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Abstract: In this paper, we introduce a half-duplex (HD) energy harvesting (EH) relay network over
the different fading environment with the effect of hardware impairment (HI). The model system was
investigated with the amplify-and-forward (AF) and the power splitting (PS) protocols. The system
performance analysis in term of the outage probability (OP), achievable throughput (AT), and bit
error rate (BER) were demonstrated with the closed-form expressions. In addition, the power splitting
(PS) factor was investigated. We verified the analytical analysis by Monte Carlo simulation with all
primary parameters. From the results, we can state that the analytical and simulation results match
well with each other.

Keywords: amplify-and-forward (AF); relay network; achievable throughput (AT); outage probability
(OP); BER; energy harvesting (EH)

1. Introduction

Nowadays, wireless powered communication networks (WPCNs) have shown significant
advantages in industry and living. The major benefits of WPCNs mainly come from battery charging
operations through the air without physical cable connections and recharging, and thus, replacing the
battery. As such, the maintenance, servicing, and charging of many battery-powered devices deployed
in networks are crucially simplified, especially for future applications and technology [1–5]. Nowadays,
there are three primary wireless energy harvesting (EH) and transfer techniques in the two main types
of wireless charging—radiative (or RF based) and non-radiative (or coupling based) are employed in
practice in WPCNs—which are feasible using the following techniques. In the first method, inductive
coupling based on magnetic field induction can be used for transferring electrical energy over distances
ranging from a few millimeters to a few centimeters. The efficiency of this method, from around 6% to
90%, is suitable for cell phone charging, contactless smart cards, and passive RFID cards [3,4]. Magnetic
Resonant coupling is the second method, which is based on one vane scent wave coupling by making
two separate coils resonate at the same frequency. Its efficiency ranges from 30% to around 90% and
is suitable for plug-in hybrid electric vehicles and cell phone charging [3,4]. The last method is RF
energy transfer, which is suitable for wireless body and wireless sensor networks. From this point
of view, RF energy transfer WPCNs are suitable for long-distance transfers [1–5]. Some papers have
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presented the process of EH through the RF signals in cooperative wireless networks using a MIMO
relay system, and have investigated multi-user and multi-hop systems for simultaneous information
and power transfer with a dual-hop channel [6–18]. In these previous papers, the authors have focused
on WPCNs using only the Rayleigh or the Rician fading channel. However, to date not many papers
concentrate on using both different fading channels. Hardware impairment (HI) suffers from phase
noise, I/Q imbalance, and high-power amplifier nonlinearities [19–22]. HI is rarely studied in the
literature on relay WPCNs.

In a wireless network, the source and destination may not communicate to each other directly,
because the distance between the source and destination is greater than the transmission range of
them both, hence the need for an intermediate node(s) to relay. Relaying is an effective way to
combat the performance degradation caused by fading, shadowing, and path loss. In relay networks,
the relay nodes help to boost the information exchange between source nodes and destination nodes,
by forwarding (with or without decoding) the information-bearing radio frequency signals from
sources to destinations [1–5]. In this paper, we introduce a half-duplex (HD) energy harvesting
(EH) relay network over the different fading environment with the effect of hardware impairment
(HI). The model system was investigated with the amplify-and-forward (AF) and the power-splitting
(PS) protocols. The system performance analysis, in term of the outage probability (OP), achievable
throughput (AT), and the bit error rate (BER), was analyzed and demonstrated with the closed-form
expressions. Additionally, the power splitting (PS) factor was investigated. We verified the analytical
analysis using a Monte Carlo simulation with all primary parameters. The research results showed
that the analytical and simulation results matched well with each other. The main contributions are
summarized as follow:

(1) An HD EH relay network over the different fading environment (Rayleigh and Rician Fading
Channel) with the HI effect of HI is introduced and investigated.

(2) The closed form of OP, AT, and BER of the proposed system was analyzed and derived in
connection with the main primary system parameters.

(3) The correctness of the analytical expression was demonstrated by Monte Carlo simulation.

The remainder of this paper is introduced as follows. Section 2 introduces the system model with
EH and information transmission (IT) phases. OP, AT, and BER are derived in Section 3. Section 4
shows and discusses the numerical results. Finally, Section 5 provides some conclusions.

