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ABSTRACT This paper proposes a convolutional neural network (CNN)-based encoder model to compress
and code speech signal directly from raw input speech. Although the model can synthesize wideband speech
by implicit bandwidth extension, narrowband is preferred for IP telephony and telecommunications purposes.
The model takes time domain speech samples as inputs and encodes them using a cascade of convolutional
filters in multiple layers, where pooling is applied after some layers to downsample the encoded speech by
half. The final bottleneck layer of the CNN encoder provides an abstract and compact representation of the
speech signal. In this paper, it is demonstrated that this compact representation is sufficient to reconstruct
the original speech signal in high quality using the CNN decoder. This paper also discusses the theoretical
background of why and how CNN may be used for end-to-end speech compression and coding. The
complexity, delay, memory requirements, and bit rate versus quality are discussed in the experimental results.

INDEX TERMS Convolutional neural network, deep learning, source coding, speech codecs.

I. INTRODUCTION

Speech is the most natural way of communication among
humans. Therefore, it is not surprising to see speech coding
applications in communications. The need for removing the
redundancy for efficient compression and coding has been
a challenge for a long time. Although rate distortion theory,
which defines the quality with respect to the bit rate, is at the
focal point of this discussion [1], we will also focus on other
practical issues such as delay (including latency), complexity
and memory requirements, which are as important parameters
as rate-distortion.

Speech signal has two major forms of redundancy. The first
one is called “short-term” or ‘“‘sample-to-sample” redun-
dancy [2]. It is possible to observe high correlation between
consecutive samples. Linear autoregressive models are an
effective means of exploiting short term correlation by con-
sidering previous P sample values. The second redundancy
stems from pitch, which is actually the fundamental fre-
quency of the almost periodic speech signal. This redun-
dancy, called “long-term” only exists in the voiced segments
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of speech. The rest of the speech is unvoiced and does
not have periodicity resulting from the vibration of the
vocal cords and looks more like random noise with low
energy. Unfortunately, speech is not composed of voiced
and unvoiced segments, transition frames, either from voiced
to unvoiced or unvoiced to voiced segments, are extremely
difficult to model. It is argued in [3] that “attributes of speech
that identify the speaker and speaking style do not vary
rapidly over time and hence do not change this rough estimate
(true information rate is less than 100 b/s) significantly”
is not always correct as natural speech not only contains
lexical information but also speaker identity, speech speed
and style and further emotions. Therefore, although speech is
extremely redundant for most of the time, it has a complicated
structure from time to time. Nevertheless, we believe that a
proposed model should be able to handle both *“short-term”
and ““long-term” redundancy.

Linear autoregressive (AR) models, which lead to adaptive
predictive coding of speech signals, date back to half-century
ago [2]. The fundamental idea behind adaptive predictive
coding is simple: Speech signal is assumed to be stationary
for short time intervals and therefore the a;, k = 1,2,...P
coefficients of an adaptive linear predictive coding (LPC)
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filter are calculated by a minimum mean square error algo-
rithm for every 10-32 ms of input speech signal, x[n]. This
duration (where speech signal is assumed to be stationary)
may change but speech synthesis is performed according
to (1), where P is the prediction order.

xinl =3 ax nek] + eln] (M

In adaptive predictive coding, there are two challenges. The
first one is how to represent and transmit the LPC coeffi-
cients for every 10-32 ms. The second challenge is to model
the error signal, e[n], which is actually the prediction error,
as no prediction is perfect and leaves a residual. The former
problem is solved by the line spectral frequencies (LSF) or
line spectral pairs (LSP) representation [4] and quantization.
It turns out that LPC coefficients in time domain represents
the spectral envelope of the signal in the frequency domain.
The second challenge however results in more versatile solu-
tions. The ubiquitous are under the analysis-by-synthesis
family, regular-pulse [5] and code excited linear prediction
(CELP) [6] systems. It is of course possible to represent
speech without adaptive prediction. These methods operate
either on sinusoidal representation [7] or in the frequency
domain [8]. In order to reduce bit rates further, at the expense
of speech quality, phase of the residual signal may also be
modelled via combining predictive coding with frequency
domain solutions on the LPC residual [9].

