will be used in later chapters. In Chapter III, we carry out a careful study of

the moduli spaces of sheaves on K3 surfaces and prove the main results stated in

9



the introduction. In Chapter IV, we give more examples and computations to give

additional context to the results.
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CHAPTER II

BACKGROUND

In this chapter, we survey the main objects and tools used throughout this

dissertation. In Section 2.1, we define and give examples of K3 surfaces and discuss

a number of their invariants and properties. In Section 2.2, we introduce the notion

of stability of sheaves. In Section 2.3 we discuss how to construct the moduli space

of stable sheaves and provide some results about such moduli spaces on K3 surfaces

and over non-algebraically closed fields. In Section 2.4, the zeta function is defined

and the Weil conjectures are given. In Section 2.5, we show how to generalize

questions about the zeta function to questions about the induced action of the

Galois group on cohomology. In Section 2.6, we introduce the notion of a Fourier-

Mukai transform and the map it induces on cohomology. In Section 2.7, we give

another definition of the Beauville-Bogomolov form. Finally, in Section 2.8, a

discussion on the Borel Density Theorem is provided in the context in which it

will be used to prove Theorem 2.

2.1. K3 surfaces

The reference for this section is [28]. An algebraic K3 surface is a complete

non-singular variety S of dimension two over a field k such that ωS ∼= OS and

H1(S,OS) = 0. By a variety over k we mean a separated, geometrically integral

scheme of finite type over k.

The name for these surfaces was coined by André Weil, who named them in

honor of geometers Kummer, Kähler, and Kodaira, as well as the mountain K2. K3

surfaces can be thought of as a generalization of elliptic curves to dimension two,
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since an elliptic curve also has a trivial canonical bundle. This class of surfaces

has a number of interesting properties, so while K3 surfaces have been studied

since the 1950s, they continue to be actively researched today. For example, the

Kodaira dimension of the variety is one invariant which dictates the complexity of

the geometry of that variety, where varieties with low (but non-negative) Kodaira

dimension are special and often have interesting arithmetic properties. On the

other hand, in some sense most varieties have maximal Kodaira dimension and

are too general, and don’t have enough defining characteristics, to be studied.

For example, genus 0 curves, which have Kodaira dimension −∞, are all rational

and are well-understood. Curves of genus greater than 1, on the other hand, have

Kodaira dimension 1, and are known to always have finitely many rational points.

Curves of genus 1, which have Kodaira dimension 0, have a number of interesting

behaviors, the best example being that the set of rational points forms a finitely-

generated abelian group.

For surfaces, the Kodaira dimension is either −∞, 0, 1 or 2. Surfaces of

Kodaira dimension −∞ are either rational or ruled. K3 surfaces, along with

abelian surfaces, bi-elliptic surfaces, and Enriques surfaces, have Kodaira dimension

0. This means K3 surfaces are accessible but still challenging to understand.

Arithmetically, there are open questions about the distribution of rational points

and the structure of the Brauer group, which in many ways is similar to the torsion

subgroup of the group of rational points on an elliptic curve [54].

Another reason K3 surfaces are of interest to algebraic and complex geometers

is because when defined over C and considered as complex manifolds, they are the

first example of a hyperkähler manifold, or an irreducible holomorphic sympectic

manifold. These are simply-connected compact Kähler manifolds X such that
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H0(X,Ω2) = Cω for some nondegenerate 2-form ω. An integral, nondegenerate

quadratic form exists on H2(X,Z) which agrees with the intersection form in

the case of K3 surfaces. As previously mentioned, by the Beauville-Bogomolov

Decomposition Theorem every compact Kähler manifold with trivial first Chern

class is, up to a finite cover, a product of complex tori, Calabi-Yau manifolds,

and hyperkähler manifolds [2]. A summary of what is understood and what is still

unknown in the study of hyperkähler manifolds can be found in [7].

Example 2.1.1. Let S be a smooth degree 4 hypersurface in P3, so that S is cut

out by a section of OP3(4). This is a smooth complete 2-dimensional variety over k.

Let i : S ↪→ P3 be the inclusion. We use the adjunction formula to see that

ωS ∼= i∗(ωP3 ⊗OP3(4)) = i∗(OP3) = OS .

Then we use the short exact sequence

0→ OP3(−4)→ OP3 → OS → 0,

which induces the long exact sequence

· · · → H1(OP3(−4))→ H1(OP3)→ H1(OS)→ H2(OP3(−4))→ · · ·

We know that H1(OP3) = H2(OP3(−4)) = 0, which implies H1(OS) = 0.

Example 2.1.2. Another example of a construction of a K3 surface is as a double

covering π : S → P2 branched over a smooth curve C ⊂ P2 of degree six. Let C be
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cut out by a section s ∈ Γ(P2,OP2(6)). The canonical bundles are related by

ωS = π∗(ωP2 ⊗OP2(3)) = π∗(OP2(−3)⊗OP2(3)),

which shows that ωS = OS. We claim that π∗OS = OP2 ⊕OP2(−3), which shows

H1(S,OS) = H1(P2, π∗OS) = 0. For the claim, consider L := TotOP2(3) and

π : L → P2. The bundle π∗OP2(3) has a tautological section y ∈ Γ(L, π∗OP2(3)),

and S ⊂ L is cut out by y2 − s ∈ Γ(L, π∗OP2(6)). Applying π∗ to the short exact

sequence

0→ π∗OP2(−6)→ OL → OS → 0

gives π∗OS = coker(π∗OP2(−6)→ OL) = OP2 ⊕OP2(−3), since

π∗π
∗OP2(−6) = OP2(−6)⊕OP2(−9)⊕OP2(−12)⊕ · · · ,

and

π∗OL = OP2 ⊕OP2(−3)⊕OP2(−6)⊕OP2(−9)⊕ · · · .

We will give an explicit example of a K3 surface arising in this way in

Example 2.2.7.

We will often consider a K3 surface S along with a fixed isomorphism class

of ample line bundles on S, called a polarization H ∈ Pic(S). The degree of a

polarized K3 surface is equal to H2. K3 surfaces of the form given in Example 2.1.1

are of degree four, and those of the form given in Example 2.1.2 are of degree two.

The degree is always even because the intersection form on a K3 surface is even.

The recent survey article [7, Sec. 2.3] by Debarre gives a full list of descriptions of

polarized K3 surfaces of degree up to 24, plus degrees 30, 34, and 38.
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Let us compute the Hodge diamond of a K3 surface S defined over C, which

will allow us along the way to compute a number of invariants for K3 surfaces.

Since S is a complete surface, it is automatically projective, which makes it a

Kähler manifold. Since S is complex and compact, we know h0,0 = 1. By definition,

we have H1(S,OS) = 0, so h0,1 = h1,0 = 0. We also know by definition and Serre

duality that

H2(S,OS) ∼= H0(S, ωS)∗ = H0(S,OS)∗.

Thus h0,2 = h2,0 = 1. This allows us to see that

χ(OS) =
2∑
i=0

(−1)ihi(S,OS) = 1− 0 + 1 = 2.

Now by symmetry of the Hodge diamond, it remains to determine h1,1. We

have c1(S) = c1(TS) = −c1(ΩS) = −c1(ωS) = 0, and we claim that c2(S) = 24. The

Hirzebruch-Riemann-Roch Theorem gives

2 = χ(OS) =

∫
S

ch(OS)td(S) = td2(S).

Thus 2 = 1
12

(c1(S)2 + c2(S)) and c2(S) = 24. Now we use the Hirzebruch-Riemann-

Roch Theorem again and compute

χ(ΩS) =

∫
S

ch(ΩS)td(S) = rkΩS · td2(S) + ch2ΩS = 4− 24 = −20.

The second-to-last equality comes from the fact that c1(ΩS) = c1(ωS) = 0 and

c2(ΩS) = c2(TS) = 24, and ch2(ΩS) = 1
2
(c1(ΩS)2 − 2c2(ΩS)) = −24. This means

−20 = χ(ΩS) = h1,0 − h1,1 + h1,2 = −h1,1.
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Therefore, h1,1 = 20 and the Hodge diamond is:

1

0 0

1 20 1

0 0

1

More generally, this allows us to compute the singular cohomology of the

underlying topological space. Since every (complex) K3 surface is simply connected

[28, Cor. 7.1.4], we get that H1(S,Z) = 0 and H2(S,Z) is torsion-free. By Poincare

duality, we know H3(S,Z) = 0. Thus,

H i(S,Z) =



Z i = 4

0 i = 3

Z22 i = 2

0 i = 1

Z i = 0

.

2.2. Stable sheaves

The material in this section can be found in more detail in [31]. Let F be a

torsion-free coherent sheaf on a projective scheme X, dimX = n, with an ample

line bundle H.
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Definition 2.2.1. The slope of the sheaf F is

µ(F) =
degF
rkF

,

where the degree of the sheaf F is degF = c1(F).Hn−1. The sheaf F is slope stable

or µ-stable if for all subsheaves G ⊂ F with 0 < rkG < rkF one has

µ(G) < µ(F).

We say F is µ-semistable if µ(G) ≤ µ(F).

Let X be an arbitrary projective scheme with an ample line bundle H. Let F

be a sheaf on X, and note that we no longer require it to be torsion-free. Then the

Hilbert polynomial of F is

P (F , t) = χ(F(tH)) =
d∑
i=1

αd(F)
mi

i!
,

where d is the dimension of the support of F .

Definition 2.2.2. The reduced Hilbert polynomial of a sheaf F is

p(F , t) =
P (F , t)
αd(F)

.

A coherent sheaf F of dimension d is called pure if dim(F) = dim(G) for every

non-trivial subsheaf G ⊂ F .

Definition 2.2.3. A coherent sheaf F is called stable if F is pure and

p(G, t) < p(F , t), t� 0

17



for every proper non-trivial subsheaf G ⊂ F . A sheaf is called semistable if the

strict inequality is replaced with ≤.

Proposition 2.2.4. We have that µ-stable implies stable implies semistable implies

µ-semistable.

Proof. We consider the reduced Hilbert polynomial of a sheaf on a smooth integral

scheme X of dimension n. We know

χ(F) =

∫
X

ch(F)td(X),

with ch(F) = rkF +c1(F) + 1
2
(c1(F)2 − 2c2(F)) + ... and ch(O(t)) = 1 + tH +

1
2
t2H2 + .... Since we also know that td(X) = 1 + 1

2
c1(X) + 1

12
(c1(X)2 + c2(X)) + ...,

we can put all of this together to see that

χ(F(t)) = rkF · degX
tn

n!
+

(
rkF ·H

n−1.c1(X)

2
+Hn−1.c1(F)

)
tn−1

(n− 1)!
+.....+χ(F).

Note that degX = Hn and degF = Hn−1.c1(F). Thus, for the reduced Hilbert

polynomial, we divide by rkF degX to get

pF(t) =
tn

n!
+

1

degX

(
Hn−1.c1(X)

2
+

degF
rkF

)
tn−1

(n− 1)!
+ ....

Observe that the coefficient on tn−1 in pF(t) is µ(F) plus some additional

topological data about X. This means the function sending µ(F) to Hn−1.c1(X)
2

+

µ(F) is an increasing linear function. Thus being µ-stable immediately implies

being stable, which also immediately implies being semistable. Again using the fact

that µ(F) 7→ Hn−1.c1(X)
2

+ µ(F) is a linear function, it follows that being semistable

implies µ-semistability.
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Example 2.2.5. Rank 1 torsion-free sheaves are stable because they have

no saturated subsheaves. That is, it is enough to check stability on saturated

subsheaves, and there aren’t any, so the sheaf is vacuously stable. In particular,

any line bundle is stable.

Proposition 2.2.6. Let F be a semistable sheaf of positive rank on a K3 surface X

with polarization H. Suppose gcd(rkF , c1(F).H) = 1. Then F is µ-stable.

Proof. Since F is semistable, it is µ-semistable, and to prove stability, it is enough

to prove µ-stability. Let G be any torsion-free subsheaf G ( F . We can assume that

G is saturated, because if it weren’t, we would have

0→ G → F π−→ F /G → 0,

and we can consider G ⊂ G ′ := π−1(T ) ⊂ F where T is the torsion subsheaf of

F /G. We note that G and G ′ are sheaves of the same rank, since F /G and F /G ′

differ only by torsion and are hence the same rank. We claim that deg G ≤ deg G ′,

which means µ(G) ≤ µ(G ′). To see this, we take the top wedge power of the line

bundles, so we have detG ↪→ detG ′, and then we take the double dual to get a map

of line bundles. If we are on a curve, this map gives a section of detG ′⊗(detG)∗,

which means the degree of this line bundle is non-negative. Then in general, we

know that the degree of detG ′⊗(detG)∗ is equal to its degree when restricted to

a hyperplane section, giving the result. So we may suppose G is saturated, and we

will show that µ(G) 6= µ(F). Since G is saturated, F /G is torsion free, and since

G 6= F , this means rkG < rkF . Suppose for the sake of a contradiction that

µ(G) = µ(F), so

c1(G).H

rkG
=
c1(F).H

rkF
,
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and hence

c1(G).HrkF = c1(F).HrkG.

By assumption, rkF does not divide c1(F).H, so rkF must divide rkG. But this is

also impossible since rkG < rkF . Thus we have reached a contradiction and can

conclude that F is stable.

Example 2.2.7. Here we give an explicit example of a geometrically stable sheaf

on a K3 surface (where the definition of geometrically stable is given in Definition

2.3.14). Moreover, we will give a family of polarizations for which the stability of

the given sheaf changes throughout the family.

The K3 surface: Let X be the K3 surface over F3 cut out by

w2 =2y2(x2 + 2xy + 2y2)2 + (2x+ z)(x5 + x4y + x3yz + x2y3 + x2y2z + 2x2z3

+ xy4 + 2xy3z + xy2z2 + y5 + 2y4z + 2y3z2 + 2z5)

in P(3, 1, 1, 1) which is the reduction modulo 3 of a K3 surface defined over Q in

[20, Section 5]. This K3 surface is a double cover of P2, as described in Example

2.1.2. The branch curve in P2 has a tritangent line (a line which is tangent to the

sextic above in three points) given by 2x + z = 0. Let C be the preimage of this

line in X, so C is defined over F3. We see that over F9, C splits as two copies of P1,

we’ll call them C1 and C2, intersecting in 3 points. Let H be the pullback of OP2(1)

on X, so that H = C1 +C2. We will describe a sheaf L on X for which the stability

of L with respect to H ′ = H + εC1 changes as we vary ε.

The sheaf: Let L be a degree 3 line bundle on C such that degL |C1 = 0 and

degL |C2 = 3. By abuse of notation, we will also use L to denote the pushforward

of L to X. We will see later that there is a P2’s worth of such line bundles. Since
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L is degree 3 and C has arithmetic genus 2, χ(L) = d + 1 − g = 2. To see

that the genus of C is 2, we compute the genus of a smooth fiber Y ∈ |H| using

the Riemann-Hurwitz formula: a generic P1 in P2 intersects the branch locus in 6

points, and so the fiber Y in X satisfies

2g(Y )− 2 = 2(−2) + 6.

Now, we have L |C1 = OC1 and L |C2 = OC2(3). We will frequently make use of the

sequence

0→ OC2 → L → OC1 → 0.

This sequence comes from the sequence

0→ IC1/C1∪C2 → OC → OC1 → 0,

and IC1/C1∪C2
∼= IC1∩C2/C2

∼= OC2(−3), tensored with L.

Computing reduced Hilbert polynomials: Let us first compute the

Hilbert polynomials of these sheaves with respect to H ′ = H + εC1. We will do

this by computing the Mukai vectors (where Mukai vectors are defined in 2.3.6),

since the third coordinate of the vector will be the Euler characteristic. We have

v(L) = (rkL, c1(L), χ(L)) = (0, H, 2) and v(OC1) = v(OC2) = (0, C1, 1). Then:

v(L(tH ′)) = (0, H, 2)(1, tH ′,
1

2
t2H ′2) = (0, H, tH.H ′ + 2) = (0, H, (2 + ε)t+ 2),

since H.H ′ = H.(H + εC1) = 2 + εH.C1 = 2 + ε. Similarly,

v(OC1(tH ′)) = (0, C1, 1)(1, tH ′,
1

2
t2H ′2) = (0, C1, tC1.H

′ + 1) = (0, C1, (1− 2ε)t+ 1),
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since C1.H
′ = C1.(H + εC1) = 1 + C2

1 = 1 − 2ε. Recall that C2
1 = C2

2 = −2 for the

following reason: each is a P1 ⊂ X a K3 surface, and by the adjunction formula,

ωCi
∼= (ωX ⊗O(Ci))|Ci

= O(Ci)|Ci
,

so taking degree on both sides gives 2gCi
− 2 = C2

i .