2. System Model Network

An HD EH relay network over the different fading environment (Rayleigh and Rician Fading
Channel), with the effect of HI, is illustrated in Figure 1. This system model is working in AF mode
and PS protocol, in which the source (S) and destination (D) can exchange their signal via the helping
Relay (R), as shown in Figure 1. The PS protocol of the system model is plotted in Figure 2. Here,
T denotes the block time for EH and IT processes in the PS protocol. In the first half interval time T/2,
the S simultaneously transfers information and energy to the R with the PS factor ρ ∈ (0, 1), ρ P is used
for energy harvesting at the R and (1 − ρ) P is used for transmitting information to the R node. So,
the remaining T/2 interval time is used for transferring information from the R to the D [17–20].
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2.1. Energy Harvesting (EH)

The signal is transferred from the S to the R in the first-half T/2 and can be formulated as

yr = h(xs + µs) + nr (1)

The received RF signal at the input of the energy harvesting unit can be calculated as

yh,r =
√
ρ× yr =

√
ρhxs +

√
ρhµs +

√
ρnr (2)

In this equation, xs is the energy-transmitted signal with E
{
|xs|

2
}
= Ps, nr is the zero-mean additive

white Gaussian noise (AWGN) with variance N0, and µs denotes the distortion error caused by
hardware impairment at the source node, which is modeled as a zero-mean Gaussian random variable

with variance Psσ1
2 with E

{∣∣∣µs
∣∣∣2} = Psσ1

2. Here E{.} denotes the expectation operation.

From Equation (2), the harvested energy at R in the first interval T/2 can be formulated as
the following

Eh = ηρPs|h|2(T/2) (3)

Therefore, the transmitted power at R can be calculated as

Pr =
Eh

T/2
=
ηρPs|h|2(T/2)

T/2
= ηρPs|h|2 (4)

where η is denoted the energy conversion efficiency of the proposed system.

2.2. Information Transmission (IT)

In this model, the IT phase is divided into two equal-length subintervals with the length T/2.
In the first interval, we can calculate the received signal as

yr =
√

1− ρh(xs + µs) + nr =
√

1− ρhxs +
√

1− ρhµs + nr (5)

where xr is the transmitted signal, which satisfies E
{
|xr|

2
}
= Pr, µr denotes the distortion error caused

by hardware impairment at R, which is modeled as a zero-mean Gaussian random variable with

variance Prσ2
2 and E

{∣∣∣µr
∣∣∣2} = Prσ2

2, and nr is the AWGN noise at R node.

Here, we use the amplify-and-forward (AF) protocol for our model. Then, the received signal at R
is amplified by a factor β, which is given by Equation (6)

β =
xr

yr
=

√
Pr

(1− ρ)|h|2Ps + (1− ρ)|h|2Psσ2 + No
(6)

In the remaining T/2 interval time, R transfers the information to D. Hence, the received signal at
D node is formulated by
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yd = g(xr + µr) + nD = gxr + gµr + nd
= gβyr + gµr + nd
= gβ(

√
1− ρhxs +

√
1− ρhµs + nr) + gµr + nD

= gβ
√

1− ρhxs︸         ︷︷         ︸
signal

+
√

1− ρhµsgβ+ gβnr + gµr + nD︸                                     ︷︷                                     ︸
noise

(7)

Here nd is the noise at the destination, which is assumed to have the same power as nr.
The end-to-end signal-to-noise ratio (SNR) at D node can be given by

γe2e =
E
{
(signal)2

}
E
{
(noise)2

} =
(1− ρ)

∣∣∣g∣∣∣2β2
|h|2Ps∣∣∣g∣∣∣2β2|h|2Psσ1

2 +
∣∣∣g∣∣∣2β2No +

∣∣∣g∣∣∣2Prσ22 + No

(8)

We denote ϕ1 = |h|2,ϕ2 =
∣∣∣g∣∣∣2 and replacing this in Equation (8), we have

γe2e =
(1− ρ)ϕ1ϕ2β2Ps

ϕ1ϕ2β2Psσ1
2 + ϕ2β2No + ϕ2Prσ22 + No

(9)