In recent years, a generative model, i.e. WaveNET, for
waveform synthesis has been also proposed [10]. In this
approach, each waveform sample is conditioned on the sam-
ples at all previous time steps, where the model produces
a probability distribution with a set of discrete values for
the next sample. Although the WaveNET is composed of
causal convolutions [10], the model operates in a probabilistic
viewpoint. WaveNET model was used as a speaker-dependent
speech synthesis vocoder in [11], where acoustic features
are fed into the model as auxiliary features and speech is
generated. This unfortunately results in a speaker dependent
speech synthesis. This idea is further extended in [3], where
WaveNET model is used for both parametric and waveform
speech coders. In case of parametric vocoder, a standard
parametric open source vocoder [12] has been used to obtain
the bit stream that is necessary to drive the WaveNET model
that is used as a decoder, operating at 2.4 kb/s. In other words,
the encoding of speech is done by a standard speech coder,
where this bit stream is passed to a WaveNET model for
decoding purposes. In case of a waveform speech coder, the
authors mention average bit rates, variable bit rate coders
are not suitable for telecommunications purposes due to bit
rate allocation purposes with respect to fix bit rate schemes.
Nevertheless, the bit rate mentioned in [3] is 42 kb/s.

The major contribution of this paper is the use of two
convolutional neural networks (CNN) for compression and
coding of voice in an end-to-end solution for encoding and
decoding purposes. To the best of our knowledge, deep neural
networks (DNN5s) are not used for end-to-end speech coding

75082

in the literature so far. The end-to-end solution means that
input speech is in time domain and represented as raw speech
waveform, which does not require any explicit extraction of
parameters, i.e. acoustic features; the output is the recon-
structed speech waveform. The process also does not require
any conversions (such as LSF) or quantization under some
circumstances for the CNN encoder. Speech is synthesized
by the CNN decoder.

In the remainder of this paper, Section 2 describes the novel
DeepVoCoder, which is a DNN based speech compression
and coding method with emphasis on CNN and inception
modules. In Section 3, we discuss the important parameters
of delay, complexity and bit rate versus quality. In section
4, the results of our experiments are presented for a limited
number of selected parameters. There are countless number
of parameters and combinations that can be used for our
DeepVoCoder approach and each choice aims optimization
of a different objective. Finally, Section 5 draws conclusions.

Il. THE METHOD

Motivated by the recent successes in the deep convolutional
models in different domains ([13-18]), a CNN based encoder-
decoder type neural network architecture is designed for
speech coding. The Inception model in [13] is considered as
a reference in the design of our encoding and decoding net-
works, where the raw speech waveform is analyzed through
cascades of multiple inception modules (Fig. 1). Each module
encodes the relevant acoustic features of the waveform in
multiple-scales. The encoded features at the output layer
of the encoder network is utilized as the “source” by the
decoder to reconstruct the speech waveform. The details of
the encoder and decoder network configurations are provided
below.

A. ENCODER NETWORK CONFIGURATION

The encoder network is designed to take 32 ms raw speech
samples as the inputs, i.e. a vector of 256 samples (from
8kHz). It is composed of 6 blocks and two additional convo-
lutional layers at the end. We refer to the set of layers between
two max-pooling layers, for downsampling, as a block. The
block diagram in Fig.1 depicts the encoder architecture.

The network starts with three 1 dimensional convolutional
layers of filter sizes 9, 1 and 9, respectively. All these convo-
lutional layers are configured to extract 128 feature vectors.
After the first layer, a non-linear activation function, i.e. leaky
ReLU [19], is applied after batch normalization [20]. The
following two convolutional layers’ responses are kept linear.
The convolution layer of size 1, in the middle, is used to
align the feature planes with a more useful direction after
the non-linearity, which makes the second convolution more
effective. Then a max-pooling layer is applied to the feature
vectors of the third layer with a stride 2 to downsize the
sample count from 256 to 128. The extracted features are
then fed to an inception block that is very similar to the
architecture that is utilized for a vision network developed
for image classification [13]; we adapted this network for

VOLUME 7, 2019



H.Y. Keles et al.: DeepVoCoder: CNN Model for Compression and Coding of Narrow Band Speech

IEEE Access

one dimensional speech processing, with minor changes in
the activation functions.

