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ABSTRACT
Chronic arsenic exposure in Bangladesh and the United States: from
nutritional influences on arsenic methylation to arsenic-induced epigenetic
dysregulation

Anne Kristina Bozack

Background: Chronic arsenic (As) exposure in a global public health concern. Ar-
senic exposure through drinking water affects over 140 million people in at least 70
countries, including 40 million people in Bangladesh. In the United States (US), 2.4
million people rely on private wells or public water systems with As levels above the
US maximum contaminant level.

Ingested inorganic arsenic (InAs) is methylated to monomethyl (MMAs)- and dimethyl
(DMAs)-arsenical species using the methyl donor S-adenosylmethionine (SAM). Full
methylation of InAs to DMAs decreases As toxicity and facilitates urinary As excre-
tion. Arsenic methylation capacity is influenced by nutrients involved in one-carbon
metabolism (OCM), the biochemical pathway that synthesizes SAM. Folate recruits
one-carbon units for the remethylation of homocysteine and the synthesis of SAM. The
availability of one-carbon units is also impacted by nutrients including the alternative
methyl donor betaine, its precursor choline, and possibly the cofactor vitamin Bys. In
addition, As methylation capacity may also be influenced by creatine; an estimated
50% of SAM is consumed by the final step of endogenous creatine synthesis.

The adverse health outcomes associated with chronic As exposure include impaired
intellectual function, cardiovascular disease, diabetes, inflammation, and cancers of the
bladder, lung, kidney, liver, and skin. In utero As exposure is associated with adverse

birth outcomes include decreased birth weight and gestational age. Elevated health



risks persist after exposure has been reduced or ended, leading to the hypothesis that
epigenetic dysregulation, including changes in DNA methylation, may be a biological
mechanism linking As exposure to health outcomes.

Objectives: This research has three main objectives: (1) to investigate the influ-
ence of OCM nutritional factors on As methylation by evaluating effects of folic acid
(FA) and creatine supplementation on As methylation capacity, and effect modification
by baseline status of OCM-related nutrients; (2) to examine associations between As
exposure and loci-specific DNA methylation in an epigenome-wide association study
(EWAS); and (3) to assess mediation of the association between in utero As exposure
and birth outcomes (i.e., gestational age and birth weight) by DNA methylation of tar-
get genes identified in an EWAS, as well as the candidate gene DNA methyltransferase
3 alpha (DNMT3A), a protein-coding gene involved in de novo DNA methylation.

Methods: This research used data from three studies of As-exposed individuals.
To address the first objective, we used data from the Folic Acid and Creatine Trial
(FACT), a 24-week randomized clinical trial of FA (400 or 800 pg/day) and/or crea-
tine supplementation (3 g/day or 3 g creatine and 400 ug FA/day) among As-exposed
adults in Bangladesh recruited independent of folate status (N = 622). We investi-
gated overall FA and creatine treatment effects on mean within-person changes in As
metabolite proportions in urine compared to the placebo group (weeks 0 to 12). Re-
bound of As methylation capacity following the cessation of FA supplementation was
assessed from weeks 12 to 24. We also assessed effect modification by baseline choline,
betaine, vitamin Bi,, and plasma folate of treatment effects on changes in homocys-
teine, guanidinoacetate (GAA) (biomarkers of OCM and endogenous creatine synthesis,
respectively), total blood As, and urinary As metabolite proportions and indices.

To address the second objective, we used data from the Strong Heart Study (SHS),

a population-based prospective cohort of American Indians with low-moderate levels of



As exposure. DNA methylation was measured in 2,325 participants using the Illumina
MethylationEPIC array, which interrogates > 850,000 loci. We tested for differentially
methylated positions (DMPs) and regions (DMRs), and conducted gene ontology (GO)
enrichment analysis to understand functions of genes containing differential methyla-
tion.

To address the third objective, we used data from a prospective birth cohort in
Bangladesh. In a discovery phase, an EWAS was conducted to identify CpGs with
methylation measured in cord blood that are associated with maternal water As levels
and birth outcomes (N = 44). In a validation phase, DNA methylation in cord blood was
measured using bisulfite pyrosequencing at three target CpGs annotated to miR124-3,
MCC, and GNAL (N = 569). We applied structural equation models (SEMs) to assess
mediation of the association between in utero As exposure and gestational age by DNA
methylation. In addition, mediation of the association between in utero As exposure
and birth outcomes by DNA methylation of the candidate gene DNA methyltransferase
alpha (DNMT3A) was assessed.