Lastly,

v(OC2(tH ′)) = (0, C2, 1)(1, tH ′,
1

2
t2H ′2) = (0, C2, tC2.H

′ + 1) = (0, C2, (1 + 3ε)t+ 1),

since C2.H
′ = C2.(H + εC1) = 1 + εC1.C2 = 1 + 3ε.

Therefore, we see that

P (L, t) = (2 + ε)t+ 2,

P (OC1 , t) = (1− 2ε)t+ 1,

P (OC2 , t) = (1 + 3ε)t+ 1.

Then we get the following for reduced Hilbert polynomials:

p(L) = t+
2

2 + ε
,

p(OC1) = t+
1

1− 2ε
,

p(OC2) = t+
1

1 + 3ε
.

22



The cases for stability: We can see that for −1

3
< ε < 0, p(OC2) > p(L) >

p(OC1). Thus, via the sequence

0→ OC2 → L → OC1 → 0,

we have found a destabilizing subsheaf of L (equivalently, a destabilizing quotient

sheaf).

When ε = 0, we have p(OC2) = p(L) = p(OC1). Since OC1 and OC2 are both

semistable and have the same reduced Hilbert polynomial, it follows that L is also

semistable.

Lastly, for 0 < ε <
1

2
, the inequalities are p(OC2) < p(L) < p(OC1). We claim

that in this case, L is geometrically stable with respect to H ′.

Showing that L is stable: Now suppose F ⊂ L is a proper saturated

subsheaf. Then we get a subsequence of sheaves

0→ OC2 ∩ F → F → F/(OC2 ∩ F )→ 0.

The intersection OC2 ∩ F could be 0, or otherwise it is a subsheaf of OC2 which

means it is of the form OC2(m) for m ≤ 0. Similarly, the quotient F/(OC2 ∩ F )

could be 0, or otherwise it is a subsheaf of OC1 which means it is of the form

OC1(n) for n ≤ 0. We see that for most combinations of the options above, F has

smaller reduced Hilbert polynomial than L. The possible issues are if we have one

of the following:

0→ 0→ F
∼−→ OC1 → 0,

0→ OC2 → F → OC1 → 0.
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The second sequence would mean F = L, but we are assuming F is a proper

subsheaf. So we only need to worry about the first sequence, which gives an

inclusion OC1 ↪→ L. Note that this gives a splitting of the sequence

0→ OC2 → L → OC1 → 0,

which is a contradiction since we’re assuming L is a non-trivial extension. We could

alternatively argue in the following way: first, use the sequence

0→ L → OC1 ⊕OC2(3)→ O3pts → 0,

which comes from tensoring the following with L:

0→ OC → OC1 ⊕OC2 → OC1∩C2 → 0.

The inclusion OC1 ↪→ L would give an inclusion OC1 ↪→ OC1 ⊕OC2 , and since there

are no non-trivial maps between OC1 and OC2 , we must have OC1 ↪→ OC1 . Such

a map corresponds to a section of OC1 , and by the short exact sequence above,

this section must vanish on C1 ∩ C2. But a section of OC1 vanishing at 3 points

must be 0. Thus, no such inclusion exists, and we conclude that for every proper

saturated subsheaf F ⊂ L, pH′(F ) < pH′(L). Thus we can finally conclude that L is

geometrically stable.

How to explicitly find such a sheaf: Finally, we need to see that such an

L actually exists. Using the sequence

0→ OC2 → L → OC1 → 0.
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one last time, we note that L corresponds to a class in Ext1(OC1 ,OC2). We claim

that dim Ext1(OC1 ,OC2) = 3, and so there is a P2’s worth of choices for this sheaf

L. For the claim, we observe that Hom(OC1 ,OC2) = 0 since C1 and C2 intersect in

only three points. By Serre duality,

Ext2(OC1 ,OC2) ∼= Hom(OC2 ,OC1 ⊗ωX)∨ = Hom(OC2 ,OC1)∨ = 0.

Thus, χ(OC1 ,OC2) = − dim Ext1(OC1 ,OC2). Using the Hirzebruch-Riemann-Roch

Theorem,

χ(OC1 ,OC2) = χ(O∗C1
⊗OC2)

=

∫
X

ch(O∗C1
⊗OC2)tdX

=

∫
X

ch(OC1)∨ch(OC2)tdX

=

∫
X

(0,−C1, 1)(0, C2, 1)(1, 0, 2)

= −C1.C2

= −3.

This completes the claim.

Lastly, we observe that a similar example can be constructed by picking L

such that degL |C1 = 1 and degL |C2 = 2, or degL |C1 = 2 and degL |C2 = 1, or

degL |C1 = 3 and degL |C2 = 0. We will revisit this example in Section 4.2.

Remark 2.2.8. We observe that the example above could have been done by

considering rank two sheaves on X instead of rank 0 sheaves. These rank two

sheaves correspond to the rank 0 sheaves above in the following way. Since L is a

degree 3 line bundle on a curve C of arithmetic genus 2, we know by the Riemann-
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Roch Theorem for curves that

h0(L)− h1(L) = d+ 1− g = 2,

and we claim that h1(L) = 0 so that L has exactly two global sections. To verify

this, we consider the long exact sequence induced by the sequence

0→ OC2 → L → OC1 → 0,

which gives

· · · → H0(OC1)→ H1(OC2)→ H1(L)→ H1(OC1)→ · · · .

Since C1
∼= C2

∼= P1, we know that H1(OC2) = H1(OC1) = 0, and so H1(L) = 0.

These two global sections give rise to the short exact sequence

0→ K → O2
X → L → 0.

Then K is a rank 2 sheaf on X with

v(K) = 2v(OX)− v(L) = (2, 0, 2)− (0, H, 2) = (2,−H, 0).

The analysis carried out above can be repeated to find that K is either stable,

semistable, or unstable with respect to H ′, given appropriate choices of H ′.
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2.3. Moduli spaces of sheaves

2.3.1. General theory

The reference for this section is [31]. Let us momentarily assume k is an

algebraically closed field. We will discuss what happens when we remove this

assumption in Section 2.3.13.

For a smooth projective variety X over a field k, we would like to construct

a moduli space which parameterizes sheaves on X. However, this is certainly too

much information to study at once, and maybe we would hope that by restricting

to just sheaves of a fixed rank, the moduli space would be a reasonable scheme.

As a first example, we can consider the moduli space of line bundles (not even all

rank-one sheaves) on X, which is called the Picard scheme PicX . This scheme is

disconnected and is not projective, nor is it of finite type over k. In this case, we

can fix this by looking at line bundles with a fixed Hilbert polynomial, but more

generally, fixing a Hilbert polynomial does not ensure that a moduli space is of

finite type. Thus we see that even by fixing some invariants about the sheaves, it

is possible to end up with a moduli space which is too big. Worse yet, even after

fixing some invariants and asking for bundles of that type, the resulting moduli

space need not be separated.

It turns out that, by adding enough extra conditions on the sheaves, we can

get a well-behaved moduli space. The appropriate condition (which in particular

results in a separated moduli space) turns out to exactly be stability (using the

definition of stability given in 2.2.3). Before constructing the moduli space, we

must introduce one more concept. Fix a polarization H on X (which is necessary

in order to discuss stability).
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Proposition 2.3.2. [31, Prop. 1.5.2] Let F be a semistable sheaf on X. Then there

exists a filtration (called the Jordan-Hölder filtration) of F

0 = F0 ⊂ F1 ⊂ ... ⊂ F ` = F ,

such that the factors F i /F i−1 are stable with reduced Hilbert polynomial p(F , t).

Moreover, up to isomorphism, the sheaf gr(F) := ⊕iF i /F i+1 does not depend on

the choice of the filtration.

Definition 2.3.3. Two semistable sheaves F1 and F2 with the same reduced

Hilbert polynomial are called S-equivalent if gr(F1) ∼= gr(F2).

Now, fix a polynomial P ∈ Q[t]. Then there is a functor

MH(P ) : (Sch/k)op → (Sets)

which sends a scheme S to the set of isomorphism classes of S-flat families of H-

semistable sheaves on X with Hilbert polynomial P , up to an equivalence which

identifies E ∈ Coh(X × S) with E ⊗ p∗L for any line bundle L on S.

Theorem 2.3.4. The functor is corepresented by a projective k-scheme MH(P ),

i.e. there exists a natural transformation MH(P )→ hMH(P ) such that for any other

MH(P )→ hN there exists a unique morphism MH(P )→ N such that

MH(P )

%%

// hMH(P )

∃!
��

hN .
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We call MH(P ) the moduli space for MH(P ). Moreover, the closed points of

MH(P ) parameterize S-equivalence classes of semistable sheaves on X with Hilbert

polynomial P .

We briefly summarize the construction of M(P ) = MH(P ). It can be

shown that the family of semistable sheaves on X with Hilbert polynomial P

is bounded, which implies there is some integer m such that F(m) is globally

generated for any such sheaf F . Then h0(F(m)) = P (m), and we can consider

the sheaf G := OX(−m)P (m). We have a natural surjection OP (m)
X � F(m) which

equivalently gives a surjection G � F . This defines a closed point in the Quot

scheme Quot(G,P ). All of the semistable sheaves are contained in an open subset

R ⊂ Quot(G,P ), but a choice was made for these points based on a choice of basis

for H0(F (m)). Changing the basis gives an action of GLP (m)(k) on R, and taking

the quotient of R by this action, using geometric invariant theory, gives the moduli

space.

2.3.5. On K3 surfaces

In many cases, including for K3 surfaces, it turns out to be more convenient

to fix additional topological data than just the Hilbert polynomial of the sheaves.

In this section, we work over the complex numbers (although most statements hold

more generally). This leads us to the definition of the Mukai vector:

Definition 2.3.6. For a coherent sheaf F on a K3 surface S, the Mukai vector of

F is

v(F) = ch(F)
√

td(S) ∈ H∗(S,Z).
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Note that the Mukai vector of a sheaf on a smooth projective variety X

has the same definition but need not be an integral class, i.e. it is an element

of H∗(X,Q). We also remark that in positive characteristic v(F) is considered

in either H∗ét(X,Z`) for ` different from the characteristic, or the numerical

Grothendieck group. We will comment on this further in the following section.

At first glance, the definition of the Mukai vector may seem a little odd since

it involves
√

td(S). This is computed completely formally, using the power series

expansion for
√

1 + y. This is because td(S) = 1 + 1
2
c1(S) + 1

12
(c1(S)2 + c2(S))....

Then the expansion is √
1 + y = 1 +

1

2
y − 1

8
y2 + ...

Since for a K3 surface we have c1(S) = 0, it follows that y = 1
12
c2(S), which means

(since y is in H4(S,Z)) we don’t need to go past the 2nd term in the expansion.

Recalling that c2(S) = 24, we get that

√
td(S) = 1 +

1

24
c2(S) = (1, 0, 1) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

Thus, for a K3 surface,

v(F) = (rkF , c1(F), ch2(F))(1, 0, 1)

= (rkF , c1(F), rkF +ch2(F))

= (rkF , c1(F), χ(F)− rkF),
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where the last equality follows by the Hirzebruch-Riemann-Roch Theorem:

χ(F) =

∫
S

ch(F)td(S)

=

∫
S

(rk(F), c1(F), ch2(F)(1, 0, 2)

=

∫
S

(rk(F), c1(F), 2rk(F) + ch2(F))

= 2rk(F) + ch2(F).

Example 2.3.7. We give a few examples of Mukai vectors. First, v(OX) = (1, 0, 1)

because it is a line bundle on S, and χ(OX) = 2. For any line bundle L, we have

v(L) = (1, c1(L), c1(L)2/2 + 1). For a skyscraper sheaf, v(Opt) = (0, 0, 1).

There is a pairing on these vectors, called the Mukai pairing, given by

〈α, β〉 := −α0.β4 + α2.β2 − α4.β0,

for α = (α0, α2, α4) and β = (β0, β2, β4). As the following proposition shows, this

pairing only differs by a sign from the pairing given by the Euler characteristic.

Proposition 2.3.8. For two sheaves E and F , χ(E ,F) = −〈v(F), v(F)〉.
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Proof.

χ(E ,F) =
∑

(−1)i dim Exti(E ,F)

= χ(E∗⊗F)

=

∫
S

ch(E∗)ch(F)td(S)

=

∫
S

ch(E∗)
√

td(S)ch(F)
√

td(S)

= v(E∗).v(F)

= −〈v(E), v(F)〉.

Thus, we get that

P (E , t) = χ(E(t)) = χ(E ,O(−t)) = −〈v(E), v(O(−t))〉,

and the Mukai vector determines the Hilbert polynomial. This means that fixing

a Mukai vector v fixes a Hilbert polynomial, and we get that the functor MH(v),

where the fixed Hilbert Polynomial P is replaced by the fixed Mukai vector v, is

corepresented by a projective scheme MH(v) as in 2.3.4. Note that two sheaves

with a fixed Hilbert polynomial can have different Mukai vectors, so MH(v) is a

union of connected components of MH(P ) (in fact MH(v) is often connected, but

this is non-trivial to prove).

We hope that, under appropriate conditions, we are able to get a nicely-

behaved moduli space. We might ask that in addition to being projective, MH(v)

be a smooth variety. For smoothness, we have the following:

Proposition 2.3.9. At a point t ∈ MH(v) corresponding to a stable sheaf F on S,

MH(v) is smooth.
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Proof. By [28, Prop. 10.1.11], if the trace map Ext2(F ,F) → H2(S,OS) is injective

and PicS is smooth at the point corresponding to detF , then M is smooth at t ∈

M . We know that stable sheaves are simple, and so by Serre duality, Ext2(F ,F) ∼=

Hom(F ,F)∨ ∼= k, giving injectivity of the trace map. Furthermore, all points in the

Picard scheme of a K3 surface are smooth, so the result follows.

Thus the locus of strictly stable sheaves MH(v)s ⊂ MH(v) is smooth if it

is non-empty. We claim that TtMH(v) ∼= Ext1(F ,F). To see this, recall that

MH(v) is constructed as a GLP (m)(k)-quotient of R ⊂ Q := Quot(G,P ) where

G := OS(−m)P (m) for m � 0. A point in Q corresponds to a surjection G � F ,

and the tangent space at this point is naturally identified with Hom(K,F), where

K is the kernel of G � F . This is just the sheaf-version of the fact that the tangent

space of the Grassmannian at a point corresponding to the subspace W ⊂ V is

Hom(W,V/W ). Recall that MH(v) is obtained by quotienting out by different

choices of basis for G, which at a point is the same as quotienting out by the

possible choices of surjections G � F which are not just different due to an

endomorphism of F . We can compute this by applying Hom(−,F) to the short

exact sequence

0→ K → G→ F → 0,

which gives rise to the exact sequence

0→ End(F)→ Hom(G,F)
α−→ Hom(K,F)→ Ext1(F ,F)→ 0.
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Note that the last term in the sequence is 0 because m was chosen so that

H i(F(m)) = 0 for all i > 0 and so

Ext1(G,F) = Ext1(OS(−m)P (m),F) = H1(F(m))P (m) = 0.

We see by the description above that TtMH(v) is exactly Hom(G,F)/im(α), which

by exactness is isomorphic to Ext1(F ,F).

Thus it follows that dimMH(v)s = dim Ext1(F ,F). We observe that

v(F)2 = −χ(F ,F) = −
2∑
i=0

(−1)i dim Exti(F ,F) = dimMH(v)s − 2.

So we see that the dimension of MH(v)s is v2 + 2, if it is non-empty. However, this

subspace MH(v)s is open, so we get only a quasi-projective scheme. By restricting

to a specific class of Mukai vectors, we are able to eliminate the occurrence of

properly semistable sheaves.