In each block, only one inception module is included
and following an inception module, resultant concatenated
multi-scale features are normalized using batch normaliza-
tion and passed further to leaky ReLU activation before max-
pooling. The feature vectors that are computed by the last
convolutional layer of the first block are passed through
5 inception modules. After the fifth inception module, two
cascaded convolutions are applied to the resultant features.
At this level, i.e. before the cascaded convolutions, the num-
ber of samples in each feature vector is reduced to 4 and a
total of 512 feature vectors are generated to represent the
original speech samples. In order to obtain a condensed repre-
sentation, first convolutional layer projects the feature planes,
using size 1 convolutions, to 20 vectors. Following that,
without applying any non-linearities, a second convolution
layer, using 20 filters with a filter size of 3, is applied to
generate the final activations for another 20 feature vectors.
The resultant activations are passed through sigmoid function
to get the encoded speech. As a result, the encoded speech is
represented using 80 coefficients in the range (0-1) in order
to quantize them easily and more effectively.

Inception Modules: The Inception modules are initially
designed for a visual recognition challenge (ILSVRC14)
with a vision network called GoogLeNet [13]. The mod-
ules are used in a cascaded way to generate deeper and the
wider networks; hence called as inception modules to imply
a networks-in-networks architecture. The essential compo-
nents of the design of inception modules are parallel con-
volutional layers that analyze the same features in multiple
scales, using different filter sizes, simultaneously. However,
this is costly when the depth of a network is increased. The
design of the module efficiently avoids parameter increase
by using 1 x 1 convolutions to reduce the depth before
applying convolutions of 3 x 3 and 5 x 5 (in images). These
1 x 1 convolutions project the incoming features to a lower
dimensional space that allows increasing the depth without
creating computational bottlenecks.

In speech domain, we want to encode both short-term and
long-term correlations in the speech samples, hence inception
modules are very suitable for our purpose. Pooling of sparse
features at the end of inception modules, provide features
in varying scales to the upcoming inception modules for
further analysis using multiple aperture sizes. Especially in
the higher layers, the ones that are close to the output after
multiple pooling operations, the receptive fields of the con-
volutions, i.e. of sizes 3 and 5, become wide enough to learn
long-term correlations in a frame effectively using only a few
parameters.

To the best of our knowledge, deep neural net-
works (DNNs) are not used for end-to-end speech coding
in the literature so far. Moreover, the inception modules
are included in the speech coding research for the first
time. Different combinations of inception modules can be
designed and evaluated for speech coding purposes; as a
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baseline, we selected to use exactly the same configurations
for the convolutional layers, i.e. the number of filters and
filter sizes, with the original image recognition network,
yet one-dimensional versions are utilized. Inception mod-
ules and the activation functions are also configured as
they are in [13], i.e. ReLU. Then we optimized that base-
line performance experimentally by using different linear
and non-linear activations and improved the quality of the
decoded speech. Fig.1 depicts the final design of our encoder
network architecture that we obtained our ““best” results after
many experiments. The number of filters in each inception
block are given in Table 1 and they are exactly the same as
the decoder.

TABLE 1. Decoder network configuration parameters. MP: Max pooling,
BN: Batch normalization, LR: Leaky RelU.

Layer/Block Number of Filters Size of Filters
ConvBlockl 20 1
20 3
LR
Upsampling (12)
InceptionBlockl | 64 96 16 | MP | 1 |1 1 MP
LR | 32 | 32 LR |5 1
128 3
Concatenate
BN/LR
Upsampling (12)
InceptionBlock2 | 128 | 128 [ 32 | MP | 1 | 1 1 MP
LR | 96 | 64 LR | 5 1
192 3
Concatenate
BN/LR
Upsampling (12)
InceptionBlock3 | 192 | 96 16 | MP | 1 1 1 MP
LR | 48 | 64 LR | 5 1
208 3
Concatenate
BN/LR
Upsampling (12)
InceptionBlock4 | 160 | 112 | 24 | MP | 1 1 1 | MP
LR | 64 | 64 IR |5 |1
224 3
Concatenate
BN/LR
Upsampling (12)
InceptionBlock5 | 128 | 128 | 24 | MP | 1 1 1 | MP
LR | 64 | 64 LR | 5|1
256 3
Concatenate
BN/LR
Upsampling (12)
ConvBlock2 128 1
128 5
BN/LR