Results: In FACT, the mean within-person decreases %InAs and %MMAs and
increase in %DMAs were greater among all groups receiving FA supplementation at
weeks 6 and 12 compared to placebo (P < 0.05) (Chapter 3). Stratified by median
choline and betaine concentrations at baseline, we observed a trend towards greater FA
treatment effects among participants with levels below the median of both nutrients
compared to participants above the median (Chapter 4). Among participants who dis-
continued FA supplementation, at week 24, %InAs and %DMAs were not significantly
different than baseline levels, suggesting a rebound in As methylation capacity with ces-
sation of FA supplementation. We observed a significantly greater mean within-person
decreases in %9MMAs with creatine supplementation compared to placebo at weeks 1, 6,

and 12; mean within-person changes in %InAs and %DMAs did not differ significantly



between the creatine and placebo groups (Chapter 3). The mean within-person de-
crease in urinary %MMAs at week 12 with creatine treatment was significantly greater
than placebo among participants with baseline choline concentrations below the me-
dian, but did not differ from placebo among participants with choline concentrations
above the median (Chapter 4).

In an EWAS conducted in SHS, we identified 20 DMPs associated with urinary As
levels at FDR < 0.05; five DMPs were significant at Pponferroni < 0.05 (Chapter 5).
The top significant CpG, c¢g06690548, was located in solute carrier family 7 member
11 (SLC7A11), part of the amino-acid transporter cystine:glutamate antiporter system
X, ", which is involved in biosynthesis of the endogenous antioxidant glutathione (GSH).
Additional Bonferroni-significant CpGs were located in ANKS3, LINGOS3, CSNK1D,
and ADAMTSL4. We identified one FDR-significant DMR, (chr11:2,322,050-2,323,247)
including the open reading frame Cllorf21 and tetraspanin 32 (TSPANS32).

Mediation of the association between in utero As exposure and birth outcomes by
cord blood DNA methylation was assessed in a Bangladeshi birth cohort. In the discov-
ery phase (N = 44), the association between maternal water As levels and gestational
age was fully mediated by DNA methylation of the top 10 CpGs associated with both
variables. In a discovery phase (N = 569), there were significant indirect effects of
maternal water As levels on gestational age through DNA methylation of miR124-3
and MCC'; the indirect effect through DNA methylation of GNAL was not significant
(Chapter 6). In an adjusted SEM including miR124-8 and MCC, mediation of the
association between in utero As exposure and gestational age by DNA methylation
of miR124-3 was borderline significant (P = 0.06); DNA methylation of MCC did
not act as a mediator. We also assessed mediation by DNA methylation of DNMT3A
(Chapter 7). In an adjusted SEM including birth weight and gestational age, there

was a significant indirect effect of maternal toenail As levels on gestational age through



DNMTS3A methylation, the indirect effect on birth weight was borderline significant (P
= 0.082). However, the indirect effects of maternal toenail As levels on birth weight
through all pathways including gestational age were statistically significant. A doubling
in maternal toenail As concentrations had a total effect of a decrease in gestational age
of 2.1 days and a decrease in birth weight of 28.9 g.

Conclusions: Results from FACT (Chapters 3 and 4) provide evidence of the
associations between OCM-related nutrients and As methylation capacity. Specifically,
FA and creatine supplementation may increase As methylation capacity by increasing
the availability of SAM, and treatment effects may be greater among individuals with
low betaine and choline status, respectively. In addition, results reported in Chapters
5-7 support the hypotheses that chronic As exposure is associated with epigenetic
dysregulation, and that changes in the epigenome may mediate the association between
As exposure and adverse health effects. Findings from the research presented here may
help inform public health interventions to reduce the adverse health effects of chronic
As exposure. However, further research is needed to fully understand the biological
mechanism that influence As methylation and that underlie the associations between

chronic As exposure and adverse health outcomes.
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Chapter 1

Statement of hypotheses



1.1 Overview

Over 140 million people are exposed to arsenic (As) concentrations in drinking
water greater than 10 pg/L, the World Health Organization (WHO) guideline and
United States (US) Environmental Protection Agency (EPA) maximum contaminant
level (US EPA Office of Water, 2001; World Health Organization, 2012), including
40 million people in Bangladesh (Bangladesh Bureau of Statistics and United Nation
Children’s Fund, 2015). Although As exposure is less common in the US, 296,000
people are served by public water systems with As contamination over 10 pg/L (U.S.
Environmental Protection Agency, 2018) and 2.1 million individuals rely on private
well water with elevated As levels (Ayotte et al., 2017).