Definition 2.3.10. A Mukai vector v is called primitive if it cannot be written as

a scalar multiple of some other class in H∗(S,Z).

Proposition 2.3.11. [28, Prop. 10.2.5] Let v be a primitive Mukai vector. Then

with respect to a generic polarization H, any semistable sheaf F with v(F) = v is

stable.

In this case, we see that MH(v)s = MH(v), and the moduli space of

stable sheaves on S is a smooth projective variety. We compare this result with

Proposition 2.2.6, which gives another criterion for eliminating the existence of

properly semistable sheaves.
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Example 2.3.12. Moduli spaces of sheaves can be thought of as generalizations of

Hilbert schemes of points. We demonstrate here that Hilbert schemes of points on

a K3 surface parameterize rank one sheaves on the surface. Let v = (1, 0, 1 − n) for

some integer n ≥ 1, so that

v2 = −(1− n)− (1− n) = 2n− 2 ≥ 0

for n ≥ 1. We observe that v is primitive, so there is some polarization H on S

for which there are no properly semistable sheaves in MH(v). For F ∈ MH(v), F

is torsion-free and of rank 1, so we have an injection F ↪→ F∗∗, and F∗∗ = L is a

line bundle since F∗∗ is a rank one reflextive sheaf on a regular scheme [17, Prop.

1.9]. Also, a torsion-free sheaf of rank 1 is free in codimension 1, so this map is

an ismorphism in codimension 1. Tensoring this map with L∗, we get an injection

F ⊗L∗ → OS which is also an isomorphism in codimension 1. Then F ⊗L∗ is the

ideal sheaf of a subscheme Z ⊂ S. If we write F ⊗L∗ = I, we have Ix ∼= OS,x

for all x ∈ S of codimension 1. Then OS /I is supported in codimension 2, which

on a surface is a zero-dimensional subscheme. So F = IZ ⊗ L where Z is a zero-

dimensional subscheme of S and L is a line bundle on S. We have

0→ IZ ⊗ L→ L→ OZ → 0,

which means v(F) = v(L)−v(OZ) = (1, c1(L), χ(L)−1)−(0, 0, χ(OZ)) = (1, 0, 1−n).

This immediately tells us that c1(L) = 0 and so L ∼= OS. Thus, F = IZ , and

v(OS)− v(OZ) = (1, 0, 1− n), and we conclude that h0(OZ) = n. This allows us to

define a map

MH(1, 0, 1− n)→ Hilbn(S),
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which is in fact an isomorphism. The map in the other direction is given by sending

a subscheme Z ⊂ S to its ideal sheaf IZ .

2.3.13. Over non-algebraically closed fields

The goal in this dissertation is to study moduli spaces of sheaves on a K3

surface defined over an arbitrary field. Thus we must introduce the tools and

results necessary to conduct such a study. For a coherent sheaf F on a smooth

projective variety X defined over a non-algebraically closed field k, there may be

destabilizing subsheaves of F which are only defined over some field extension of k.

This concern naturally leads to the following definition:

Definition 2.3.14. A coherent sheaf F is geometrically stable if for any field

extension K of k, the pull-back F ⊗kK is a stable sheaf on X ×k SpecK.

A careful study of the stability of sheaves in positive characteristic was

carried out by Langer in [35]. In particular, he proves the following result which

is a generalization of Theorem 2.3.4. Let R be a universally Japanese ring, for

example a field, a Noetherian complete local ring, Z, a Dedekind domain with

characteristic zero fraction field, or a finite type extension ring of any of the above

(the actual definition of a universally Japanese ring is unenlightening, see [53, Tag

032E]). Let X → S be a projective morphism of R-schemes of finite type with

geometrically connected fibers, and let OX(1) be a relatively ample line bundle. For

a fixed polynomial P ∈ Q[t], we can consider the functor

MX/S(P ) : (Sch/S)op → (Sets)
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which sends a scheme T to the set of S-equivalence classes of T -flat families of

semistable sheaves on the fibers of T ×S X → T with Hilbert polynomial P . Then

the following is true:

Theorem 2.3.15. [35, Thm. 0.2] There exists a projective S-scheme MX/S(P ) of

finite type over S which uniformly corepresents the functor MX/S(P ), and there is

an open scheme M s
X/S(P ) ⊂ MX/S(P ) that universally corepresents the subfunctor

of families of geometrically stable sheaves.

In particular, this result allows us to study moduli spaces of sheaves in

families. For example, suppose S → SpecZp is a relative K3 surface for some prime

p with a relatively ample line bundle. Again for K3 surfaces, we can consider Mukai

vectors instead of Hilbert polynomials, and for a vector v on S, we get the moduli

space MS/Zp(v) which is projective over Zp. This morphism has two fibers:

MS/Qp(v) //

��

MS/Zp(v)

��

MS/Fp(v)oo

��
SpecQp

// SpecZp SpecFp.oo

This idea will allow us to move between studying moduli spaces of sheaves in

positive characteristic and studying them in characteristic zero, a technique that

will be used frequently throughout the proof of Theorem 2. In particular, it is

a classic result due to Deligne [10, Thm. 1.6] that for a pair (S, L) with S a K3

surface and L an ample line bundle on S, both defined over a perfect field k,

there exists a DVR W ′ which is finite over the ring of Witt vectors W (k) and a

smooth proper scheme S → SpecW ′ together with a line bundle L on S such that

S ×W ′ k ∼= S and L⊗W ′ k ∼= L. That is, S and L can both be lifted to characteristic

zero.
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In order to lift the moduli space as discussed above, we need to lift the K3

surface S and the polarization H, but we in addition need to lift the Mukai vector

v. This requires being able to lift c1, where v = (r, c1, s). The following result

allows us to lift up to nine line bundles on the K3 surface.

Proposition 2.3.16. [5, Prop. 1.5] Let S be a K3 surface over an algebraically

closed field k of positive characteristic, and let L1, ..., Lr be line bundles on S with

L1 ample. If r ≤ 10, there exists a DVR W ′ which is finite and flat over W (k) and

a smooth projective relative K3 surface S → SpecW ′ such that S ×W ′ k ∼= S and the

image of Pic(S)→ Pic(S) contains L1, ..., Lr.

As mentioned above, when working over an arbitrary field, Mukai vectors are

considered as elements of the Mukai lattice but we can no longer use the singular

cohomology for the lattice. The notion of a Mukai lattice makes sense in any Weil

cohomology theory and is discussed in great generality in [36] as well as [22]. We

will make use of Mukai’s original construction over C as well as the construction

for étale cohomology, which we recall here. We will omit the subscript ét which

usually denotes étale cohomology, and will rather assume from here on that the

cohomology is étale unless stated otherwise. The standard reference for the study of

étale cohomology is [43].

Definition 2.3.17. Let ` be a prime different from the characteristic of k. The

`-adic Mukai lattice of S is the Gal(k/k)-module

H̃(S,Z`) := H0(S,Z`)⊕H2(S,Z`(1))⊕H4(S,Z`(2))
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endowed with the Mukai pairing

(α, β) = −α0.β4 + α2.β2 − α4.β0.

It is worth pointing out a couple of things about this definition. First, we

have made use of Tate twists. For m ≥ 1, the Tate twist Z/`nZ(m) is the sheaf

µ⊗m`n on S ét. For m < 0, Z/`nZ(m) is defined to be the dual of Z/`nZ(−m).

Then H i(S,Z`(m)) := lim←−H
i(S,Z/`nZ(m)). Over a finite field Fq, this twisting

has the effect of scaling the eigenvalues of the induced action of the Frobenius

endomorphim f ∗ on the cohomology. As an example, if f ∗ acts on H2(S,Z`) with

an eigenvalue of λ ∈ C, then f ∗ acts on H2(S,Z`(1)) with an eigenvalue of
λ

q
.

Secondly, note that we have defined the Mukai lattice in weight zero but will

continue to use the usual sign on the Mukai pairing. That is, it is standard over the

complex numbers to twist the cohomology into weight two for the Mukai lattice:

H0(S,Z`(−1))⊕H2(S,Z`)⊕H4(S,Z`(1)).

The twists on H0 and H4 explain the negative signs present in the Mukai pairing.

When the Mukai lattice is instead placed in weight zero, the signs on the terms

in the pairing should be changed so that H0 and H4 terms remain positive and

the pairing in H2 is negated. However, the pairing given in Definition 2.3.17 is so

standard that we will continue to use it as is so as not to confuse the reader.

We define the Mukai vector of a coherent sheaf F on S as above, but now it is

an element of H̃(S,Z`).
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Definition 2.3.18. Let ω ∈ H4(S,Z`(2)) be the numerical equivalence class of a

point on S. A Mukai vector on S is an element of

N(S) := Z⊕ NS(S)⊕ Zω,

and N(S) is considered as a subgroup of H̃(S,Z`) under the natural inclusion. A

Mukai vector is often denoted by v = (r, c1, s).

2.4. Zeta functions of schemes and the Weil Conjectures

Let X be a smooth projective variety defined over Fq with q = pm for some

m and some prime number p. Let Nr(X) be the number of points of X defined over

Fqr .

Definition 2.4.1. The zeta function of X is

Z(X, t) := exp

(
∞∑
r=1

Nr(X)
tr

r

)
.

We use this as the definition for the zeta function because it gives a

generating function for the values Nr(X). However, it can equivalently be defined

using the following proposition, in which case the function more directly resembles

its namesake, the Riemann zeta function.

Proposition 2.4.2. Let ζX(s) =
∏

x∈|X| closed

1

1−N(x)−s
, where N(x) = |κ(x)|, the

residue field at x. Then

ζX(s) = Z(X, q−s).
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Proof. First, we note that because the product in ζX is taken over only closed

points in X, the residue field κ(x) is a finite extension of the base field Fq, and so

N(x) = |k(x)| = qdeg x,

where deg x = [κ(x) : Fq]. Let us use |X|cl to denote the set of closed points in X.

If we begin by setting t = q−s, we get

ζX(s) =
∏

x∈|X|cl

1

1−N(x)−s
=

∏
x∈|X|cl

1

1− tdeg x
.

Taking the natural log on both sides gives

ln ζX(s) =
∑

x∈|X|cl
ln

(
1

1− tdeg x

)
=
∑

x∈|X|cl

∞∑
r=1

tr deg x

r
=
∞∑
n=1

Tnt
n,

for some coefficients Tn. By analyzing the terms in the double sum, we see that

Tn = #{x ∈ |X|cl : deg x = n}+
1

2
#
{
x ∈ |X|cl : deg x =

n

2

}
+ ....

=
∞∑
j=1

1

j
#

{
x ∈ |X|cl : deg x =

n

j

}
.

Observe that the set

{
x ∈ |X|cl : deg x =

n

j

}
is empty if j does not divide n,

and so a number of the terms drop out of the sum. We can rearrange the sum by

summing over k =
n

j
, in which case

1

j
=
k

n
. This gives

Tn =
1

n

∑
k|n

k#{x ∈ |X|cl : deg x = k}.
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We would like to relate this coefficient Tn to Nn(X), so let us consider an Fqn-

point of X. Such a point is determined by a morphism of schemes SpecFqn → X,

which equivalently corresponds to a closed point of X along with an Fq-linear map

of residue fields Fqdeg x = κ(x) → Fqn . But such maps only exist when deg x divides

n, in which case the number of maps which are Fq-linear is |Gal(Fqdeg x/Fq)| = deg x.

Thus,

Nn(X) =
∑
k|n

# HomFq(Fqk ,Fqn) ·#{x ∈ |X|cl : deg x = k}

=
∑
k|n

k#{x ∈ |X|cl : deg x = k},

and we see that Tn =
Nn(X)

n
. Finally, we have

ln ζX(s) =
∞∑
n=1

Nn(X)

n
tn,

and hence, recalling that t = q−s, we conclude that

ζX(s) = exp

(
∞∑
n=1

Nn(X)

n
tn

)
= Z(X, q−s).

Remark 2.4.3. The function ζX(s) makes sense more generally, when X is a

scheme of finite type over Z. If X = SpecZ, then the closed points correspond

to the prime ideals (p) of Z, in which case the residue field is Fp. Then

ζSpecZ(s) =
∏

primes p

1

1− p−s
= ζ(s),
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the usual Riemann zeta function. More generally for X = SpecOK where OK is

the ring of integers in a number field K, ζX(s) is the Dedekind zeta function for K.

Historically this generalization to the level of schemes was made in an attempt to

prove the Riemann hypothesis.

Remark 2.4.4. It is worth pointing out that there is also an equality

Z(X, t) =
∞∑
r=1

#Symr(X)(Fq)tr,

which is what you get when you apply the counting measure to the motivic zeta

function of X.

In 1949, André Weil made conjectures about these numbers Nm(X) which

suggested a beautiful connection between the arithmetic properties of varieties

defined over finite fields and the geometric properties of varieties defined over

the complex numbers. The proof of his conjectures was not completed until

1973, and it was in attempting to prove the conjectures that the framework of

modern algebraic geometry was developed. Although the results are due to Dwork,

Grothendieck, and Deligne (among others who played a part in developing the

theory of `-adic cohomology), they continue to be called the Weil Conjectures.

Theorem 2.4.5. [8, 9] (The Weil Conjectures) Let X be a smooth projective

variety of dimension n over a finite field.

1. (Rationality of the zeta function) The zeta function Z(X, t) is a rational

function. More specifically, it is of the form

Z(X, t) =
P1(t)P3(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)
,

43



where each Pi(t) ∈ Z[t]. Furthermore, P0(t) = 1− t, P2n(t) = 1− qnt, and the

other Pi(t) factor as
∏

j(1− αi,jt) for some αi,j ∈ C.

2. (Functional equation and Poincaré Duality) The zeta function satisfies

Z

(
X,

1

qnt

)
= ±q

nE
2 tEZ(X, t),

where E is the Euler characteristic of X. In particular, this means for each i,

{α2n−i,j}j =

{
qn

αi,j

}
j

.

3. (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n− 1 and all j. This means

all of the zeros of Pi(t) lie on the line of complex numbers s with Re(s) = i
2
.

4. (Betti numbers) If there is a smooth variety Y defined over a number field

such that X is the reduction of Y modulo a prime ideal, then the degree of Pi

is equal to the ith Betti number of Y (considered as a variety over C via an

inclusion of the number field into C).

Example 2.4.6. We show that the Weil conjectures hold for X = P2 over Fq,

which is a smooth projective variety of dimension 2. We can consider P2 as P2 =

A2 ∪ A1 ∪ {∗}, so Nr(X) = q2r + qr + 1. Then

Z(X, t) = exp

(
∞∑
r=1

(q2r + qr + 1)
tr

r

)

= exp

(
∞∑
r=1

(q2t)r

r

)
exp

(
∞∑
r=1

(qt)r

r

)
exp

(
∞∑
r=1

tr

r

)

=
1

1− q2t

1

1− qt
1

1− t

=
1

(1− t)(1− qt)(1− q2t)
.
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We immediately observe the rationality of the zeta function, where P0(t) = 1 − t,

P2(t) = 1 − qt and P2(t) = 1 − q2t. Next, we check the functional equation. We

know χ(P2) = 3, so we will multiply through the top and bottom by q3t3:

Z

(
X,

1

q2t

)
=

1

(1− 1
q2t

)(1− 1
qt

)(1− 1
t
)
· q

3t3

q3t3

=
q3t3

(q2t− 1)(qt− 1)(t− 1)

= −q3t3Z(X, t).

Now, we observe that |α0| = 1 = q0/2, |α2| = q = q2/2, and |α4| = q2 = q4/2,

which agrees with the Riemann hypothesis. Lastly, the degrees degP0 = degP2 =

degP4 = 1 and degP1 = degP3 = 0 match the Betti numbers of P2
C.

Example 2.4.7. The cohomology of a K3 surface over C was computed in Section

2.1. Let S be a K3 surface defined over a finite field Fq. The Weil Conjectures for

K3 surfaces says that there are 22 algebraic numbers αi ∈ Q for 1 ≤ i ≤ 22 such

that

Z(S, t) =
1

(1− t)
∏

1≤i≤22(1− αit)(1− q2t)
.