γe2e =
(1−ρ)ϕ1ϕ2Ps

ϕ1ϕ2Psσ1
2+ϕ2No+

ϕ2Prσ2
2

β2 +
N0
β2

= ((1− ρ)ϕ1ϕ2Ps)/(ϕ1ϕ2Psσ1
2 + ϕ2No + (1− ρ)ϕ1ϕ2Psσ2

2+

(1− ρ)ϕ1ϕ2Psσ2
1σ

2
2 + ϕ2N0σ2

2 +
N0(1−ρ)
ηρ +

N0(1−ρ)σ2
1

ηρ +
N2

0
Pr
)

(10)

Because N0 << Pr, then we can reformulate Equation (10) as the following equation

γe2e =
{
(1− ρ)ϕ1ϕ2Ps

}
/
{
ϕ1ϕ2Psσ1

2

+ϕ2No + (1− ρ)ϕ1ϕ2Psσ2
2 + (1− ρ)ϕ1ϕ2Psσ2

1σ
2
2

+ϕ2N0σ2
2 +

N0(1−ρ)
ηρ +

N0(1−ρ)σ2
1

ηρ

} (11)

γe2e =
{
(1− ρ)ϕ1ϕ2γ0

}
/
{
ϕ1ϕ2γ0σ1

2

+ϕ2 + (1− ρ)ϕ1ϕ2γ0σ2
2

+(1− ρ)ϕ1ϕ2γ0σ2
1σ

2
2 + ϕ2σ2

2 + κ+ κσ2
1

} (12)

where we denote κ =
1−ρ
ηρ , γ0 = Ps

N0
.

In the next section, we analyze the achievable throughput (AT), outage probability (OP) and BER
in AF mode with the PS protocol [6–8].

3. System Model Performance

In this section, we investigate the system performance of the relay network with the PS
protocol [10–13,23–27]. In this analysis, we consider two Scenarios: (1) S-R link is the Rayleigh
Fading Channel and R-D link is Rician Fading Channel, and (2) S-R link is the Rician Fading Channel
and R-D link is the Rayleigh Fading Channel.

3.1. Scenario 1: S-R link Is Rayleigh Fading Channel, R-D link Is Rician Fading Channel

As in previous studies [6–9], the probability density function (PDF) of a random variable (RV) ϕ1

can be written as the following equation

fϕ1(x) = λhe−λhx (13)

Here λh is the mean value of RV ϕ1.
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The cumulative density function (CDF) of RV ϕ1 can be written as

Fϕ1(x) = 1− e−λhx (14)

Similarly, the PDF of RV ϕ2 can be obtained as in [26], giving

fϕ2(x) =
(K + 1)e−K

λg
e
−

(K+1)x
λg I0

2

√
K(K + 1)x

λg

 (15)

where λg is the mean value of RV ϕ2, K denotes the Rician K-factor, and I0(•) is the zero-th order
modified Bessel function of the first kind [26].

Then the Equation (14) can be reformulated as the following

fϕ2(x) = a
∞∑

l=0

(bK)l

(l!)2 xle−bx (16)

where we denote a =
(K+1)e−K

λg
, b = K+1

λg
and I0(x) =

∞∑
l=0

x2l

22l(l!)2 [24].

The cumulative density function (CDF) of RV ϕ2 can be computed like in [27]

Fϕ2(ς) =

ς∫
0

fϕ2(x)dx = 1−
a
b

∞∑
l=0

l∑
m=0

Klbm

l!m!
ςme−bς (17)

After that, the OP of the proposed system can be computed as

Pout = Fγe2e(γ) = Pr(γe2e < γ) (18)

If we denote γ = 2R
− 1 to be the lower threshold for SNR at both R and D, and R is fixed

transmission rate at S, then Equation (18) can be reformulated as the following

Pout = Pr
{
ϕ1ϕ2γ0[1− ρ− γσ2

1 − γ(1− ρ)σ
2
2

−γ(1− ρ)σ2
1σ

2
2] < ϕ2(γ+ γσ2

2) + γκ+ γκσ2
1

}
(19)

Here we denote c1 = γ+γσ2
2, c2 = γκ+γκσ2

1, and c3 = γ0[1−ρ−γσ2
1 −γ(1−ρ)σ

2
2 −γ(1−ρ)σ

2
1σ

2
2].