Ingested inorganic arsenic (InAs) undergoes a series of reduction and oxida-
tive methylation reactions. InAs is methylated to monomethyl (MMAs)- and dimethyl
(DMAs)-arsenical species using the methyl donor S-adenosylmethionine (SAM) (Chal-
lenger, 1945). Full methylation of InAs to DMAs decreases As toxicity and facilitates
urinary As excretion (Tice et al., 1997; Vahter and Marafante, 1987). Arsenic methy-
lation capacity is influenced by nutrients involved in one-carbon metabolism (OCM)
(Bozack et al., 2018), the biochemical pathway that synthesizes SAM.

Chronic As exposure is associated with numerous adverse health effects in-
cluding impaired intellectual function, cardiovascular disease, diabetes, inflammation,
and cancers of the bladder, lung, kidney, liver, and skin (IARC Working Group, 2009;
Moon et al., 2017; National Research Council, 2013). Elevated risks persist after ex-
posure has been reduced or ended (Smith et al., 2012; Steinmaus et al., 2013, 2014),
suggesting epigenetic dysregulation, including changes in DNA methylation, may be a
biological mechanism linking As exposure to health outcomes.

This dissertation will investigate the association between OCM nutrients and

As methylation capacity, the effect of As exposure on epigenetic dysregulation, and



Hypothesis 2:
As-induced epigenetic
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Figure 1.1: Overview of hypotheses.

the mediating role of epigenetics in the association between As exposure and health

outcomes (Figure 1.1).

1.2 Hypothesis 1: Nutritional influences on
arsenic methylation

Folate and creatine are two nutrients related to OCM. In the Folic Acid
and Creatine Trial (FACT), a randomized controlled trial (RCT) among As-exposed
adults in Bangladesh, our group previously observed a larger decrease in In(blood As
(bAs) concentrations) with 12 weeks of 800 yg folic acid (FA)/day supplementation
compared to placebo (Peters et al., 2015), suggesting that FA supplementation increased
As excretion my influencing As methylation capacity. We hypothesize that FA and
creatine supplementation will increase As methylation as measured by the proportion

of As metabolites in urine.



Hypothesis 1a, FA and creatine treatment effects of As

methylation:

We will examine the treatment effects of 12 weeks of FA (400 or 800 pg/day),
creatine (3 g/day), and creatine + FA supplementation (3 g creatine + 400 ug FA /day)
on the mean within-person changes in %InAs, %MMAs, %DMAs measured in urine
compared to placebo. It is expected that the mean within-person decreases in %InAs
and %MMAs and increase in %DMAs with FA and create treatment will exceed that

of placebo.

Hypothesis 1b, rebound of FA and creatine treatment effects:

We will evaluate changes in %InAs, %MMAs, and %DMAs in urine following
cessation of FA supplementation (weeks 12 to 24). We expect that As methylation

capacity will rebound after the cessation of FA supplementation.

Hypothesis 1c, effect modification by baseline nutritional

status:

We will examine differences in treatment effects on changes in total homocys-
teine concentrations (a biomarker of OCM), guanidinoacetate concentrations (GAA, a
biomarker of endogenous creatine biosynthesis), bAs concentrations, and As metabolite
proportions and indices stratified by baseline median choline, betaine, vitamin By, and
folate. The effect of FA and creatine supplementation is expected to be greater among
participants with low status of other OCM nutrients.

Hypothesis 1 findings will be reported in Chapters 3 and 4.



1.3 Hypothesis 2: Epigenome-wide associations
with arsenic exposure

Associations between chronic As exposure and locus-specific DNA methy-
lation have been observed in previous epigenome-wide association studies (EWAS) of
exposure in utero (Broberg et al., 2014; Cardenas et al., 2015; Gliga et al., 2018; Green
et al., 2016; Kaushal et al., 2017; Kile et al., 2014; Rojas et al., 2015) and adulthood
(Ameer et al., 2017; Argos et al., 2015; Demanelis et al., 2019; Guo et al., 2018). We will
conduct an EWAS in the Strong Heart Study (SHS), a population-based prospective
cohort of American Indians with low-moderate levels of As exposure. We hypothesize
that As concentrations measured in urine will be associated with DNA methylation at

individual loci and regions.