Moreover, |αi| = q and we can assume αi = ±q for i = 1, ..., 2k, for some k ≤ 11,

and for i > 2k, we have αi 6= ±q and α2j−1 · α2j = q2 for j > k.

Here is an explicit example for the K3 surface introduced in Example 2.2.7.

Recall this is the surface X over F3 cut out by

w2 =2y2(x2 + 2xy + 2y2)2 + (2x+ z)(x5 + x4y + x3yz + x2y3 + x2y2z + 2x2z3

+ xy4 + 2xy3z + xy2z2 + y5 + 2y4z + 2y3z2 + 2z5)
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in P(3, 1, 1, 1). Then Hassett and Várilly-Alvarado [20, Section 5] compute that

P2(t) = (1 + 3t+ 15t2 + 45t3 + 162t4 + 162t5 + 486t6 − 2187t7 − 8748t8

− 52488t9 − 118098t10 − 472392t11 − 708588t12 − 1594323t13

+ 3188646t14 + 9565938t15 + 86093442t16 + 215233605t17

+ 645700815t18 + 1162261467t19 + 3486784401t20)(1 + 3t)(1− 3t)

where

Z(S, t) =
1

(1− t)P2(t)(1− 9t)
.

2.5. Galois representations

This dissertation was motivated by wanting to understand the zeta functions

of various moduli spaces of sheaves on a fixed K3 surface over a finite field Fq.

However, the study of zeta functions can be generalized to a study of Galois

representations, because the zeta function is determined by the action of the

Frobenius endomorphism, an element of the Galois group Gal(Fq/Fq).

Suppose X is a smooth projective variety of dimension d defined over k = Fq

with q = pn. Let FX : X → X be the absolute Frobenius map, which is the identity

on points of X and is the pth power map on the structure sheaf OX . Note that this

map is not a morphism of Fq-schemes if q 6= p. Then let X = X ×k k and define

f := F n
X × id : X → X, which is the nth power of the relative Frobenius morphism.

Example 2.5.1. Suppose X = An
Fp

= SpecFp[x1, ..., xn]. Then FX is induced

by the pth power map on Fp[x1, ..., xn], under which it can be checked that primes

ideals are fixed (so the induced map is the identity on points of X).
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The map f = FX × id : X → X is induced by the map f# : Fp[x1, ..., xn] →

Fp[x1, ..., xn] which sends xi to xpi for each i and fixes the Fp-coefficients. As an

example, for the point p = (x1 − a1, ..., xn − an) ∈ X we have

f(p) = (f#)−1(p) = (x1 − ap1, ..., xn − apn),

since xi − api 7→ xpi − a
p
i = (xi − ai)p.

If we let x1, ..., xn be coordinates for X = An
Fp

, this means f(a1, ..., an) =

(ap1, ..., a
p
n). This means f fixes the point (a1, ..., an) if and only if ai ∈ Fp for all

1 ≤ i ≤ n.

By the example above, we see that for an arbitrary (smooth, projective)

variety X and for all closed points x ∈ X, f r(x) = x if and only if x has coordinates

in Fqr . Thus, Nr(X) is equal to the number of fixed points of f r. This number can

be computed using the Lefschetz fixed point theorem, which tells us that

Nr(X) =
2d∑
i=0

(−1)itr(f r∗ : H i
ét(X,Q`)→ H i

ét(X,Q`)).

Then we find that

Z(X, t) = exp

(
∞∑
r=1

2d∑
i=0

(−1)itr(f r∗|Hi
ét(X,Q`)

)
tr

r

)

=
2d∏
i=0

exp

(
∞∑
r=1

tr(f r∗|Hi
ét(X,Q`)

)
tr

r

)(−1)i

=
2d∏
i=0

det(1− f ∗t|Hi
ét(X,Q`)

)(−1)i+1

,

where the last equality follows from a linear algebra identity (see [43, V Lem. 2.7]

for a proof). Moreover, this new equality shows that the numbers {αi,j}j are the
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eigenvalues of f ∗ acting on H i
ét(X,Q`). Thus the zeta function is determined by the

action of f ∗ on H i
ét(X,Q`) for each 0 ≤ i ≤ 2d.

We would like to relate this to considering the induced action of the Galois

group Gal(Fq/Fq) instead of f ∗, but f is not itself an element of Gal(Fq/Fq).

Rather, if we consider the absolute Frobenius on X, FX : X → X, then by [43,

VI Lem. 13.2], FX acts as the identity on the cohomology of X. We also have

that FX = FX × FFq
, where FFq

is the usual qth power map on Fq. Thus, on

cohomology, f ∗ and F ∗Fq
are inverses to each other, and FFq

∈ Gal(Fq/Fq). Thus if

we can determine the induced action of FFq
on the cohomology of X, then we have

determined Z(X, t). This naturally leads us to consider the more general situation.

Let X be a smooth projective variety defined over an arbitrary field k. Then

any σ ∈ Gal(k/k) acts on X and induces an action σ∗ on H i
ét(X,Q`). Now, rather

than just studying zeta functions of these varieties, i.e. the action of a specific

element of the Galois group, we are led to study the cohomology groups as Galois

representations.

2.6. Derived categories and a conjecture of Orlov

The main reference for this section is [27]. Another perspective from which

to study a variety X is through its bounded derived category of coherent sheaves,

D(X) := Db(Coh(X)). The objects of this category are complexes

F• = · · · → F i−1 → F i → F i+1 → · · ·

with F i ∈ Coh(X) and F i = 0 for |i| � 0. A morphism E• → F• is given by

an equivalence class of roofs E• ψ←− G• ϕ−→ F• where ψ is a quasi-isomorphism.
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Another description of this category is as the localization of the homotopy category

of Coh(X) by quasi-isomorphisms.

Two smooth projective varieties over a field k are said to be derived

equivalent if there exists a k-linear exact equivalence F : D(X)
∼−→ D(Y ). Orlov

shows that, in fact, the following is true:

Theorem 2.6.1. [27, Cor. 5.17] The equivalence F is isomorphic to a Fourier-

Mukai transform ΦP associated to an object P ∈ D(X × Y ) that is unique up to

isomorphism.

The Fourier-Mukai transform ΦP associated to P ∈ D(X × Y ) is defined as

follows. Let p : X × Y → X and q : X × Y → Y be the two projection morphisms.

Then ΦP : D(X) → D(Y ) is defined by F• 7→ q∗(p
∗F•⊗P). The fact that Fourier-

Mukai transforms are determined by a single object in the derived category makes

them particularly nice to work with, and so we see the strength of Orlov’s result.

In order to study the Galois representations which arise from the cohomology

groups of moduli spaces of sheaves on K3 surfaces, we are interested in maps

between cohomology groups and rings, and Fourier-Mukai transforms induce such

maps on cohomology. To get from the derived category D(X) to cohomology, we

must pass through the Grothendieck group K(X). The map D(X) → K(X) is

given by

F• 7→
∑
i

(−1)i[F i],

where [F i] denotes the equivalence class of F i. The Mukai vector is then used to

get from the Grothendieck group to cohomology. That is, a sheaf F can be sent

to v(F) ∈ H∗(X,Q), and this can be extended additively to a map v : K(X) →
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H∗(X,Q). Then the following diagram commutes:

D(X)
ΦP //

[ ]
��

D(Y )

[ ]
��

K(X)

v
��

K(Y )

v
��

H∗(X,Q)
ΦH

v(P)

// H∗(Y,Q),

where ΦH
v(P) is given by β 7→ q∗(p

∗(β).v(P)). We note that we could more generally

define a cohomological Fourier-Mukai transform ΦH
α : H∗(X,Z) → H∗(Y,Z)

associated to any class α ∈ H∗(X × Y,Z), given by β 7→ q∗(p
∗(β).α). This type

of map will make an appearance numerous times throughout Chapter III.

2.6.2. A conjecture of Orlov

It is natural to ask how well the derived category captures the geometry

of the variety. By a theorem of Bondal and Orlov, if there exists an equivalence

D(X) ∼= D(Y ) for two smooth projective varieties X and Y , and the canonical

bundle of X is either ample or anti-ample, then X and Y are isomorphic. Thus

it remains to fully understand what happens for varieties with trivial canonical

bundle, such as K3 surfaces and moduli spaces of sheaves on K3 surfaces (among

others). Orlov has made the following conjecture:

Conjecture 2.6.3. [50, Conj. 1] If there exists an equivalence D(X) ∼= D(Y )

for X and Y smooth, projective varieties, then X and Y have isomorphic rational

Chow motives.

We see immediately that this conjecture is verified when ωX is either ample

or anti-ample, since being isomorphic is stronger than having isomorphic rational
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Chow motives. It was shown in [30, Thm. 0.1] that the conjecture holds for K3

surfaces. However, it is unclear what to expect in higher dimensions when ωX is

trivial.

As mentioned in Section 1.2.3, the motive of a variety captures its rational

Chow ring as well as its cohomology for any Weil cohomology theory. In particular,

this conjecture predicts that two derived equivalent smooth, projective varieties

over a field k will have isomorphic étale cohomology groups with Q`-coefficients,

for ` a prime different from the characteristic of k, and this isomorphism will be as

Gal(k/k)-representations.

2.7. The Beauville-Bogomolov form

As moduli spaces of sheaves on K3 surfaces over C are hyperkähler varieties,

their second cohomology group comes endowed with a quadratic form. This extra

structure is a useful tool in better understanding the cohomology of these moduli

spaces. Recall that the Beauville-Bogomolov form was introduced in Section

1.2.5, and it is clear that the definition depends on the Hodge decomposition. As

remarked in the introduction, there is a canonical quadratic form on `-adic and

crystalline cohomology satisfying the same defining property as the original form.

Alternatively, in [16, Def. 26.19], Huybrechts defines an unnormalized version of the

Beauville-Bogomolov form on a hyperkähler variety X as

q̃X(α) =

∫
X

α2
√

tdX,

and he shows that this differs from the standard definition of the Beauville-

Bogomolov form by a non-zero constant which depends on the topology of X.
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Up to scaling, we can take q̃X as our definition for the Beauville-Bogomolov form

q : H2
sing(X,Z) → Z, and now this definition makes sense for étale cohomology as

well.

2.8. The Borel Density Theorem

A key component of the argument that will be made in Chapter III will

be showing that a set of Z-points in a variety is Zariski dense. An outline of the

results used in that argument are given here.

Let G be a linear, semisimple Lie group with only finitely many connected

components. That is, G is a closed subgroup of SL(`,R) for some number `, and is

isomorphic to a finite direct product of simple Lie groups (possibly modulo a finite

group).

Definition 2.8.1. A subgroup Γ of G is a lattice in G if Γ is a discrete subgroup of

G and G/Γ has finite volume.

The volume form on G is given by the Haar measure. As an example,

SL(2,Z) is a lattice in SL(2,R). Given such a group G, we would like to determine

whether or not the Z-points G(Z) are Zariski dense in G. We can consider SL(`,R)

as a subvariety of A`×`
R , and so it makes sense to consider the Zariski topology on a

subset G ⊂ SL(`,R). By the following result, we see that this question is related

to whether or not G(Z) is a lattice in G. Note that G has a maximal compact

subgroup K, and asking that Γ project densly into the maximal compact factor

of G means that the image of Γ under the projection G→ G/K is dense.

Theorem 2.8.2. [44, 4.5.6] (Borel Density Theorem) Let G be a linear, semisimple

Lie group as above and Γ a lattice in G. If Γ projects densely into the maximal

compact factor of G and G is connected, then Γ is Zariski dense in G.
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We can get around the condition that G needs to be connected by considering

G◦, the connected component of the identity element in G, and then using

information about G◦ to make conclusions about G. Moreover, there is a

straightforward criterion to verify when we have found a Lie group G such that

G(Z) is a lattice in G. Write the coordinate ring of A`×`
R as R[x1,1, ..., x`,`], adjoining

the variables xi,j for 1 ≤ i, j ≤ `.

Definition 2.8.3. [44, 5.1.2] A closed subgroup H of SL(`,R) is defined over Q if

there exists a subset Q ⊂ Q[x1,1, ..., x`,`] such that:

– V (Q) is a subgroup of SL(`,R),

– H◦ = V (Q)◦, and

– H has only finitely many components.

This definition may at first sound non-standard, but it turns out to be exactly

the conditions necessary to ensure that the integer points of G form a lattice. The

example we will be most interested in is the Lie group SO(m,n) ⊂ SL(m + n,R).

We see that SO(m,n) is defined over Q because more generally, for any A ∈

SL(`,Q), the group SO(A) is given by

Q =

{ ∑
1≤p,q≤`

xi,pAp,qxj,q − Ai,j : 1 ≤ i, j ≤ `

}
.

Proposition 2.8.4. [44, 5.1.11] If G is defined over Q, then G(Z) is a lattice in

G.

Thus if G is a linear, semisimple Lie group with finitely many components

which is defined over Q, and if G(Z) projects densely into the maximal compact
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factor of G (and G is connected), then the Z-points of G are Zariski dense in G.

This gives a clear list of criteria to check in order to conclude the density of G(Z).

We would additionally like to apply these results in the case of complex Lie

groups. But this is straightforward since, by definition, the Zariski closure of a real

semisimple linear Lie group G in SL(`,C) is the complexification GC (see [44, Rmk.

18.1.8(3)]). In the case that G is defined over Q, so that G◦ = V (Q)◦ for Q ⊂

Q[x1,1, ..., x`,`], then GC = VC(Q) := {g ∈ SL(`,C) : f(g) = 0 for all f ∈ Q}. Then

so long as such a group G satisfies the hypotheses of Theorem 2.8.2, it will follow

that the Z-points of the complex group GC are Zariski dense.
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CHAPTER III

PROOFS AND GALOIS REPRESENTATIONS

This chapter contains new results in the study of moduli spaces of sheaves on

K3 surfaces over arbitrary fields and their Galois representations. In particular,

we will prove Theorem 2. In Section 3.1 we show that the moduli space of

geometrically stable sheaves on a K3 surface is a smooth, projective, geometrically

irreducible variety. We show in Section 3.2 that H2(M,Z`(1)) is isometric to a

specific sublattice in H∗(S,Z`) and in Section 3.3 that, after tensoring with Q`,

the same sublattice can be identified with a fixed sublattice of H∗(S,Q`), which

depends only on the dimension of M . In Section 3.4, we reduce to the case of

considering just one K3 surface S and comparing M to the Hilbert scheme S[n]. In

Section 3.5 we construct a ring R which surjects via a ring homomorphism h onto

the cohomology of the moduli space. In Section 3.6, we prove that this surjection

h is equivariant with respect to an orthogonal group which acts on both the ring R

and the cohomology ring. In Section 3.7, we complete the proof of Theorem 2 by

constructing a Galois equivariant ring isomorphism between the cohomologies of the

two moduli spaces M and S[n].

3.1. The moduli space over an arbitrary field

Let S be a K3 surface defined over an arbitrary field k with algebraic closure

k, and let S = S ×k k. Recall the definitions of the Mukai lattice and Mukai vectors

discussed in Section 2.3.

Given a Mukai vector v on S and an ample class H in NS(S), we can form

the moduli space MH(S, v) of Gieseker geometrically H-stable sheaves F on S such
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that v(F) = v. These spaces were originally constructed over algebraically closed

fields in [42] and [14]. When the notation is clear, we will simply write M or M(v)

in place of MH(S, v). By [35, Thm. 0.2] recalled in Theorem 2.3.15, M is a quasi-

projective scheme of finite type over k. In order for the moduli space to be a non-

empty, smooth, projective variety, we will require the Mukai vector to satisfy the

following conditions.

Definition 3.1.1. A Mukai vector v ∈ N(S) is geometrically primitive if its image

under N(S)→ N(S) is primitive.

Geometrically primitive is the same as primitive when Br(k) = 0, or when

S has a zero-cycle of degree one (for example, a k-point), in which case there is an

isomorphism Pic(S)
∼−→ Pic(S)Gal(k/k) coming from the Hochschild-Serre spectral

sequence [28, Sec. 18.1, Eq. 1.10 and 1.13].

Definition 3.1.2. A Mukai vector v = (r, c1, s) ∈ N(S) is effective if r > 0, or

r = 0 and c1 is effective, or if r = c1 = 0 and s > 0.