1 | 1

B. DECODER NETWORK CONFIGURATION

The decoder network architecture design is very similar to the
encoder architecture. We keep the inception modules exactly
the same with respect to the filter sizes and number of filters
applied in each block, as in our encoder network; only the
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A

Input (256,1)

Inception Block 1 Inception Block 2 Inception Block 3

ConviD(K=9, F=256,5=1)
BatchNorm/LReLU
ConvilD(K=1, F=256,5=1)
ConvilD(K=9, F=256,5=1)
BatchNorm/LReLU BatchNorm/LReLU BatchNorm/LReLU BatchNorm/LReLU
MaxPool(P=2,5=2) MaxPool(P=2,5=2) MaxPool(P=2,5=2) MaxPool(P=2,5=2)

BatchNorm/LReLU

Legend:
MaxPool(P=2)
= - = K - Filter Size
Inception Block 4 Inception Block 5 A=A, (P = F - Filter Count
ConviD(K=3, F=20, S=1) S - Stride Size
P - Pool Size

Sigmoid

BatchNorm/LReLU BatchNorm/LReLU
MaxPool(P=2,5=2) MaxPool(P=2,5=2) Output (4,20)

Previous Layer

ConviD(K=1, 5=1) ConviD(K=1,5=1) MaxPool(P=3,5=1)

LReLU LReLU ConvlD(K=1,5=1)

ConviD({K=3,5=1) Convl1D(K=5,S=1)

FIGURE 1. A) Encoder CNN architecture. CONV1D: One dimensional convolutional layer, BacthNorm/LRelu: Batch
normalization layer and then Leaky RelU layer applied in this order, LRelu: Leaky RelU activation layer, MaxPool: Max
pooling layer. B) Details of the inception block.

pooling layers are replaced with upsampling layers. Upsam- is applied using a transposed filter. The initial and final
pling layers are implemented using bilinear interpolation to convolutional layers are slightly different. The parameters of
double the size of the input features and then convolution the decoder network are provided in Table 1.
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The input to the decoder network is a two-dimensional
tensor of size 4 x 20, i.e. 4 samples for 20 feature vectors.
This is the output tensor size of the encoder network. The
input is processed by two cascaded convolutions with filter
sizes 1 and 3, using 20 filters in each layer. After the second
convolution, the resultant features are passed through leaky
ReLU activation function. The features are then upsampled
to their double sizes, i.e. each feature vector then contains
8 samples. Following upsampling, the resultant features are
processed with a sequence of 5 inception blocks, the details of
which are summarized in Table 1. The configuration of each
inception block is kept similar to the corresponding block in
the encoder network. For instance, InceptionBlock1 contains
4 parallel convolutional blocks; the first block has only one
convolutional layer with 64 filters of size 1, the second block
has a convolutional layer with 96 filters of size 1, followed by
a leaky ReL.U activation function, and another convolutional
layer with 128 filters of size 3. In Table 1, the individual layers
in each block are provided in different rows; the number
of filters in parallel branches of the inception blocks are
provided on the left half of the table as separate columns, and
corresponding cells on the right half provides the filter sizes
corresponding to the parallel layers on the left half.

At the end of the inception blocks, after the last upsam-
pling, the number of features in each feature vectors becomes
256, i.e. the original sample window size of our speech
signal. At this layer, two cascaded convolutions are applied
to the features using 128 filters in each layer with filter
sizes of 1 and 5, respectively. After batch normalization,
the activations are passed through leaky ReL U function. The
resultant feature vectors are then convolved with a filter of
size 1 to generate a projection to a window of 256 samples.
The resultant samples are passed through hyperbolic tangent
function, i.e. tanh, to generate samples in (—1, 1) range.

C. MODEL TRAINING

We trained the proposed encoder-decoder network model
end-to-end from scratch using a publicly available, multilin-
gual, multi-speaker database [21], in an unsupervised manner.
As the objective of the CNN is to obtain an identity function,
the input of the CNN encoder and the output of the CNN
decoder are exactly the same for model training. We used
8 hours of speech data, in total, which are sampled at 8§ kHz.
The data is split into multiple non-overlapping 32 ms raw
speech frames, i.e. a total of 900000 frames. The samples in
the frames are first normalized into (—1, +1), then quantized
into logarithmic scale using 256 level p-law companded [22]
with 8 bits. The p-law coded frames are then shuffled to gen-
erate random batches for training, the batch size is configured
as 256. Before training, we set aside a random 15% of the
training frames for model validations.