Hypothesis 2a, differentially methylated positions and regions:

We will examine the associations between urinary As levels and DNAm at
individual loci and regions. In addition, associations between urinary As levels and
DNA methylation at loci previously identified as differentially methylated with As

exposure will be assessed.

Hypothesis 2b, gene ontology enrichment analysis:

We will conduct a gene ontology (GO) enrichment analysis to identify bio-
logical and molecular functions associated with genes containing CpGs that are differ-
entially methylated by As exposure. We expect to identify GO terms with biological
relevance to As exposure.

Hypothesis 2 findings will be reported in Chapter 5.



1.4 Hypothesis 3: In utero arsenic exposure and
birth outcomes, mediation by DNA
methylation

In utero As exposure has been associated with adverse birth outcomes includ-
ing reductions in birth weight (reviewed in Bloom et al. (2014); Milton et al. (2017);
Zhong et al. (2019)) and gestational age (Rollin et al., 2017; Xu et al., 2011). We hy-
pothesize that epigenetic dysregulation mediates the association between in utero As
exposure and birth outcomes. The relationships between maternal exposure to As dur-
ing pregnancy, birth weight, gestational age, and DNA methylation will be investigated

in a prospective birth cohort of As-exposed women in Bangladesh.

Hypothesis 3a, epigenome-wide approach:

CpGs associated with maternal water As concentrations and gestational age
were identified using an epigenome wide approach. Top CpGs identified mediated the
association between As exposure and gestational age. In a validation phase, using struc-
tural equation models (SEMs) we will evaluate mediation of the association between in
utero As exposure and gestational age by methylation of three top CpGs measured by

pyrosequencing.

Hypothesis 3b: DNAm DNMTS3A:

DNA Methyltransferase 3 Alpha (DNMT3A) is expressed during embryogen-
esis and is involved in de novo DNA methylation. We selected DNMTS3A as a candidate
gene involved in mediation of the association between in utero As exposure and birth

outcomes. Using SEMs, we will evaluate the relationships between in utero As expo-



sure measured by maternal toenail As concentrations, gestational age, birth weight,
and DNMTS3A methylation using pyrosequencing.

Hypothesis 3 findings will be reported in Chapters 6 and 7.
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2.1 Introduction

Arsenic (As) is naturally-occurring metalloid. Although As comprises an es-
timated 0.05% of the earth’s crust by weight (Fleischer, 1953), As is found ubiquitously
in the environment (National Research Council, 1977) and elevated levels of As are
present in groundwater in many regions of the world. Known as the “king of poi-
sons” and “poison of kings,” the toxicity of As has been known for millennia (Frith,
2013); however, today As exposure continues to affect the health of millions of people
worldwide.

The metabolism of ingested inorganic As (InAs) facilitates As elimination
in urine. InAs may undergo a series of reduction and oxidative methylation reactions
forming monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species. DMAsV is the
least toxic and most readily excreted As species (Petrick et al., 2001). Chronic exposure
to As through drinking water and food has been associated with a broad range of
health outcomes. Increased risk of adverse health outcomes persists after remediation
of As exposure, suggesting that epigenetic dysregulation is a mechanistic link between
exposure and health effects.

This chapter will begin with an overview of As exposure, particularly in
Bangladesh and the United States (US) (Section 2.2), and its associated health out-
comes (Section 2.3 and Section 2.4). This chapter will also describe As metabolism
(Section 2.5), one-carbon metabolism, a biological pathway influencing As methylation,
and the relationship between one-carbon metabolism nutrients and arsenic methylation
capacity (Section 2.6). Finally, potential mechanisms of action of As will be discussed,

focusing on epigenetic dysregulation (Section 2.7).
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2.2 Sources and extent of arsenic exposure