These conditions are necessary to ensure that M(v) is non-empty.

Definition 3.1.3. A polarization H ∈ Pic(S) is v-generic if it is not contained in

the locally finite union of hyperplanes in NS(S)R defined in [31, Def. 4.C.1].

On S, there are many choices of v-generic polarizations. However, it is

possible that NS(S) ⊂ NS(S) is contained entirely in one of the hyperplanes

defined in [31, Def. 4.C.1], resulting in the existence of properly semistable sheaves

and causing the moduli space of stable sheaves to be only quasi-projective. This is

demonstrated in the following example.
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Example 3.1.4. Let S be the K3 surface defined over F3 first introduced in

Example 2.2.7, which has NS(S) = ZH (which is demonstrated below). We claim

that there is no v-generic polarization on S for v = (0, H, 2).

In the proof of Proposition 5.5 in [20], Hassett and Várilly-Alvarado show

that rank(NS(S)) = 2. We see explicitly that C1, C2 ∈ NS(S) and their intersection

matrix  −2 3

3 −2


has determinant −5 so these classes are independent in NS(S). Moreover, the

determinant is square-free, so the span of C1 and C2 forms a primitive sublattice

in NS(S). That is, if C1 and C2 generated an index-N sublattice, then the

discriminant would be divisible by N2. Thus, NS(S) = ZC1 ⊕ ZC2. By looking

at the eigenvalues of Frobenius given in the proof of Proposition 5.5 in [20], we see

that the Frobenius action swaps C1 and C2, so NS(S) ⊂ NS(S)G = Z(C1 + C2) for

G = Gal(F3/F3). Since C1 + C2 = H ∈ NS(S), we conclude that NS(S) = ZH, and

the inclusion NS(S) ⊂ NS(S) is given by H = C1 + C2.

Finally, we saw in Example 2.2.7 that there are properly H-semistable sheaves

L on S with v(L) = (0, H, 2) (this is the case of H ′ = H + εC1 with ε = 0). Since H

and multiples of H are the only choices for a polarization on S over F3 with which

to compute stability, there will always be properly semistable sheaves, and hence

the locus of geometrically stable sheaves with be a quasi-projective subvariety of

the moduli space of semistable sheaves on S.

In order to avoid this behavior, we will restrict ourselves to situations

in which this does not happen. This can be guaranteed, for example, if the

components of v satisfy a gcd condition given by Charles in [5] (and which is

57



similar to that given in Proposition 2.2.6), or if rank(NS(S)) = rank(NS(S)) as

Huybrechts assumes in [30].

Proposition 3.1.5. Let v ∈ N(S) be an effective and geometrically primitive

Mukai vector with v2 ≥ 0, and let H be a v-generic polarization on S. Then M is a

non-empty, smooth, projective, geometrically irreducible variety over k of dimension

v2 + 2.

This was proven in [5, Thm. 2.4(i)] under the stronger assumption that v

satisfy condition (C) given in [ibid., Def. 2.3], which in particular implies that M

is a fine moduli space. See also [11, Prop. 4.5] for a similar result which is slightly

more general than [5, Thm. 2.4(i)], but which still requires v to have positive rank.

Proof of Proposition 3.1.5. First, we show that M is projective. It is enough

to show that any semistable sheaf F is actually geometrically stable, since by

[35, Thm. 0.2] the moduli space M(P ) of Gieseker H-semistable sheaves on S

with Hilbert polynomial P is a projective scheme of finite type over k. Hence

we consider the pullback of F to k, and note that the notions of semistable

and geometrically semistable coincide [31, Thm. 1.3.7]. Since v is geometrically

primitive and H is v-generic, [28, Ch. 10 Prop. 2.5] shows that the pullback of F is

stable. Thus, F is geometrically stable. Lastly, fixing the Mukai vector v fixes the

Hilbert polynomial P , so M = M(v) is a closed subscheme of the projective scheme

M(P ), and is hence also projective.

For smoothness, we know M = Mk is smooth by [45, Cor. 0.2], and hence M

is also smooth. Once we know M is non-empty, discussed below, [45, Cor. 0.2] also

shows that dimM = v2 + 2.

We show next that M is geometrically irreducible. First, suppose that

char k = 0. If k = C, this fact is well-known: see [32, Thm. 4.1] or [60, Thm. 8.1].
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Otherwise, we will apply the Lefschetz principle. Since M is a projective variety,

it is defined by finitely many equations determined by a finite set of coefficients

{ai}i∈I with ai ∈ k for each i ∈ I. Then we can consider the subfield k′ = Q(ai) ⊂ k

generated by all of the ai over Q, and we see that M is defined over k′. There

are inclusions k′ ↪→ C and k′ ↪→ k giving M and MC as geometric fibers of

Mk′ → Spec k′. Since MC is irreducible, it follows that M is as well.

Now suppose char k = p > 0. To show that M is irreducible, we will show

that it is connected. As discussed in Section 2.3.13, we will lift S to characteristic

zero. By [5, Prop. 1.5], there is a finite flat morphism SpecW ′ → SpecW , where

W ′ is a discrete valuation ring and W is the ring of Witt vectors of k, and there

exists a smooth projective relative K3 surface S → SpecW ′ with special fiber

isomorphic to S. By the same result, there are lifts H of H and c̃1 of c1 to S, so

we can form the relative moduli space f : MH(S, vW ′) → SpecW ′ parameterizing

geometrically stable sheaves on the fibers of S → SpecW ′, as constructed in [35,

Thm. 0.2] (see Theorem 2.3.15 for a discussion). For the sake of notation, we will

denote MH(S, vW ′) by M. We must show that f is a smooth morphism. Since

smoothness is an open condition, we need only show that the morphism is smooth

at closed points in the central fiber. These are the closed points of M , so they

correspond to geometrically stable sheaves F on S. By [23, Lem. 3.1.5], f is smooth

at such a point [F ] if and only if Pic(S/W ′) is smooth at [detF ]. The latter holds

because detF = c1 lifted from S to S. Therefore, f : M→ SpecW ′ is smooth.

To complete the proof of irreducibility, we claim that all geometric fibers

of f are connected. Since all closed points in the central fiber are geometrically

stable and this property is also an open condition, we conclude that all closed

points in M correspond to geometrically stable sheaves. Then by [35, Thm. 0.2]
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f is projective, so in particular it is flat and proper with reduced geometric fibers.

From [53, Tag 0E0N] it follows that the number of connected components of the

geometric fibers is constant. Thus the closed fiber M is connected and smooth,

hence irreducible.

Lastly, the non-emptiness of M over k = C is proven in [46, Thm. 5.1 & 5.4]

for v2 = 0, in [61, Thm. 3.16] for r > 0, and in [62, Cor. 3.5] otherwise (this result

is summarized in [28, Thm. 10.2.7]), from which it follows that when char k = 0, M

is not empty. For char k > 0, the fact that the number of connected components of

the geometric fibers of f : M → SpecW ′ is constant implies that the closed fiber

M, and hence also M, is non-empty.

3.2. Generalizing results of Mukai and O’Grady

In [46], Mukai showed that for a complex projective K3 surface S and a

primitive Mukai vector v with v2 = 0, there is an isomorphism v⊥/〈v〉 ∼=

H2
sing(M,Z), where v⊥ is the orthogonal complement of v in the Mukai lattice and

M = M(v). When v2 > 0, O’Grady [47] proved that v⊥ ∼= H2
sing(M,Z). Moreover,

both of these isomorphisms were shown to be isometries, where the pairing on

H2
sing(M,Z) is given by the Beauville-Bogomolov form. We will make use of the

definition of the Beauville-Bogomolov form given at the beginning of Section 2.7.

We will show here that the isometries proven by Mukai and O’Grady

also hold when S is defined over an arbitrary field k and v is an effective and

geometrically primitive Mukai vector.

Proposition 3.2.1. Let S be a K3 surface defined over an arbitrary field k and

v ∈ N(S) an effective and geometrically primitive Mukai vector with a v-generic

polarization H ∈ NS(S).
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1. When v2 > 0, there is a Galois equivariant isometry

v⊥ ∼= H2(M,Z`(1)).

2. When v2 = 0, there is a Galois equivariant isometry

v⊥/〈v〉 ∼= H2(M,Z`(1)).

Charles in [5, Thm. 2.4(v)] proved this result when v2 > 0 and assuming v

satisfies condition (C) in [ibid., Def. 2.3]. We follow his technique to prove the more

general result, making modifications where necessary. We will prove Proposition

3.2.1 in great detail so that we can easily refer back to it in similar situations later.

Proof of Proposition 3.2.1. For both (i) and (ii), we must first show that a quasi-

universal sheaf exists on S × M in the sense of [31, Def. 4.6.1]. We claim that a

quasi-univeral sheaf U exists by using the same proof of existence given in [31,

Prop. 4.6.2] but appealing to work by Langer for moduli of sheaves in arbitrary

characteristic. Langer proves in [34, Thm. 4.3] that the open subset R of the Quot-

scheme parameterizing Gieseker semistable sheaves is equal to the set of semistable

points under the GL(V )-action. The quotient is a PGL(V )-principal bundle in the

fppf topology and by [43, I.3.26], it also has local sections in the étale topology.

Then the proof of [31, Prop. 4.6.2] gives that the universal sheaf on Rs descends to

a quasi-universal sheaf on S ×M .

The quasi-universal sheaf is used to define the Mukai map which we will

show gives the desired isomorphisms. Introducing some notation, we consider the
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projections from S ×M :

S ×M
π1

{{

π2

$$
S M.

The Mukai map θv : H̃(S,Z`)→ H2(M,Z`(1)) is defined by

α 7→ 1

ρ
[π2∗(v(U) · π∗1(α))]2 ,

where v(U) is the Mukai vector of U and ρ is the similitude of U (that is, the rank

of the sheaf W in [31, Def. 4.6.1]).

We are now ready to prove that if v2 > 0, θv|v⊥ : v⊥
∼−→ H2(M,Z`(1)) is a

Galois equivariant isometry. This will be done in different cases depending on the

field k. If k = C, then θv was proven in [47, Main Thm.] to be an isometry for

singular cohomology with coefficients in Z. This isomorphism can be tensored with

Z`(1), and then the comparison theorem for singular and étale cohomology gives

the isomorphism v⊥ ∼= H2(M,Z`(1)).

Now suppose k is an arbitrary field of characteristic zero. Again there is a

field k′ with inclusions k′ ↪→ C and k′ ↪→ k such that S and M are defined over k′.

The inclusions give the following horizontal isomorphisms by smooth base change:

H2(M,Z`(1)) H2(Mk′ ,Z`(1))∼oo ∼ // H2(MC,Z`(1))

v⊥
k

θv

OO

v⊥
k′

OO

∼oo ∼ // v⊥C ,

θv∼

OO

where v⊥
k′
⊆ H̃(Sk′ ,Z`), and similarly for v⊥

k
and v⊥C . The right-most vertical arrow

is an isomorphism by the argument above, and by commutativity this implies the
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other vertical arrows are isomorphisms as well. Since v(U) is defined over k, we see

that θv : v⊥
∼−→ H2(M,Z`(1)) is Galois equivariant.

Next, suppose k is an arbitrary field of characteristic p > 0. As in the proof of

Proposition 3.1.5, we form the relative moduli space M = MH(S, vW ′), a smooth

scheme over SpecW ′ whose central fiber is M . We have the projections

S ×W ′M
π1

zz

π2

%%
S M,

and by the same argument given above, there is a quasi-universal sheaf Ũ on S ×W ′

M. As long as we construct both of the quasi-universal sheaves U and Ũ following

[31, Prop. 4.6.2], we see that their pullbacks to S ×k M must agree.

Now we can define a relative Mukai map

θ̃v : v⊥W ′ → H2(M,Z`(1)),

where v⊥W ′ ⊂ H̃(S,Z`), and where θ̃v(α) = 1
ρ
[π2∗(v(Ũ) · π∗1(α))]2. We observe that θ̃v

restricts exactly to the map θv over both fibers.

Next we apply the smooth base change theorem in order to compare the

cohomology groups of the geometric fibers of M. Explicitly, we have M→ SpecW ′

a proper and smooth morphism, and for all n, we have µ`n(1) a constructible

locally constant sheaf on M whose torsion is prime to the characteristic of k.

We conclude by [43, VI.4.2] that the cohomology groups for all geometric fibers

of M → SpecW ′ are isomorphic. In particular, if we let K := FracW ′, it

follows that H2(MK ,Z`(1)) ∼= H2(M,Z`(1)). The same argument shows that
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H2m(SK ,Z`(m)) ∼= H2m(S,Z`(m)) for m = 0, 1, and 2, and hence the corresponding

Mukai lattices are also isomorphic.

Thus, overall the smooth base change theorem gives the following

commutative diagram with horizontal isomorphisms, where the right-most vertical

arrow is an isomorphism because the characteristic of K is zero:

H2(M,Z`(1)) H2(M,Z`(1))∼oo ∼ // H2(MK ,Z`(1))

v⊥
k

θv

OO

v⊥W ′
∼oo ∼ //

θ̃v

OO

v⊥
K
.

θv∼

OO

Therefore, the left-most vertical arrow is also an isomorphism, as desired. Again,

v(U) is defined over k, so θv is Galois equivariant, and it continues to respect the

Mukai and Beauville-Bogomolov pairings as shown by [47, Main Thm.]. Hence θv is

a Galois equivariant isometry. This completes the proof of (i).

The proof of (ii) follows the same argument, using the isometry

v⊥/〈v〉 ∼−→ H2(M,Z) [46, Thm. 1.4] for k = C in place of [47, Main Thm.].

3.3. A Galois equivariant isometry

To prove Theorem 2 for i = 2, it remains to show the following:

Proposition 3.3.1. Let v ∈ N(S) be an effective Mukai vector on a K3 surface S

defined over an arbitrary field k, and consider v⊥ ⊂ H̃(S,Q`).

1. When v2 > 0, there is a Galois equivariant isometry

v⊥ ∼= H2(S,Q`(1))⊕Q`,
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where the pairing on the right side is given by the intersection form on

H2(S,Q`(1)) and −v2 on the generator of Q`.

2. When v2 = 0, there is a Galois equivariant isometry

v⊥/〈v〉 ∼= H2(S,Q`(1)),

where the pairing on the right side is given by the intersection form.

Remark 3.3.2. Note that Proposition 3.3.1 need not hold when Q` is replaced

with Z`, as demonstrated by the example in Section 4.1. This difference in

coefficients appears to be related to the question of whether or not the moduli

space M(v) is birational to the Hilbert scheme.

Proof of Proposition 3.3.1. To prove (i), let w = (1, 0, 1 − n) ∈ N(S) where n =

1
2
(v2 + 2). If n > 1 then w⊥ = H2(S,Q`(1))⊕Q`〈(1, 0, n− 1)〉, so we will prove that

v⊥ ∼= w⊥. This is done by reflecting through v −w or v +w, as described in the two

cases below.

For the first case, suppose that (v − w)2 6= 0. Then reflection through v − w

gives a map H̃(S,Q`) → H̃(S,Q`). It can be checked that this reflection preserves

the Mukai pairing, sends v to w, and induces a map v⊥
∼−→ w⊥ which is Galois

equivariant.

For the second case, suppose that (v − w)2 = 0. Then v2 + w2 = 2〈v, w〉 and

(v + w)2 = 2v2 + 2w2 6= 0, so we consider the reflection through v + w. It can be

checked that this gives a Gal(k/k)-equivariant isometry v⊥
∼−→ w⊥. This completes

the proof of (i).

The proof of (ii) requires a few modifications to the argument above. We now

consider w = (1, 0, 0) ∈ N(S), so that w⊥/〈w〉 = H2(S,Q`(1)). If (v − w)2 6= 0,
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then as above, reflection through v − w restricts to a Gal(k/k)-equivariant isometry

v⊥/〈v〉 ∼−→ w⊥/〈w〉.

If instead (v − w)2 = 0, then 〈v, w〉 = 0 and (v + w)2 = 0 as well. Let

us write v = (r, c1, 0). If r 6= 0, then reflecting through v − (0, 0, 1) gives that

v⊥/〈v〉 ∼= (0, 0, 1)⊥/〈(0, 0, 1)〉. Then (0, 0, 1)⊥/〈(0, 0, 1)〉 ∼= w⊥/〈w〉 by reflecting

through (0, 0, 1)− w.