We assume that c3 is positive, because if c3 is negative, the OP of the system is always equal to 1.

a. Outage Probability (OP)

Pout = Pr
{
ϕ1 <

c1ϕ2 + c2

c3ϕ2

}
=

∞∫
0

Fϕ1

(
c1ϕ2 + c2

c3ϕ2

)
fϕ2(ϕ2)dϕ2 (20)

Combining Equation (20) with Equations (14) and (17) we have

Pout = 1−

∞∫
0

e−λh
c1ϕ2+c2

c3ϕ2 × a
∞∑

l=0

(bK)l

(l!)2 ϕ
l
2e−bϕ2dϕ2 = 1− ae−

λhc1
c3

∞∑
l=0

(bK)l

(l!)2

∞∫
0

ϕl
2e−bϕ2e−

λhc2
c3ϕ2 dϕ2 (21)

Using Table of Integral Equation [3.471,9] in [24], Equation (21) can be given as

Pout = 1− 2ae−
λhc1

c3

∞∑
l=0

(bK)l

(l!)2

(
λhc2

c3b

) l+1
2

×Kl+1

2

√
λhc2b

c3

 (22)
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where Kv(•) is the modified Bessel function of the second kind and vth order.

b. Achievable Throughput (AT)

Here, the average throughput of the relay network system can be computed regarding the OP as
in Equation (23)

τ = (1− Pout)
R
2
= 2ae−

λhc1
c3

∞∑
l=0

(bK)l

(l!)2

(
λhc2

c3b

) l+1
2

×Kl+1

2

√
λhc2b

c3

× R
2

(23)

c. The Bit Error Rate (BER)

The BER of the proposed system can be formulated from the expression of the OP as the
following equation

BER = E
[
ωQ(

√
2θγ

]
(24)

where Q(t) = 1
√

2π

∞∫
t

e−x2/2dx is the Gaussian Q-function, ω and θ are constants which are specific for

modulation type. Here, we use (ω,θ) = (1, 2) for BPSK and (ω,θ) = (1, 1) for QPSK. Hence, we begin
rewriting the BER expression in Equation (24) directly regarding OP at S by using integration as in the
equation below

BER =
ω
√
θ

2
√
π

∞∫
0

e−θx
√

x
Fγe2e(x)dx (25)

3.2. Scenario 2: S-R Link Is the Rician Fading Channel, R-D Link Is the Rayleigh Fading Channel

Similar to scenario 1, the CDF of RV ϕ1 and PDF of RV ϕ2 can be formulated as

Fϕ1(ς) =

ς∫
0

fϕ1(x)dx = 1−
a
b

∞∑
l=0

l∑
m=0

Klbm

l!m!
ςme−bς (26)

where a =
(K+1)e−K

λh
, b = K+1

λh

fϕ2(x) = λge−λgx (27)

a. Outage Probability (OP)

Pout = Pr
{
ϕ1 <

c1ϕ2 + c2

c3ϕ2

}
=

∞∫
0

Fϕ1

(
c1ϕ2 + c2

c3ϕ2

)
fϕ2(ϕ2)dϕ2 (28)

Pout = 1−

∞∫
0

a
b

∞∑
l=0

l∑
m=0

Klbm

l!m!

( c1ϕ2+c2
c3ϕ2

)m

e−
b(c1ϕ2+c2)

c3ϕ2 λge−λgϕ2dϕ2

(29)

We apply the equation (x + y)m =
m∑

n=0

(
m
n

)
xm−nyn, and change the variable by setting, and

Equation (27) can be reformulated as the following

Pout = 1− λge−
bc1
c3

∞∫
0

a
b

∞∑
l=0

l∑
m=0

m∑
n=0

(
m
n

)
Klbmcm−n

1 cn
2

l!m!cm
3

tn−2

e−
bc2t
c3 e−

λg
t dt

(30)
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Pout = 1− λge−
bc1
c3

a
b

∞∑
l=0

l∑
m=0

m∑
n=0

Klbmcm−n
1 cn

2

l!n!(m− n)!cm
3

∞∫
0

tn−2e−
bc2t
c3 e−

λg
t dt (31)

Using the Table of Integral Equation [3.471,9] in [24], the above equation can be given as

Pout = 1− 2λge−
bc1
c3

a
b

∞∑
l=0

l∑
m=0

m∑
n=0

Klbmcm−n
1 cn

2

l!n!(m− n)!cm
3

(
λgc3

bc2

) n−1
2

Kn−1

2

√
bc2λg

c3

 (32)