Arsenic may be released into groundwater through the reductive dissolution
of iron and aluminum oxides and the activity of metal-reducing bacteria (Shankar et al.,
2014). Anthropogenic sources, including mining, coal combustion, and As-based pes-
ticides, also contribute to elevated concentrations of As in groundwater (Nriagu et al.,
2007), although to a lesser extent (Shankar et al., 2014). At least half of the world’s
population relies on groundwater for drinking (World Water Assessment Programme,
2015). Although exposure to As through drinking water has decreased over the past
decades, over 140 million people in more than 70 countries remain exposed to As con-
centrations greater than 10 yg/L, the World Health Organization (WHO) guideline
and US Environmental Protection Agency maximum contaminant level (US EPA Of-
fice of Water, 2001; World Health Organization, 2011) (World Health Organization,
2011). The ten countries most severely affected by As exposure and bearing a high
proportion of the global burden of As-related morbidity and mortality are Bangladesh,
Cambodia, China, India, Myanmar, Nepal, Pakistan, Taiwan, Argentina, and Vietnam
(Ravenscroft et al., 2009).

Arsenic-containing foods and beverages can contribute a large proportion of
ingested inorganic As (InAs) in areas with low drinking water As concentrations. Rice
and rice products are a common source of As exposure. In 2011, rice provided almost
20% of the per capita caloric intake globally (International Rice Research Institute,
2011). Silicon (Si) is necessary for the growth of rice. However, due to the chemical

similarity of Si and reduced InAs (As'™)

, which is present in anaerobic conditions
such as rice paddies, transporters in rice can readily uptake InAs (Chen et al., 2017).
Therefore, rice and rice products may contain elevated levels of As when cultivated with

As-contaminated water or on fields treated with As-based pesticides (Potera, 2007).

Arsenic concentrations in rice are also affected by cooking rice with As-contaminated
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water (Kumarathilaka et al., 2019). Brown rice and brown rice products contain higher
inorganic As concentrations due to accumulation in the aleurone layer of the grain
(Meharg et al., 2008). The frequency of rice consumption, and consequently As exposure
through food, differs among ethnic groups (Food and Drug Administration, 2016).
Arsenic exposure through food is a particular concern for infants and children due
to rice-based infant products, high per-body-mass food intake, and a more limited
diet than adults (Food and Drug Administration, 2016). Additional sources of As
exposure include apple juice, red wine, and chicken (Food and Drug Administration,

2017; Nachman et al., 2013).

Arsenic exposure in Bangladesh

Beginning in the 1970s, the United Nations Children’s Fund (UNICEF) ad-
vocated for the use of tube wells due to high rates of acute gastrointestinal disease
among infants and children caused by bacterial contamination of surface water (Smith
et al., 2000). By 1997, UNICEF declared that 80% of Bangladesh’s population had
access to drinking water provided by well and taps, which was thought to be safe.
However, also during the 1990s, water testing indicated widespread As contamination
of tube wells and health surveys identified As-induced skin lesions affecting over half
of patients examined in some areas (Smith et al., 2000). The size of the population
affected by As-contaminated drinking water has been estimated by surveys of tube
wells. For example, a survey of tube wells conducted between 1995-1999 estimated
that 79.9 million people in Bangladesh may be affected by As concentrations exceeding
the country’s limit of 50 ug/L (Chowdhury et al., 2000). Exposure to drinking water
with As concentrations > 10 ug/L contributed to an estimated 43,000 deaths per year
nationally in 2009 (Flanagan et al., 2012). Arsenic exposure has been reduced, but

in 2013, it was estimated that approximately 40 million people remained exposed to
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drinking water As concentrations exceeding 10 ug/L (Bangladesh Bureau of Statistics

and United Nation Children’s Fund, 2015).

Arsenic exposure in the US

Groundwater As concentrations are elevated in areas of the US including
the West, Midwest, and Northeast (Ayotte et al.). In 2001, the US Environmental
Protection Agency (EPA) decreased the maximum contaminant level (MCL) from 50
ug/L to 10 pg/L, and required public water systems to become compliant by January
2006 (US Environmental Protection Agency, 2016). Since 2001, the number of people
served by public water systems with As concentrations > 10 ug/L has decreased from
13 million to 296,000 (U.S. Environmental Protection Agency 2018). However, the US
EPA MCL does not apply to private wells, and an estimated 2.1 million individuals
rely on well water with elevated As levels (Ayotte et al., 2017).