Thus we are reduced to the case where v = (0, c1, 0). We claim that there is

an ample class which pairs positively with c1. For a rank zero sheaf F with v(F) =

v, F is supported on a union of curves:

(SuppF)red = ∪Ci,

and c1 = c1(F) =
∑

i niCi for some integers ni > 0, since v is effective. This

means for any ample divisor h on S, c1.h > 0. If we let v′ = veh = (0, c1, c1.h),

then it follows that (v′ − w)2 = 2c1.h 6= 0, and so reflection through v′ − w is

a Galois equivariant isometry v′⊥/〈v′〉 ∼= w⊥/〈w〉. Lastly, it can be checked that

v⊥/〈v〉 ·e
h

−→ v′⊥/〈v′〉 is an isometry, and it is Galois equivariant because h is Galois

invariant. This completes the proof of (ii).

Remark 3.3.3. In was shown in [39, Thm. 1(3)] that H i(M,Q`) = 0 for all i odd,

so the proof of Theorem 2 is complete in the case where dimM1 = dimM2 = 2. In

this case, H0(M1,Q`) ∼= H0(M2,Q`) and H4(M1,Q`) ∼= H4(M2,Q`) trivially (as

Galois representations), and by Propositions 3.2.1 and 3.3.1,

H2(M j,Q`) ∼= v⊥j /〈vj〉 ⊗Q`(−1) ∼= H2(Sj,Q`)
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for j = 1 and 2. Since by assumption H2(S1,Q`) ∼= H2(S2,Q`), we conclude that

H2(M1,Q`) ∼= H2(M2,Q`).

3.4. Reduction to the case of a single surface

In Section 3.3, we were able to conclude Theorem 2 holds for i = 2 by using

results about a single K3 surface along with the assumption that H2(S1,Q`) ∼=

H2(S2,Q`) as Gal(k/k)-representations. By the following proposition, to complete

the proof for i > 2 it is enough to show that H i(M,Q`) ∼= H i(S
[n]
,Q`) as Gal(k/k)-

representations, where n = 1
2

dimM .

Proposition 3.4.1. Let S1 and S2 be two K3 surfaces defined over an arbitrary

field k such that H2(S1,Q`) ∼= H2(S2,Q`) as Gal(k/k)-representations. Then

H i(S
[n]

1 ,Q`) ∼= H i(S
[n]

2 ,Q`) as Gal(k/k)-representations for all i ≥ 0.

Proof. For a K3 surface S, de Cataldo and Migliorini show in [6, Thm. 6.2.1] that

the rational Chow motive of S
[n]

is built out of motives of symmetric products

S
(l(ν))

where ν is a partition of n and l(ν) is the length of ν. The maps S
(l(ν)) →

S
[n]

used to give the isomorphism are induced by tautological correspondences

defined over the base field, so the decomposition works over any field (see [6, Rmk.

6.2.2]). This implies the following Gal(k/k)-equivariant isomorphism on the level of

cohomology:

H∗(S
[n]
,Q`) ∼=

⊕
ν∈P(n)

H∗(S
(l(ν))

,Q`)(n− l(ν)),

where P(n) is the set of partitions of n. Since H∗(S
(m)
,Q`) ∼= H∗(S

m
,Q`)

Σm for

any m ≥ 1, where H∗(S
m
,Q`)

Σm is the subring of Σm-invariants, the result follows.
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Thus the proof of Theorem 2 will be complete once we know that

H i(M,Q`) ∼= H i(S
[n]
,Q`) for a given K3 surface.

Remark 3.4.2. It is interesting to observe that we need not arrive at a ring

isomorphism between H∗(S
[n]

1 ,Q`) and H∗(S
[n]

2 ,Q`), and in fact this appears to

depend on whether or not the isomorphism H2(S1,Q`) ∼= H2(S2,Q`) as Galois

representations agrees with the cohomology ring structures. Indeed, if there is a

Galois equivariant ring isomorphism H∗(S1,Q`) ∼= H∗(S2,Q`), then the intersection

forms on the middle cohomology agree and along with Proposition 3.3.1 we get an

isometry between their Mukai lattices. Following an argument akin to that given

in Proposition 3.7.1 below, this implies the rings H∗(S
[n]

1 ,Q`) and H∗(S
[n]

2 ,Q`) are

isomorphic.

If instead the given isomorphism H2(S1,Q`) ∼= H2(S2,Q`) as Galois

representations is not an isometry with respect to the intersection pairing,

we should not expect H∗(S
[n]

1 ,Q`) and H∗(S
[n]

2 ,Q`) to be isomorphic rings.

Suppose there is a ring isomorphism ψ : H∗(S
[n]

1 ,Q`)
∼−→ H∗(S

[n]

2 ,Q`), and let

qi : H
2(S

[n]

i ,Q`) → Q` for i = 1 and 2 be the Beauville-Bogomolov form, introduced

at the beginning of Section 2.7. Then for α ∈ H2(S
[n]

1 ,Q`),

q1(α)n = q2(ψ(α))n,

so that q1 and q2 agree up to an nth-root of unity. The only roots of unity in Q` are

the (` − 1)th roots of unity for ` odd and ±1 for ` = 2, so if we choose ` > 2 with

gcd(n, ` − 1) = 1, this root must be trivial. If n is even, we can only ensure that

gcd(n, `− 1) = 2, implying the root is ±1, but we claim q1 6∼= −q2.
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Consider when n is even and ` = 3 so that gcd(n, 2) = 2. We will show

that for the form q on Q23
3 giving H2(S

[n]

1 ,Q3), there is no linear isomorphism of

Q23
3 taking q to −q, and hence the Beauville-Bogomolov forms on H2(S

[n]

1 ,Q3) and

H2(S
[n]

2 ,Q3) cannot differ by a sign. By Propositions 3.2.1 and 3.3.1, q is given

by (−E8)⊕2 ⊕ U⊕3 ⊕ 〈2 − 2n〉. In the Witt group W (Q3), it can be checked that

(−E8)⊕2 ⊕ U⊕3 = (E8)⊕2 ⊕ (−U)⊕3 = 0, so to see that q 6= −q ∈ W (Q3), we

must only check that 〈2 − 2n〉 6= 〈−(2 − 2n)〉 as forms on Q3. The form 〈2 − 2n〉 is

equivalent to 〈m〉 for m ∈ {−3,−1, 1, 3}, from which it follows that 〈m〉 6= 〈−m〉 ∈

W (Q3) (see [33, Cor. VI.1.6 and Thm. VI.2.2]). We conclude that q1 and q2 must

agree.

Therefore, again by Propositions 3.2.1 and 3.3.1, there is a Galois

equivariant isometry H2(S1,Q`) ⊕ Q`
∼= H2(S2,Q`) ⊕ Q`. As in the proof

of Proposition 3.3.1(i), the reflection that takes the generator of the first Q`

to the generator of the second Q` restricts to a Galois equivariant isometry

H2(S1,Q`) ∼= H2(S2,Q`), hence determining the ring structure.

3.5. Markman’s surjective ring homomorphism

Because Section 3.3 completed the proof of Theorem 3.2.1 in the case where

dimM1 = dimM2 = 2, we now assume v2 > 0. Following Markman [38, p. 15],

we construct a ring R(v) corresponding to a geometrically primitive Mukai vector v

and a ring homomorphism to the cohomology ring of M . Recall the projections π1

and π2 from S ×M to S and M , respectively, and let U be a quasi-universal sheaf

on S ×M . First, define the map

Φi
uv : H̃(S,Q`)→ H2i(M,Q`(i)),
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given by

α 7→ [π2∗(uv · π∗1(α))]2i ,

where uv, defined in [40, Eq. (27)], is the pullback from S × M to S ×k M of a

normalization of v(U)(tdM)−1/2 which Markman [40, Lem. 4.11] shows is invariant

under the action of the monodromy group. This invariance will play an important

role in Section 3.6. We observe that Φ1
uv |v⊥ = θv, the Mukai map used in the proof

of Proposition 3.2.1.

Definition 3.5.1. Let R(v) be the graded ring freely generated by v⊥ in degree 2

and by M2i
∼= H̃(S,Q`) in degree 2i for 1 ≤ i ≤ dimM .

Following the notation given in Definition 2.3.17, let H̃(M,Q`) denote the

cohomology ring of M twisted into weight zero.

Definition 3.5.2. Let

h : R(v)→ H̃(M,Q`)

be the ring homomorphism determined by Φ1
uv |v⊥ : v⊥

∼−→ H2(M,Q`(1)) in degree

two, and Φi
uv : M2i → H2i(M,Q`(i)) in degree 2i for 1 < i ≤ dimM .

Lemma 3.5.3. The map h is surjective.

Proof. The case of k = C is proven for singular cohomology with coefficients

in Q by [38, Lem. 10], from which it immediately follow for étale cohomology

with coefficients in Q`. For k an arbitrary field, we proceed as in the proof of

Proposition 3.2.1.
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3.6. The action of an orthogonal group on the cohomology

We will see in Proposition 3.6.4 that the Galois group Gal(k/k) for k an

arbitrary field can be seen to act on the cohomology of the moduli space of sheaves

on a K3 surface through an orthogonal group. We will study a natural action of

this orthogonal group on R(v) and H̃(M,Q`), where the representation theory

is well-understood, and then recognize the Galois group acting through this

orthogonal group.

The Beauville-Bogomolov form q induces an action of O(q) on H2(M,Q`(1)).

This gives a natural action of O(q) on v⊥ via the isomorphism v⊥ ∼= H2(M,Q`(1))

proven in Proposition 3.2.1, which then extends to all of R(v) by defining the

action to be trivial on all copies of Q`〈v〉 ⊂M2i.

Proposition 3.6.1. The O(q)-action on R(v) descends to an action on H̃(M,Q`).

Proof. First, let k = C and consider singular cohomology with coefficients in Q`.

We follow the work of Markman [40]. Let Γv be the subgroup of the isometry

group of H∗sing(S,Z) which stabilizes v. Then by [40, Cor. 1.3], there is a group

homomorphism γ : Γv → Aut(H∗sing(M,Z)) giving an action of γ(Γv) on

H∗sing(M,Z). Next by [40, Lem. 4.11(3)], the γ(Γv)-action extends to an action

of O(q) on H∗sing(M,Q`) (under the choice of an inclusion Q` ↪→ C). In his

proof of Lemma 4.11(3), Markman shows that this action extends to an action of

O(q) by descending the action on R(v) through the surjective map h. We then

use the isomorphism between singular and étale cohomology to get the action on

H∗(M,Q`).

For k an arbitrary field, we follow the argument given in Proposition 3.2.1 to

arrive at an O(q)-action on H̃(M,Q`), as desired.
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This O(q)-action on the cohomology ring can be seen as arising in a different

way, as developed by Verbitsky [57] and Looijenga-Lunts [37]. This allows us to

give a different and interesting proof of Proposition 3.6.1.

Another proof of Prop. 3.6.1. First, suppose that k = C, and let n = dimM . For

an ample class a ∈ H2
sing(M,Q`), we define La : H∗sing(M,Q`) → H∗sing(M,Q`) by

x 7→ a · x, which is a degree 2 raising operator. By the Hard Lefschetz Theorem,

the homomorphisms Lia : Hn−i
sing(M,Q`)

∼−→ Hn+i
sing(M,Q`) for 0 ≤ i ≤ n are

isomorphisms. This is equivalent to the existence of a degree 2 lowering operator

Λa on H∗sing(M,Q`) such that [La,Λa] = H, where the operator H is multiplication

by k − n on Hk
sing(M,Q`). Then the operators La, H, and Λa satisfy

[La,Λa] = H, [H,La] = 2La, [H,Λa] = −2Λa,

and so they generate a Lie subalgebra ga ⊂ gl(H∗sing(M,Q`)) which is isomorphic

to sl2. We will call such a triple a Lefschetz triple, and for any a ∈ H2
sing(M,Q`)

such that (La, H,Λa) is a Lefschetz triple, we will say that a is of Lefschetz

type. Verbisky shows in [55, Prop. 8.1] that Λa is uniquely determined by a ∈

H2
sing(M,Q`); that is, if (La, H,Λa) and (La, H,Λ

′
a) are both Lefschetz triples, then

Λa = Λ′a. Looijenga and Lunts in [37] define a Lie algebra g(M) to be the Lie

algebra generated by all of the ga’s for a ∈ H2
sing(M,Q`) of Lefschetz type. We

note that these are the same as the classes which are ample for some deformation

of M . In [37, Theorem 4.5(ii)], they show that the degree zero part of g(M)

splits as so(q) × Q`H. The action of so(q) integrates to an action of Spin(q) and

Verbitsky [57, Cor 8.2] shows that this action factors through an action of SO(q)
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on H∗sing(M,Q`). By the comparison theorem for singular and étale cohomology, we

arrive at an action of SO(q) on H∗(M,Q`).

Next, we would like to show that the same action arises when k is an

arbitrary field. We claim that this happens because we have the same cohomology

ring for M regardless of the field k. If char k = 0, then we saw in Proposition 3.2.1

using the Lefschetz principle that H2(M,Q`) ∼= H2(MC,Q`) ∼= H2
sing(MC,Q`).

If instead char k > 0, in the smooth base change and lifting arguments made in

Proposition 3.2.1, we observed that H2(M,Q`) ∼= H2(MK ,Q`) ∼= H2(MC,Q`).

This means that regardless of the field k, there is a bijection between the classes

of Lefschetz type in H2
sing(MC,Q`) and in H2(Mk,Q`). Therefore, we have an

isomorphism of Lie algebras g(MC) ∼= g(M). Then as above, g(M) is isomorphic

to so(q) × Q`H, where this splitting still makes sense because the operator

H is canonical. Lastly, applying [57, Cor 8.2] again gives the SO(q) action on

H∗(M,Q`).

Lastly, since O(23) ∼= SO(23) × Z/2Z, we can extend the action of SO(q) to

an action of O(q) by setting −1 ∈ Z/2Z to act as Id on H4k(M,Q`) and as −Id on

H4k+2(M,Q`), so that it acts by a ring homomorphism.

In particular, Markman [40, Lem. 4.11(3)] proves that uv is invariant under

the extended action of O(q) on H̃(M,Q`). This allows us to conclude the following:

Corollary 3.6.2. The map h given in Definition 3.5.2 is equivariant for the O(q)

action constructed in Proposition 3.6.1.

To see explicitly that h is SO(q)-equivariant using the description of the

action given by Looijenga-Lunts and Verbitsky, we can check directly that

h(A · α) = A · h(α) for all A ∈ SO(q) and α ∈ R(v). We do this by checking

that SO(q) acts trivially on uv.
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For this, we momentarily consider the case of k = C and singular cohomology

with coefficients in Q. In [40, Lemma 4.13], Markman proves that Verbitsky’s

SO(q) action agrees with the monodromy action on a finite index subgroup K

of the monodromy group. By Lemma 3.6.3 given below, K is of finite index in

Mon, where the Zariski closure is taken inside O(H2(M,C)). Then [25, Ch.2, Sec.

7.3] shows that K contains Mon
◦
, and since Mon ⊂ O(H2(M,C)), we see that

Mon
◦

= SO(23,C). Since the inclusion K
◦ ⊂ Mon

◦
is clear, we conclude that K is

Zariski dense in SO(23,C), where the proof of Lemma 3.7.2 shows that the Zariski

closure of O(H2(M,Z)) in GL(23,C) is O(H2(M,C)).

Now, consider the set

{
(A, r) ∈ SO(23,C)×R(v) : h(A · r)− A · h(r) = 0

}
,

which is a closed subset of SO(23,C) × R(v). For A ∈ K, we know by [40, Lemma

4.13] and [40, Lemma 4.15] that A · uv = uv, which means h commutes with A, i.e.

K×R(v) is contained in the closed subset above. Then the subset must also contain

the closure of K × R(v), which by the argument above is SO(23,C) × R(v). In

particular, the subset above contains SO(q) × R(v), which means that h : R(v)C →

H̃sing(MC,Q) is SO(q)-equivariant.