We use Keras framework [23] with Tensorflow backend
for training the model and testing. The loss function for
error backpropagation is computed using the mean square
error (MSE) between the resultant frame samples and the
input speech samples. We use Adam optimizer [24] with a
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learning rate 0.001, beta_1 0.9 and beta_2 0.999 with early
stopping, i.e. the training is terminated when MSE stops
improving for the validation frames for at least 5 epochs.
We configured training for 256 epochs, yet, the model usu-
ally stops improving the MSE score, i.e. converges, between
180-220 epochs.

D. QUANTIZATION

The parameters obtained as the output of the encoder need
to be quantized for telecommunication purposes, in order to
be transmitted to the decoder input. In general, the output
of the encoder has 20 filters and feature vector is either
reduced to dimension of 4 (for 32 ms frames) or 2 (for 16 ms
frames). Fig. 2 gives the probability density function of these
coefficients. The final activation layer of the encoder was
chosen to be sigmoid in order to get the source as narrow
as possible, for an efficient quantization. Although these
vectors (output coefficients of each filter in vector format of
either 2 or 4) can be easily and effectively quantized with a
matrix quantizer (for the filter bank of 20), we preferred an
optimum vector quantizer of LBG implementation [25] for
almost transparent quantization. In this approach, we did not
exploit the possible intracorrelation in between the vectors
of different filters. Our fundamental motivation is to keep
the quantization distortion at the minimum, in order not to
accumulate additional distortion on top of CNN modeling.

FIGURE 2. PDF of source, output of CNN encoder.

1Il. DISCUSSION

The parameters that are important for the design of Deep-
VoCoder can be described from both CNN topology and
speech compression and coding perspective. The most impor-
tant parameters for a voice coder are delay, complexity, mem-
ory requirement, bit rate and quality. The parameters of a
CNN are total number of layers, number of convolutions in
each layer and size of filters in each convolution. The other
important parameter is of course the activation functions.
We will consider each parameter from speech coder perspec-
tive and explore its effect on the CNN topology.

A. DELAY

Delay is extremely important for a speech coder as unac-
ceptable delay durations cause echo which needs to be can-
celed [26]. Delay introduced by DeepVoCoder is merely the
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frame size, which is actually the input dimension. Processing
time required for encoding and decoding should also be
added in order to calculate the overall latency. Therefore,
although the input dimension should be as small as possible
(for minimum delay) it should be considered as large as
possible because of bit rate. If the frame size is too small,
source needs to be updated more often, leading to an increase
in bit rate. We decided on 32 ms, leading to 256 samples
for narrowband (sampled at 8 kHz) speech. The decision
comes from the fact that speech is assumed to be stationary
in between 20-32 ms. This parameter not only defines delay
and bit rate but also it defines better quality if analysis is
done for longer frames and synthesis quality degrades for
larger frames, for the same source. Although delay is not
the only parameter during design of a DNN topology, our
experiments showed that 32 ms is more favorable than 10,
16 and 20 ms. 16 ms is also important as it is equivalent to
128 samples, which is a power of 2 and therefore pooling can
be done until 1 sample is reached at the end of the encoder,
i.e. bottleneck.

B. COMPLEXITY

It is well known that CNN training takes significantly long
time and requires computational resources. However, training
complexity is not an issue as it is done offline only once. CNN
encoder and CNN decoder complexity are however important
as they determine the applicability of real-time implemen-
tation. DeepVoCoder also differs from conventional speech
coders in this sense because in conventional speech coders,
encoder complexity is always much higher than decoder com-
plexity. In DeepVoCoder topology however, the complexity
of the encoder and decoder are similar. The complexity is
determined by i) total number of layers, each grouped into
blocks and separated by pooling (for the encoder), or by up
sampling (for the decoder), ii) number of convolutions per
layer, iii) number of filters and filter sizes for each convolu-
tion. DeepVoCoder has around 1.2M learnt parameters in the
encoder and 1.3M parameters in the decoder networks.