Some communities in the US are disproportionately affected by As expo-
sure through drinking water due to geographical location and water source. Arsenic
exposure has been measured in the Strong Heart Study (SHS), a population-based
prospective cohort of American Indians in Arizona, Oklahoma, and North and South
Dakota. Residents of these communities commonly rely of private water well water
or small public water systems. Water sampling found elevated As concentrations in
public water systems prior to the establishment of the 10 ug/L MCL, particularly in
Arizona where As concentrations ranged from < 10 to 61 pg/L (Navas-Acien et al.,
2009). Urinary As concentrations were also elevated (median in Arizona = 12.5 pg/g
creatinine; Dakotas = 9.1 ug/g creatinine; Oklahoma = 4.4 pg/g creatinine). This
study population provides a base on which to test Hypothesis 2 described in Chapter
5.
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2.3 Health effects of arsenic exposure

Arsenic is a human toxicant and group 1 carcinogen (World Health Organi-
zation, 2011). Chronic As exposure has been associated with increased risk of numer-
ous health conditions including skin lesions (melanosis, leukomelanosis, and keratosis),
impaired intellectual function, cardiovascular disease, diabetes, inflammation, and can-
cers including bladder, lung, kidney, liver, skin, and possibly prostate (IARC Working
Group, 2009; Moon et al., 2017; National Research Council, 2013) (Figure 2.1). Many
health effects associated with As exposure have a long latency period and an elevated
risk of disease persists even decades after exposure has been reduced or ended. In
Northern Chile, where people were exposed to As-contaminated drinking water for a
very distinct temporal period, exposure isolated to infancy or early life has been associ-
ated with elevated lifetime risk of As-related health outcomes such as lung and bladder
cancer (Smith et al., 2012; Steinmaus et al., 2013, 2014).

Arsenic’s effects on nervous system development are a particular concern for
child health. Reviewed by Tyler and Allan 2014, multiple epidemiological studies have
demonstrated adverse effects of childhood As exposure on intelligence, cognitive skills,
visual perception, and mental health (Wasserman et al., 2011, 2016). Chronic exposure
to medium levels of As appear to have stronger associations with neurodevelopment

outcomes than acute high-level exposure during periods of development.

2.4 In utero arsenic exposure and birth outcomes

In utero As exposure may have adverse effects of fetal development. De-
creased birth size, which may reflect the intrauterine environment and development, has
been associated with increased morbidity and mortality in adulthood (Kajantie et al.,

2005; Knop et al., 2018). Arsenic crosses the placenta, and maternal and cord blood As
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Figure 2.1: Arsenic metabolism, target tissues, and comorbidities. Chronic As expo-
sure has been associated with increased risk of skin lesions (melanosis, leukomelanosis,
and keratosis), cardiovascular disease, hypertension, impaired intellectual function, in-
flammation, diabetes, and cancers. Ingested As accumulates in multiple tissues, in-
cluding the spleen, liver, lungs, kidneys, bladder, skin, and bone marrow. (Inset)
AS3MT is predominantly expressed in the liver, although AS3MT mRNA has also
been detected in the kidneys, adrenal gland, bladder, heart, and brain. Abbrevia-
tions: AS3MT, arsenic-3-methyltransferase; DMAsY, dimethylarsinic acid; InAs'!, ar-
senite; MMASIII, monomethylarsonous acid; MMAsY, monomethylarsonic acid; SAH,
S-adenosylhomocysteine; SAM, S-adenosylmethionine (Bozack et al., 2018c).
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concentrations are highly correlated (Concha et al., 1998; Hall et al., 2007). The terato-
genic effects of in utero As exposure have been demonstrated in rodent studies. These
include decreased fetal weight (Ferm and Hanlon, 1985; Hill et al., 2008; Kozul-Horvath
et al., 2012; Nagymajtényi et al., 1985), delayed fetal development (Moore et al., 2019),
fetal malformations, (Hood, 1972; Hood and Bishop, 1972) and neural tube defects (Hill
et al., 2008; Hood, 1972; Hood and Bishop, 1972; Morrissey and Mottet, 1983).