Lastly, using the lifting and specialization argument given in Lemma 3.5.3, we

conclude that h : R(v)→ H̃(M,Q`) is also a map of SO(q)-representations.

Lemma 3.6.3. Let G be an algebraic group with subgroups H < K < G and H is

of finite index inside K. Then H < K is also of finite index.

Proof. We can write K = k1H ∪ · · · ∪ knH. Since multiplication in G is a

homeomorphism, it follows that kiH is closed for 1 ≤ i ≤ n, which further implies
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that k1H∪· · ·∪knH is also closed inside G. For any k ∈ K, we have k ∈ kiH ⊂ kiH

for some i, which means k ∈ k1H ∪ · · · ∪ knH. Then K ⊂ k1H ∪ · · · ∪ knH, and

hence K ⊂ k1H ∪ · · · ∪ knH. Thus, K is contained in a finite union of cosets of H,

which means H is of finite index in K.

Next, we show that the Galois group can be seen as acting through O(q).

Proposition 3.6.4. The action of Gal(k/k) on H̃(M,Q`) factors through O(q).

Proof. First, we must show that q(σα) = q(α) for all α ∈ H2(M,Q`(1)) and σ ∈

Gal(k/k). The tangent bundle on M is Galois invariant because it is defined over

k, and so it follows that σ
(√

tdM
)

=
√

tdM . Then, using the definition given in

Section 2.7,

q(σα) = c (σα)2.
(√

tdM
)

4n−4

= cσ(α2).σ
(√

tdM
)

4n−4

= σ

(
c α2.

(√
tdM

)
4n−4

)
= q(α).

Note that the second equality follows from the fact that the intersection

pairing is Galois equivariant when the cohomology has been twisted into weight

zero, and the last equality follows because the Galois action on H4n(M,Q`(2n)) is

trivial.
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This shows that we have a map Gal(k/k) → O(q), so we can consider the

following diagram:

Gal(k/k) //

$$

Aut(H̃(M,Q`))

O(q)

77

To see that the diagram commutes, let σ ∈ Gal(k/k) map to A ∈ O(q), and

consider β ∈ H2i(M,Q`(i)). Since h is surjective, there exists some γ ∈ R(v)

such that β = h(γ). Note that h is Galois equivariant because uv is defined over the

base field and hence is Galois invariant. This means σ · β = σ · h(γ) = h(σ · γ).

Now, γ ∈ R(v) is built out of elements of H2(M,Q`(1)) and elements of Q`, and so

σ · γ is determined by A · γ where A acts on the separate components of γ. Since h

is also O(q)-equivariant, it follows that h(A · γ) = A · h(γ) = A · β. Putting all of

this together gives σ · β = A · β. Thus, the action of Gal(k/k) on H̃(M,Q`) factors

through O(q).

3.7. An isomorphism of the cohomology rings

In this section we complete the proof of Theorem 2. Let us consider a fixed

K3 surface S and a moduli space M of stable sheaves on S with an effective and

geometrically primitive Mukai vector v. If v2 = 0, Theorem 2 was proven in Section

3.3 (see Remark 3.3.3). Assume now that v2 > 0. We will continue to use the

notation introduced in the proof of Proposition 3.3.1 that w = (1, 0, 1 − n) ∈ N(S)

where n = 1
2
(v2 + 2). We follow [40, Sec. 3.4] to produce an isomorphism

between the cohomology rings of M and S
[n]

by constructing a class in the middle

cohomology of M × S
[n]

. This class will depend on the choice of an isometry
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g : H̃(S,Q`)
∼−→ H̃(S,Q`) such that g(v) = w, and we will specifically use the

reflection constructed in Proposition 3.3.1.

We outline here what Markman does to produce the desired ring

isomorphism, where he starts with a complex projective K3 surface and an isometry

on H∗sing(S,Z). By considering an integral isometry, the cohomology class produced

is an element of H2n(M × S[n],Z), and then Markman shows that this class induces

a ring isomorphism

H∗sing(M,Z)
∼−→ H∗sing(S

[n],Z).

Since we will start with an isometry over Q`, the resulting class, and hence the map

on cohomology, will also be defined over Q`. We will make a density argument to

show that this map on Q`-cohomology is also an isomorphism.

In order to produce a map H∗(M,Q`) → H∗(S
[n]
,Q`), we would like to

compose cohomological Fourier-Mukai transforms with the isometry g. First, we

have the map H∗(M,Q`) → H∗(S,Q`) induced by the class uv in the cohomology

of S ×k M , where uv is the pullback from S ×k M to S ×k M of a normalization

of v(U)(tdM)−1/2, defined in [40, Eq. (3.4)]. This is followed by g : H̃(S,Q`) →

H̃(S,Q`), and the last map H∗(S,Q`) → H∗(S
[n]
,Q`) is induced by the class

uw, defined analogously to uv. The resulting morphism can be described using a

cohomology class given below.

For a projective variety X, consider the universal polynomial map

l : ⊕i H2i(X,Q`)→ ⊕iH2i(X,Q`)
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taking the Chern character of a sheaf to its total Chern class. That is,

l(r + a1 + a2 + · · · ) = 1 + a1 +

(
1

2
a2

1 − a2

)
+ · · · .

Let πij be the projection from M × S × S
[n]

onto the product of the ith and jth

factors. We define

γg := c2n

(
l(−π13∗[π

∗
12((1⊗ g)(uv))

∨π∗23(uw)])
)
,

so that γg ∈ H4n(M × S
[n]
,Q`(2n)), the middle cohomology group. For further

discussion on this choice of cohomology class, see [40, Sec. 3.4].

Now consider the projections from M × S[n]
:

M × S[n]

q

{{

p

$$
M S

[n]
.

We also let γg denote the induced map H∗(M,Q`)→ H∗(S
[n]
,Q`) given by

α 7→ p∗(q
∗(α) · γg).

Proposition 3.7.1. Let S be a K3 surface defined over an arbitrary field k

and v ∈ N(S) an effective and geometrically primitive Mukai vector of length

v2 > 0 with a v-generic polarization H ∈ NS(S). Let g : H̃(S,Q`) → H̃(S,Q`)

denote the isometry produced in the proof of Proposition 3.3.1. Then the map

γg : H∗(M,Q`)→ H∗(S
[n]
,Q`) is a Galois equivariant ring isomorphism.

78



Proof. We begin by assuming that k = C and the cohomology is singular

cohomology. Let I := Isom(H̃(S), v, w) be the subvariety of A24×24
Q`

consisting of

isometries H̃(S) → H̃(S) which send v to w. Similarly, let Hom(H∗(M), H∗(S[n]))

be the affine variety of graded vector space homomorphisms from H∗(M) to

H∗(S[n]). Then we get a map of varieties

Ψ: I → Hom(H∗(M), H∗(S[n]))

sending an isometry g to the map γg defined above. Consider the subspace Z of

I containing all those isometries g such that γg is a ring homomorphism. We will

show that Z = I. Observe that γg being a ring homomorphism is a closed condition

so Ψ(Z) ⊂ Hom(H∗(M), H∗(S[n])) is closed. Since Z is the preimage under Ψ of a

closed subspace, Z ⊂ I is closed.

Given a Z-point g : H̃(S,Z) → H̃(S,Z) of I, by [40, Thm. 3.10] the map

γg : H∗(M,Z) → H∗(S[n],Z) is a ring homomorphism, so Z contains all of the Z-

points of I, I(Z). By Lemma 3.7.2 below, we see that the Z-points of I are Zariski

dense in I, i.e I(Z) = I. Since Z is closed, I(Z) = I ⊂ Z. Thus, we conclude that

every morphism γg for g ∈ I is a ring homomorphism.

Next, we claim that in fact every homomorphism in Im(Ψ) is a ring

isomorphism. We consider the algebraic map

I → Hom(H∗(M), H∗(M))
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sending g 7→ γg−1γg, where γg−1 is defined analogously to γg for g−1 ∈

Isom(H̃(S), w, v). Then the subspace

{g : γg−1γg − Id = 0} ⊂ I

is again closed because it is the preimage of a closed subspace in

Hom(H∗(M), H∗(M)). When g is a Z-point of I, by [40, Lem. 3.12] we know that

γg−1γg = γg−1g = γId = Id. Thus this closed subspace contains all of the Z-

points of I. Again using Lemma 3.7.2, the Z-points of I are Zariski dense in I,

so we conclude that γg−1γg = Id for all g ∈ I. The same argument shows that

γfγf−1 = γff−1 = Id for all f ∈ Isom(H̃(S), w, v), and hence every such γg is an

isomorphism. In particular, the isometry g constructed in Proposition 3.3.1 is a

Q`-point of I and therefore γg is an isomorphism. Lastly, the comparison theorem

for singular and étale cohomology gives the ring isomorphism on étale cohomology,

γg : H∗(M,Q`)
∼−→ H∗(S[n],Q`).

For k an arbitrary field, we proceed as in the proof of Proposition 3.2.1, using

the Lefschetz principle and the lifting argument for fields of characteristic zero and

p > 0, respectively, to conclude that γg remains an isomorphism.

To see that γg is Galois equivariant, we observe that both uv and uw are

Galois invariant, and all of the other operations in the construction of the class
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γg are Galois equivariant. That is, for σ ∈ Gal(k/k) and α ∈ H∗(M,Q`),

σγg = σc2n

(
l(−π13∗[π

∗
12((1⊗ g)(uv))

∨π∗23(uw)])
)

= c2n

(
l(−π13∗[π

∗
12((1⊗ g)(σuv))

∨π∗23(σuw)])
)

= c2n

(
l(−π13∗[π

∗
12((1⊗ g)(uv))

∨π∗23(uw)])
)

= γg,

and so

γg(σα) = p∗(q
∗(σα) · γg)

= p∗(q
∗(σα) · σγg)

= σp∗(q
∗(α) · γg).

Hence the resulting morphism γg is equivariant.

Lemma 3.7.2. Using the notation introduced above, the Z-points of

Isom(H̃(S), v, w) are Zariski dense.

Proof. Let I = Isom(H̃(S), v, w) ⊂ A24×24
C . We claim that I(Z) = I. Consider

IR ⊂ A24×24
R , which is a torsor over Stab(v)R := {A ∈ O(H̃(S)) : Av = v} ⊂ A24×24

R ,

and observe that Stab(v)R is isomorphic to O(v⊥) ∼= O(3, 20) ⊂ A23×23
R as group

schemes over Q. By [44, Thm. 5.1.11] and discussed in Section 2.8, the Z-points,

which we let Stab(v)Z denote, form a lattice in Stab(v)R. The proof of [44, Cor.

4.5.6] shows that the connected component of the Zariski closure of Stab(v)Z is

equal to the connected component of Stab(v)R, which we denote by Stab(v)◦R. So

Stab(v)Z
◦

= Stab(v)◦R. Since Stab(v)R ∼= O(3, 20), it follows that Stab(v)◦R
∼=

SO(3, 20) ⊂ Stab(v)Z. Recall that v⊥ ∼= (−E8)⊕2 ⊕ U⊕3 ⊕ 〈2 − 2n〉, so Stab(v)Z
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also contains a point of determinant −1. The smallest algebraic group containing

both Stab(v)◦R and this point of determinant −1 is Stab(v)R, since SO(3, 20) is the

only index two subgroup of O(3, 20). Thus in fact Stab(v)R ⊂ Stab(v)Z. Finally,

we observe that Stab(v)R is Zariski dense in its complexification Stab(v)C ⊂ A24×24
C

(see [44, Rmk. 18.1.8(3)]), and so Stab(v)Z is Zariski dense in Stab(v)C ∼= O(23,C).

Since I is a torsor over Stab(v)C, when we consider I ⊂ A24×24
C , we see that I(Z) =

I. Then under a choice of inclusion Q` ↪→ C, we have I(Q`) ⊂ I(Z).
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CHAPTER IV

EXAMPLES AND COMPUTATIONS

In this chapter, we give a variety of examples and computations which provide

additional context and applications of the results in Chapter III. In Section 4.1,

we give an explicit example that demonstrates why Proposition 3.3.1 cannot be

strengthened and interpret the example in terms of birationality. In Section 4.2, we

show that we should not expect the moduli space of sheaves MH(v) to be defined

as a variety over a field k if H is not also defined over that field. In Section 4.3, we

do not directly apply any new results, but we demonstrate how to compute the zeta

function of S[3] for S a K3 surface defined over a finite field Fq. Then in Sections

4.4 and 4.5, we use the results from Chapter III to explicitly show that the zeta

function of a six-dimensional moduli space of sheaves on a K3 surface defined over

Fq has the same zeta function as S[3].

4.1. Two moduli spaces which are likely not birational

We observe that Proposition 3.3.1 need not hold when Q` is replaced with Z`,

as demonstrated by the following example. We consider the degree two K3 surface

S defined over F2 in [21, Ex. 6.1], which is defined by the vanishing of

w2 +w(x2y+ y3 + y2z) +x5z+x3y2z+x2y3z+x3yz2 +x2y2z2 + y2z4 +xz5 + yz5 + z6

in PF2(1, 1, 1, 3), weighted projective space. By the proof of [21, Prop. 6.3] has

rank(NS(S)) = 2. In particular, Hassett, Várilly-Alvarado, and Varilly find two

independent classes in NS(S) on which the intersection pairing has discriminant
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−5, which means the classes span NS(S) (a similar example was discussed in more

detail in Example 3.1.4).

In this case, Mukai vectors are elements of N(S) ∼= Z4, and we can consider

the geometrically primitive and effective Mukai vector v = (5, 2, 3, 0) in N(S). Since

rank(NS(S)) = rank(NS(S)), there is a polarization which is generic with respect

to v, and hence M(v) is a 12-dimensional smooth projective variety. There is no

u ∈ N(S) such that 〈u, v〉 = 1, so M(v) is not a fine moduli space. If there is an

isometry v⊥ ∼= H2(S,Z`(1)) ⊕ Z`, then we can restrict it to the subspace of Galois

invariants. The proof of [21, Prop. 6.3] also shows that the only invariant classes in

H2(S,Z`(1)) are those in NS(S), and so the sublattice H2(S,Z`(1))Gal(F2/F2) ⊕ Z`

has discriminant 50. It can be checked that the pairing on (v⊥)Gal(F2/F2) is


−2 3 −1

3 −2 0

−1 0 0

 ,

which has discriminant 2. For these lattices to be isomorphic, the discriminants

must differ by the square of a unit, but when ` = 5, this is not the case. So v⊥ 6∼=

H2(S,Z5(1)) ⊕ Z5 as sublattices of H̃(S,Z5). By Proposition 3.3.1, it is only after

tensoring with Q5 that these lattices become isomorphic.

This difference in coefficients is related to the question of whether

the corresponding moduli space M(v) is birational to the Hilbert scheme.

If w = (1, 0, 0,−5) in N(S), then M(w) = S[6] and it is clear that

w⊥ = H2(S,Z`(1)) ⊕ Z`〈(1, 0, 0, 5)〉. For hyperkähler varieties defined over

the complex numbers, the Beauville-Bogomolov form and hence the resulting

discriminant group is a birational invariant. While this result has not been proved

84



over arbitrary fields, our calculations suggest that we have found two moduli spaces

that are not birational.

4.2. Defining the polarization over a finite field extension

We show here that it is necessary for the polarization H to be defined over

the base field k in order for the moduli space MH(v) to be a quasiprojective variety.

In particular, we revisit the K3 surface discussed in Example 2.2.7. We saw that for

0 < ε <
1

2
, the sheaf L was geometrically stable with respect to H ′ = H + εC1.

Recall that in that example, the K3 surface and the polarization H are defined over

F3.

Recall that the preimage C ⊂ S of the tritangent line in P2
F3

is defined by

w2 = 2y2(x2 + 2xy + 2y2)2,

and the right-hand side cannot be written as a square, since 2 is not a square

modulo 3. This means that C does not split as C1 and C2 over F3. However, over

F9 = F3[α]/(α2 + 1) we can write

w2 =
(
αy(x2 + 2xy + 2y2)

)2
,

so that C1 and C2 are both defined over F9. Then by [35, Thm. 0.2], cited in

Theorem 2.3.15, MH′(v) is a projective variety over F9.