C. BIT RATE

Overall bit rate is determined by quantization of source only.
In case where the final dimension of the bottleneck is 1,
there is only a single parameter to be quantized by an opti-
mum scalar quantizer. As a consequence of the activation
function, source is always within a predetermined interval
and easy to quantize. Moreover, we round the source to
two-digit decimal points and observed that output speech
quality is not significantly affected. Therefore, a uniform
quantizer performs as good as an optimum scalar quantizer.
Nevertheless, dimension of one for the source is too small
even with many filters at the bottleneck and therefore we
preferred dimensions of 2 or 4, where source is quantized
with an optimum vector quantizer [25]. Overall bit rate in
b/s is calculated by multiplication of “total number of fil-
ters at the bottleneck’ times, ‘‘dimension of source” times,
“number of bits per sample for the source” times ‘“‘update
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rate necessary per second”. In order to reduce the bit rate
necessary to transmit speech over DeepVoCoder, one can
reduce the number of filters at the bottleneck, increase the
number of poolings in order to reduce the dimension of the
source or spent less bits during quantization per sample for
the source. The product is updated every 32 ms, which means
itis multiplied by 31.25 (8000/256), in order to get the overall
bit rate in bits/s. Reducing any of these parameters will also
result with a reduced speech quality.

D. QUALITY

Quality is rather the result than a parameter. Input frame
size, CNN encoder and decoder topology determines the
quality of the synthesized speech signal. Major issue is at
the bottleneck, i.e. the last convolutional layer of the encoder
network. Total number of filters at the bottleneck and the
number of layers in order to reach to the bottleneck are
extremely important. It is also important to measure the qual-
ity in objective terms. Perception of voice by humans is still
an ongoing discussion and active research field [27]. CNN
decoder output, i.e. synthesized speech, is configured to be
exactly the same with the CNN encoder input, i.e. original
waveform. Hence, DeepVoCoder in its proposed form acts
as a waveform coder and therefore PESQ [28] (perceptual
evaluation of speech quality) to mimic MOS (mean opinion
score) is an acceptable metric in order to present the quality.

IV. RESULTS OF THE EXPERIMENTS

In order to evaluate the performance of the proposed CNN
encoder, we conducted some experiments mainly with two
different settings. In all experiments we use the same set of
test speech frames, which is selected randomly from Vox
Forge dataset that are not included in the training process,
to assess the quality of the encoding.

In our experiments, we fixed the inception model, i.e. the
topology of the CNNs. Two different settings were deter-
mined by the input frame sizes of 256 and 128 samples,
i.e. 32 and 16 ms, respectively. In the initial phase, parameters
are not quantized in order to measure the figure of merit
of the model itself. Since the topology and therefore the
number of layers is exactly the same, the output of the CNN
encoder are 4 and 2 samples for 32 and 16 ms, respectively.
Of course, in the latter case they need to be updated twice
more frequently, that is 62.5 times/s, instead of 31.25 times/s.

Table 2 provides some common parameters for the
proposed DeepVocoder versus well knowns codecs for

TABLE 2. Codec parameters.

Codec/ DeepVoCoder DeepVoCoder Speex G.729
Parameter 16ms 32ms

Frame(ms) 16 32 20 10
Delay(ms) 16 32 30 15
PESQ 2.568 2.814 2.838 3.663
RawMOS

Bit_Rate Model Model 4.8 8.0
(kb/s)
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TABLE 3. Run time comparison.

TABLE 4. Bit allocation table for the DeepVocoder parameters.

Execution time Codec DeepVoCoder DeepVoCoder

Codec/Parameter | DeepVoCoder 32ms Speex 16ms 32ms

Single CPU 56.817+0.106 s 161£0.784 ms Bottleneck 2 4

(60 seconds) dimension

Single CPU 3240.168 ms / 32 ms | <1ms/20 ms frame Total # of filters at 20 20

(Single frame) frame the bottleneck
# of bits/filter 5 6 7 9 10
Overall bit rate | 6.25 7.50 8.75 5.625 6.25
(kb/s)

performance comparison. It is possible to observe that Deep- PESQMOS 1.977 | 2.177 | 2.282 | 2.121 2.348