Pout = 1− 2ae−
bc1
c3

∞∑
l=0

l∑
m=0

m∑
n=0

Klb
2m−n−3

2 λ
n+1

2
g cm−n

1 c
n+1

2
2 c

n−1−2m
2

3

l!n!(m− n)!
×Kn−1

2

√
bc2λg

c3

 (33)

where Kv(•) is the modified Bessel function of the second kind and vth order.

b. Achievable Throughput (AT):

τ = (1− Pout)
R
2
= 2ae−

bc1
c3

∞∑
l=0

l∑
m=0

m∑
n=0

Klb
2m−n−3

2 λ
n+1

2
g cm−n

1 c
n+1

2
2 c

n−1−2m
2

3

l!n!(m− n)!
×Kn−1

2

√
bc2λg

c3

× R
2

(34)

c. The Bit Error Rate (BER)

Similar to scenario 1, BER can be calculated with the equation below

BER =
ω
√
θ

2
√
π

∞∫
0

e−θx
√

x
Fγe2e(x)dx (35)

3.3. Optimal Power-Splitting (PS) Factor

In this section, we can calculate the optimal value ρ∗ by solving the equation dτ(p)
dρ = 0, using

the AT expression in Equations (23) and (34). Here, we use the Golden section search algorithm as
in [25,28–30], which is popularly used in many global optimization problems in communications.

4. Results and Discussion

In this section, we investigate the system performance in terms of OP, AT, BER, and the PS factor
in connection with the main system parameters: η, ρ, Ps/N0 and σ1, σ2. The primary system simulation
parameters are listed in Table 1.

Table 1. The main simulation parameters.

Symbol Name Values

η Energy harvesting efficiency 0.7
λh Mean of |h|2 0.5
λg Mean of

∣∣∣g∣∣∣2 0.5
K Rician K-factor 3
γth SNR threshold 7

Ps/N0 Source power-to-noise ratio 0–30 dB
σ1 Distortion error 0.01
σ2 Distortion error 0.05
R Source rate 3 bit/s/Hz
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Figures 3 and 4 plot the OP and AT versus the energy conversion efficiency η. The effect of η was
investigated in both scenarios, and we vary η continuously from 0 to 1. From the figures, we can see
that the OP decreased and the AT increased crucially with η varying from 0 to 1; and the OP and AT in
the second case is better than in the first case. Furthermore, the results show the correctness of the
simulation and analytical expressions. Moreover, Figures 5 and 6 plot the impact of the ratio Ps/N0 on
the OP and AT, while the ratio Ps/N0 increases from 0 to 30 dB. From the research results, we can state
that the OP decreased and AT increased with the rising of the ratio Ps/N0, and the analytical results
match very well with the analytical values.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 14 
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In addition, the OP and AT versus the PS factor ρ are shown in Figures 7 and 8. It can be observed
that the AT increased and OP fell at the D with factor ρ from 0 to 0.6. After that, the OP and AT had the
opposite effect when ratio ρ from 0.6 to 1.0. We can find the optimal value of factor ρ from 0.6 to 0.7 in
this situation. It can be observed that when ρ is too small, R cannot harvest enough energy from S to
operate reliably, but when ρ is too large then the reliability of the communications link from S to R is
impaired. Furthermore, the OP and AT of the model system versus σ1 = σ2 varied from 0 to 0.2 and are
plotted in Figures 9 and 10. In the same way, OP increased and AT decreased with the increasing of σ1

= σ2. In all the above figures, the simulation and analytical results agree well with each other.
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Figures 11 and 12 show the optimal PS factor versus the ratio Ps/N0 in both scenarios. As shown
in the figures, the optimal power splitting factor increased while the ratio Ps/N0 varied from 0 to
30 dB. Moreover, Figure 13 plots the dependent of BER on the ratio Ps/N0. The results show that BER
decreased significantly with Ps/N0 from 0 to 20 dB. After that, BER slightly decreased.
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5. Conclusions

In this paper, we propose and investigate the system performance of an AF wireless network over
the different fading channel. The system model is considered under the effect of hardware impairment
with the PS protocols. Firstly, the closed-form expressions of OP, AT, and BER of the proposed system
is analyzed and derived. After that, we used the Monte Carlo simulation to verify the correctness of
the analytical expressions in connection with the primary system parameters. Finally, the numerical
results show that the analytical mathematical expression and the simulation results using the Monte
Carlo method are in agreement with each other. In addition, the optimal PS factor was investigated in
both cases.
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