We will argue that, on the other hand, MH′(v) cannot possibly be a quasi-

projective scheme defined over F3. If it were, then after taking the base change, we

would have

MH′(v)F3
⊂ PNF3

,
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for some N , and the Galois group Gal(F3/F3) would permute the points of

MH′(v)F3
. Recall that by looking at the eigenvalues of Frobenius given in the proof

of Proposition 5.5 in [20], we see that the Frobenius action swaps C1 and C2. When

we apply σ∗ to the sequence

0→ OC2 → L → OC1 → 0,

we get

0→ OC1 → σ∗ L → OC2 → 0.

Note that pH′(σ
∗ L) = pH′(L), since v(σ∗ L) = v(L). However, the calculations

in Example 2.2.7 show that pH′(OC2) < pH′(L) = pH′(σ
∗ L), which makes OC2 a

destabilizing quotient of σ∗ L. Since σ∗ L is unstable with respect to H ′, the Galois

action moves points of the subscheme out of the scheme—a contradiction.

4.3. The zeta function of Hilb3S by counting points

The zeta function of the Hilbert scheme of points on a variety over a

finite field Fq can be computed explicitly by understanding the types of points

in HilbmS = S[m]. We demonstrate this by computing Z(S[3], t) for S a K3

surface over Fq, where q = pn for some prime p. By the Weil conjectures for

K3 surfaces, discussed in Section 2.4.7, the eigenvalues of the Frobenius map

f := F n × id : S → S are {1}, {α1, ..., α22}, and {q2} on H0(S,Q`), H
2(S,Q`),

and H4(S,Q`) respectively (see [28, 4.4.1]). This means

Nr := #S(Fqr) = 1 +
22∑
i=1

αri + q2r.
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Let us consider what length 3 subschemes of S look like, so that we can count

the points in S[3](Fqr). We can have the following:

1. three distinct points from S(Fqr); there are

(
Nr

3

)
such points;

2. one point from S(Fqr) along with a distinct non-reduced point, i.e. a point of

S(Fqr) along with a tangent direction; there are Nr(Nr − 1)(qr + 1) points of

this type;

3. one point from S(Fqr) along with one point from S(Fq2r); there are

Nr(N2r −Nr)

2
such points, since the points from S(Fq2r) come in Galois-

conjugate pairs when considered as length two subschemes of S, and we don’t

want to count the points already defined over Fqr again;

4. one point from S(Fq3r); there are
N3r −Nr

3
points of this type, for the same

reasoning as above;

5. one curvilinear point, i.e. a point from S(Fqr) along with tangent direction

information of orders one and two; there are Nr(q
r + 1)qr such points, by [3,

Sec. IV.2];

6. one non-local complete intersection supported on a point from S(Fqr); there

are Nr points of this kind.

The reference for types of points arising in S[n] which are supported on a

single point of S is [3].
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Overall, we find that

#S[3](Fqr) =

(
Nr

3

)
+Nr(Nr − 1)(qr + 1) +

Nr(N2r −Nr)

2

+
N3r −Nr

3
+Nr(q

r + 1)qr +Nr

= 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r

+ (1 + 2qr + 2q2r + 2q3r + q4r)
22∑
i=1

αri + (1 + qr + q2r)
22∑
i=1

α2r
i

+ (1 + 2qr + q2r)
∑
i<j

αriα
r
j +

∑
i≤j≤k

αriα
r
jα

r
k

By the Weil conjectures (see Theorem 2.4.5), we know that

Z(S[3], t) =
P1(t)P3(t) · · ·P11(t)

P0(t)P2(t) · · ·P12(t)
,

where each Pi(t) ∈ Z[t], and each Pi(t) factors as
∏

j(1−αijt) for some αij ∈ C with

|αi,j| = qi/2 for all 1 ≤ i ≤ 2n− 1 and all j. This equivalently tells us that

#S[3](Fqr) =
12∑
i=0

(−1)i
bi∑
j=1

αri,j,

where bi is the degree of Pi(t). Thus we should rather collect the terms in the sum

above based on their length, and we will be able to write down the polynomials
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Pi(t). Doing this, we find that

#S[3](Fqr) = 1 + qr +
22∑
i=1

αri + 2q2r + 2q
22∑
i=1

αri +
∑
i≤j

αriα
r
j

+ 2q3r + 2q2r

22∑
i=1

αri + 2qr
∑
i<j

αriα
r
j + qr

22∑
i=1

α2r
i +

∑
i≤j≤k

αriα
r
jα

r
k

+ 2q4r + 2q3r

22∑
i=1

αri + q2
∑
i≤j

αriα
r
j + q5r + q4r

22∑
i=1

αri + q6r

Since every term in this expression appears with a positive sign, we can conclude

that H i
ét(S

[3]
,Q`) = 0 and Pi(t) = 1 for all 1 ≤ i ≤ 11 odd. Then we have the

following:

– P0(t) = 1− t,

– P2(t) = (1− qt)
22∏
i=1

(1− αit),

– P4(t) = (1− q2t)2

22∏
i=1

(1− qαit)2
∏
i≤j

(1− αiαjt),

– P6(t) = (1−q3t)2

22∏
i=1

(1−q2αit)
2
∏
i<j

(1−qαiαjt)2

22∏
i=1

(1−qα2
i t)

∏
i≤j≤k

(1−αiαjαkt),

– P8(t) = (1− q4t)2

22∏
i=1

(1− q3αit)
2
∏
i≤j

(1− q2αiαjt),

– P10(t) = (1− q5t)
22∏
i=1

(1− q4αit), and

– P12(t) = 1− q6t.

Finally, we have that

Z(S[3], t) =
1

P0(t)P2(t)P4(t)P6(t)P8(t)P10(t)P12(t)
.
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4.4. The Galois representations arising from a six-dimensional moduli

space

In Section 4.5, we will verify Theorem 1 explicitly for a six-dimensional

moduli space on a fixed K3 surface S over Fq by showing that the zeta function of

the moduli space is equal to that of S[3] computed in Section 4.3. In order to carry

out this verification, we first give a concrete example of the Galois representations

arising in the cohomology of the moduli space when S is defined over an arbitrary

field k. This will also help illuminate and give context to the results presented

in Chapter III. We follow the strategy laid out in [38, Ex. 14], where Markman

decomposes H∗(S[3],Q) into irreducible representations of the monodromy group.

We can do the same for a general M of the same dimension.

Suppose v2 = 4 so that dimM = 6. Recall from Proposition 3.2.1 that

v⊥ ∼= H2(M,Q`(1)), and following the notation presented in Definition 3.5.1,

M2i
∼= H̃(S,Q`). As G := SO(q) representations, H2(M,Q`(1)) is the standard

representation, which we will write as V , and M2i
∼= V⊕1G. Then R(v) is generated

by the following in the given gradings:

Grading: Generators:

2 V

4 Sym2V ⊕ V ⊕ 1G

6 Sym3V ⊕ Sym2V ⊕
∧2 V ⊕ V ⊕2 ⊕ 1G

Note that in degree-six grading, we have generators Sym3V ⊕ V ⊗M4 ⊕M6, and so

V ⊗M4 = V ⊗ (V ⊕ 1G) = Sym2V ⊕
∧2 V ⊕ V
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contributes one of the standard representations.

When it is convenient, we will continue to write Sym2V and Sym3V , but

we remark that these are not irreducible representations. If we let u ∈ Sym2V

be the inverse form of the bilinear form q on V , then the related irreducible

representations are V (d) = SymdV/u Symd−2V [13, Ex. 19.21].

For the sake of notation, we write H2i for H2i(M,Q`(i)). We can use Poincaré

Duality to determine the Galois action on higher cohomology groups, so we need

only consider the generators of R(v) up to degree six. We see that

h2 : R(v)2
∼−→ H2,

h4 : Sym2V ⊕ V ⊕ 1G � H4,

and

h6 : Sym3V ⊕ Sym2V ⊕
∧2 V ⊕ V ⊕2 ⊕ 1G � H6.

We can decompose the sources of h4 and h6 into irreducible G-representations,

and then use a dimension-counting argument to determine which of these

representations inject into H4 and H6, respectively. The dimensions of H2i come

from Göttsche’s formula [15], and a table of dimensions for dimM ≤ 18 can be

found in [38, Sec. 6].

By Verbitsky [56], Sym2V injects into H4(M,Q`(2)), which makes up 276

dimensions of the 299-dimensional H4(M,Q`(2)). Under h4, V and 1G must

separately inject into H4(M,Q`(2)) or map to zero. Since these along with Sym2V

must jointly surject onto H4(M,Q`(2)), a simple dimension-counting argument

shows that V (23-dimensional) must inject into the remaining 23 dimensions–its

image must intersect the image of Sym2V = V (2) ⊕ 1G trivially, since they are
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different irreducible representations. Thus we have found a G-subrepresentation of

R(v)4 which maps isomorphically under h4:

Sym2V ⊕ V ∼−→ H4.

Next we consider

h6 : Sym3V ⊕ Sym2V ⊕
∧2 V ⊕ V ⊕2 ⊕ 1G � H6.

Again by Verbitsky [56] we know that Sym3V ↪→ H6, which accounts for 2300 of

the 2554 dimensions of H6. The remaining G-representations can be written as

V (2)⊕
∧2 V ⊕ V ⊕2 ⊕ 1⊕2

G ,

which are irreducible representations of dimensions 275, 253, 23, and 1, respectively.

Again by counting dimensions, the only way for the remaining irreducible

representations to map injectively onto the remaining 254 dimensions of H6 is for∧2 V and a copy of 1G ⊂ 1⊕2
G to inject. Thus we have found a G-subrepresentation

of R(v)6 which maps isomorphically under h6:

Sym3V ⊕
∧2 V ⊕ 1G

∼−→ H6.

Now, by Proposition 3.6.4, we know that Gal(k/k) acts through O(q), so

it follows that the Galois action is determined independently of the choice of the

moduli space.

Note that 1⊕2
G ⊂ R(v)6, and hence there is a copy of 1G ⊂ 1⊕2

G surjecting onto

a one-dimensional subspace of H6(M,Q`(3)). It is plausible that when considering
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two such moduli spaces M1 and M2 on two K3 surfaces S1 and S2, there are

different one-dimensional subspaces of 1G injecting into H6(M1,Q`(3)) and

H6(M2,Q`(3)), respectively. Moreover, the inclusions of Gal(k/k) ⊂ O(q) may be

different for these two moduli spaces, so there may be concern that H6(M1,Q`(3))

and H6(M2,Q`(3)) are not isomorphic as Galois representations. However, by the

results of Chapter III, we see that the resulting representations do not depend on

these possible differences.

For similar examples of determining the cohomology as SO(q)-representations,

we direct the reader to [18] for computations in dimensions four and six, and [1] for

a computation in dimension eight.

4.5. The zeta function of a six-dimensional moduli space by studying

Galois representations

With the work of Section 4.4 in hand, we are now ready to compute the zeta

function Z(MH(v), t) for any choice of v ∈ {w ∈ H̃∗(S,Z`) : w2 = 4} such

that M = MH(v) is a smooth projective variety over Fq. In order to do this, we

will use what we have determined above about the cohomology of M as Galois

representations. Recall from the discussion in Section 2.5 that the action of the

Frobenius f ∗, whose inverse is in the Galois group, determines Z(M, t). Thus, we

claim that the eigenvalues of

f ∗ : H i(M,Q`)→ H i
ét(M,Q`),
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for each i do not depend on the choice of the Mukai vector v. To see this, we will

compute the eigenvalues, and hence the polynomials Pi(t) so as to write

Z(M, t) =
1

P0(t)P2(t)P4(t)P6(t)P8(t)P10(t)P12(t)
.

As noted in Remark 3.3.3, H i(M,Q`) = 0 for odd i, which is why the numerator of

Z(M, t) is one.

For i = 0, f ∗ = id on H0(M,Q`), and so P0(t) = 1− t. For i = 12, f ∗ = q6 · id

on H12(M,Q`) because F n (where q = pn and F is the absolute Frobenius) is a

finite morphism of degree q6. This means P12(t) = 1 − q6t. Note that both of these

polynomials are actually prescribed by the Weil conjectures (see Theorem 2.4.5).

Next we consider i = 2, for which we know by Proposition 3.2.1 that v⊥ ∼=

H2(M,Q`(1)). By Proposition 3.3.1, there is an isomorphism v⊥ ∼= H2(S,Q`(1)) ⊕

Q`, and so

H2(M,Q`) ∼= v⊥(−1) ∼= H2(S,Q`)⊕Q`(−1).

By the Weil conjectures for K3 surfaces, discussed in Example 2.4.7, the eigenvalues

of f ∗ on H2(S,Q`) are {α1, ..., α22}, and the eigenvalue of f ∗ on Q`(−1) is q. Thus,

P2(t) = (1− qt)
22∏
i=1

(1− αit).

Now let i = 4. We saw in Section 4.4 that

H4(M,Q`(2)) ∼= Sym2(H2(M,Q`(1)))⊕H2(M,Q`(1)).
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This means the eigenvalues of f ∗ on H4(M,Q`(2)) are

{
1,
αiαj
q2

,
αi
q

}
, for 1 ≤ i ≤

j ≤ 22, coming from Sym2H2(M,Q`(1)), and

{
αi
q
, 1

}
, for 1 ≤ i ≤ 22, coming

from H2(M,Q`(1)). We scale all of these values by q2 to get the eigenvalues on

H4(M,Q`), which gives

P4(t) = (1− q2t)2

22∏
i=1

(1− qαit)2
∏
i≤j

(1− αiαjt).

To compute the eigenvalues of f ∗ on H6(M,Q`), we again use the work from

Section 4.4, which gave that

H6(M,Q`(3)) ∼= Sym3(H2(M,Q`(1)))⊕
∧2H2(M,Q`(1))⊕Q`.

Then the eigenvalues of f ∗ on H6(M,Q`(3)) are

{
αiαjαk
q3

,
αiαj
q2

,
αi
q
, 1

}
, for 1 ≤ i ≤

j ≤ k ≤ 22, coming from Sym3H2(M,Q`(1)),

{
αiαj
q2

,
αi
q

}
, for 1 ≤ i < j ≤ 22,

coming from
∧2H2(M,Q`(1)), and {1} coming from Q`. To get the eigenvalues on

H6(M,Q`), we scale all of these by q3 and thus get that

P6(t) = (1− q3t)2

22∏
i=1

(1− q2αit)
2
∏
i<j

(1− qαiαjt)2

22∏
i=1

(1− qα2
i t)

∏
i≤j≤k

(1− αiαjαkt).

For i = 8 and i = 10, the functional equation from the Weil conjectures gives

the following equality of eigenvalues from f ∗:

{βi,j}j =

{
q6

β12−i,j

}
j

,

for each 0 ≤ i ≤ 12 and j running over the eigenvalues of f ∗ on H i
ét(MH(v),Q`).

This completely determines the eigenvalues of f ∗ when i = 8 and i = 10, since
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the sets {β4,j}j and {β2,j}j are determined above, respectively. Now, by the Weil

conjectures for K3 surfaces, there is an equality of sets

{α1, ..., α22} =

{
q2

α1

, ...,
q2

α22

}
.

This allows us to write the eigenvalues of f ∗ on H8(M,Q`) and H10(M,Q`) nicely,

in the following sense. We know, for example, that {qα1, ..., qα22} is a subset of the

set of eigenvalues of f ∗ on H4(M,Q`), which means

{
q6

qα1

, ...,
q6

qα22

}
is a subset of

the eigenvalues of f ∗ on H8(M,Q`). We can rewrite this as

{
q5

α1

, ...,
q5

α22

}
= {q3α1, ..., q

3α22}.

Doing this for all of the eigenvalues for i = 8 and i = 10, we find that

P8(t) = (1− q4t)2

22∏
i=1

(1− q3αit)
2
∏
i≤j

(1− q2αiαjt),

and

P10(t) = (1− q5t)
22∏
i=1

(1− q4αit).

We have now computed P2i(t) for all i = 0, ..., 6 and the polynomials all agree

with those computed in Section 4.3. This allows us to conclude that

Z(M, t) = Z(S[3], t),

regardless of the choice of v ∈ {w ∈ H̃∗(S,Z`) : w2 = 4}.
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