Vocoder model, before quantization, has the potential to pro-
vide comparable speech quality with Speex at 4.8 kb/s and
can run at comparable delays as low as G.729. Regarding the
complexity, it is difficult to give execution times as Deep-
Vocoder runs on GPU. Traditional speech coding algorithms
however, run on CPU. Therefore, we limit Keras library to
use single CPU for a fair comparison in a non-optimized
manner. In addition, we include other possible setups in
our results to provide a broader picture of the performance.
Table 3 gives an overview of run time for best performing
DeepVocoder_32 ms and freely available Speex vocoder.
These values are obtained with a mean and standard devia-
tion, after 1,000 runs, for full duplex operation, i.e. the exe-
cution times involve both encoding and decoding. It should
be also noted that measurement overhead becomes unreli-
able for values below 1 ms. It is however, evident from
Table 3 that the proposed DeepVocoder runs in real-time,
even under constraints, if encoding and decoding are allowed
on different CPUs (or GPU). Moreover, if DeepVocoder runs
on 1,875 frames, that consists of a series of bulk 60 seconds
of speech, slight advantages are observed in Table 3.

If the environment however is suitable, DeepVocoder can
be massively parallelized, i.e tensor operations on convolu-
tional neural networks can run much faster on GPU. This
leads to vast gains in computing performance measured as
707£7.15 ms (more than 80 times faster than single CPU,
60 seconds). These values are obtained from the computer
equipped with:

o CPU AMD Ryzen 7 2700X (8C/16T) @ 3.7 GHz,

« GPU nVidia Geforce RTX 2080 Ti @ 1.755 GHz.

Table 4 provides the bit rates of the model after quanti-
zation. Quantization is done with an optimum vector quan-
tizer [25]. It is possible to observe that 32 ms frames provide
better quality at the same bit rate due to two reasons. The
first reason stems from the model that it is possible to remove
redundancy more efficiently over longer frames. The second
reason stems from quantization efficiency as larger dimen-
sions of a vector with correlated values are easier to quantize.
We have employed MIT’s former Media Lab’s Music, Mind
and Machine group’s SQAM (Sound Quality Assessment
Material) database [29] as our test files. These files include
native male and female speakers of English, French and Ger-
man. There are four sets of files provided as supplementary
material. The first set of files are original, clean speech for
all samples of male and female speakers for three languages.
SQAM database is stereo and CD quality. Therefore, all files
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are first converted to mono and then converted to narrow
band speech. For the second set of files, samples are modeled
with DeepVocoder with 20 filters, where each filter has four
dimensional coefficients for the bottleneck. The model output
is then quantized at 6.25 kb/s (2.5 bits/coefficient) as shown
in Table 4 for the third set of files. The final speech sample
set is the output of the Speex vocoder operating at 4.8 kb/s
for subjective comparison. Speex is a VBR (variable bit rate)
codec where 4.8 kb/s stands for the average bit rate, whereas
DeepVocoder is CBR (constant bit rate) and therefore bit rate
is always exactly 200 bits/32 ms frame.

V. CONCLUSION & FUTURE WORK

The major contribution of this paper is the use of two convo-
lutional neural networks (CNN) for compression and coding
of voice for the first time in literature. We propose an end-
to-end solution which means input speech is in time domain
and represented as raw speech waveform. The encoding does
not require any explicit extraction of parameters, i.e. acoustic
features; the output is the reconstructed speech waveform.
The process also does not require any conversions such as
LSF. In last several decades, many improvements have been
made on traditional speech codecs by many research groups.
Over the course of time, they become so complex that opti-
mization and fine tuning becomes increasingly more difficult.
Bit allocation table given for the DeepVocoder in Table 4,
however is extremely simple, straightforward and flexible.
It is possible to change the number of filters at the bottleneck
and/or assign a different number of bits during quantization
in order to define the overall bit rate. Speech is synthesized
by the CNN decoder. The decoded speech is always stable
and quality increases in a graceful manner by increasing
the frame size (delay), complexity (number of parameters
for the CNN) and bit rate (number of samples used at the
encoder bottleneck and/or number of bits used to quantize
these samples) in an extremely well behaving and flexible
manner. Although trained with limited number of speech
data, without applying any manual preprocessing of the input
samples or post processing of the output samples, the pro-
posed networks encode raw speech samples in comparable
performances with the existing, well known codecs. This
experimental work depicts the potential of promising, flexible
deep learning-based architectures in signal coding domain
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with different input and/or DNN topologies to improve our
novel proposal.
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