Birth outcomes associated with in utero As exposure have also been assessed
in epidemiological studies, as reviewed by Bloom et al. (2014); Milton et al. (2017);
Vahter (2009), although findings have been inconsistent. Studies of the associations
between As exposure and outcomes of birth weight and gestational age are summa-
rized in Appendix Table 2.1 and Appendix Table 2.2, respectively. A recent review by
Milton et al. focused on epidemiological studies investigating the association between
maternal exposure to As in drinking water and adverse pregnancy outcomes including
spontaneous abortion, stillbirth, preterm birth, and neonatal mortality. Although find-
ings have differed among studies, the review concluded that there is “consistent and
convincing evidence” of the association between as high As exposure and increased risk
of spontaneous abortion and stillbirth, but an insufficient number of studies addressing
of the associations between As exposure and neonatal death and preterm birth (Milton
et al., 2017).

Milton et al. also summarized studies of the association between in utero As
exposure and low birth weight. Among 11 studies included in the review, six reported
elevated risk of low birth weight with increased As exposure and four reported a null
association (Milton et al., 2017). More recently, Zhong et al. conducted a meta-analysis
of epidemiological studies of the association between maternal As exposure and anthro-
pometric measurements at birth (Zhong et al., 2019). Twelve studies of the association

between As exposure and birth weight were included in the meta-analysis resulting in a
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summary regression coefficient of -25.0 g (95% CI: -41.0, -9.0). Similarly, meta-analysis
results indicated a negative association between in utero As exposure and birth length
(B = -0.12 c¢m; 95% CI: -0.17, -0.07) and head circumference (§ = -0.12 cm; 95% CIL:
-0.24, -0.01).

The effect of As exposure on intrauterine growth may be modified by factors
including exposure level, birth size, and infant sex. In a birth cohort in Bangladesh,
Rahman et al. found a significant interaction between maternal urinary As concentra-
tions and exposure levels (< 100 ug/L vs. < 100 pg/L), resulting in a negative effect
of As exposure on birth weight at low levels, but not high, levels of exposure (Rahman
et al., 2008). In a separate Bangladeshi cohort, mediation analysis of the association
between in utero As exposure and birth weight indicated a significant independent as-
sociation between maternal water As and birth weight only among infants in the 10th
to 20th percentiles of birth weight (10th percentile: = -28.0 g, 95% CI: -43.8, -9.9;
20th percentile: § =-14.9 g, 95% CI = -30.3, -1.7) (Rahman et al., 2017). In addition,
in a birth cohort in China, analyses stratified by sex indicated a significant negative
association between maternal bAs and birth weight among male infants (B = -354.41,
95% CI = -677.53, -31.28), but not among female, infants (Xu et al., 2011).

Although many studies of in utero As exposure have focused on the effects
of As on birth weight, low birth weight is caused by short gestation and/or intrauter-
ine grown restriction (Wardlaw et al., 2004). These factors have different effects on
health outcomes: shorter gestation is associated with increased risk of infant mortality,
morbidity, and disability; restricted intrauterine growth is associated with decreased
growth in childhood and increased morbidity in adulthood. Distinguishing between
etiological factors is therefore important to understanding the health implications of in
utero As exposure.

Several studies have evaluated birth weight and gestational age as indepen-
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dent outcomes associated with in utero As exposure, finding no significant association
with either outcome (Bloom et al., 2016; Freire et al., 2019; Sun et al., 2019), or a signif-
icant negative association with both outcomes (Xu et al., 2011). To help elucidate the
relationship between As exposure, birth weight, and gestational age, in a birth cohort
in Bangladesh, David Christiani’s group has conducted mediation analyses including
both birth outcomes (Kile et al., 2015; Lin et al., 2019; Wei et al., 2017; Rahman et al.,
2017). These results suggest that the observed association between in utero As expo-
sure and birth weight is fully mediated by a shorten gestational period: in structural
equation models (SEMs), the relationship between maternal drinking water As levels
and birth weight (8 =-19.17, 95% CI: -24.64, -13.69) was mediated through gestational
age (B =-17.37, 95% CI: -22.77, -11.98) and maternal weight gain (8 = -1.80, 95% CI:
-3.72, 0.13) (Kile et al., 2015).

Although epidemiological studies of the relationship between in utero As ex-
posure and birth outcomes have not provided consistent results, overall there is a trend
toward a negative association between exposure and birth size and gestational length.
Conclusions from systematic literature reviews and a meta-analysis strengthen the ev-
idence of the association between in utero As exposure and adverse birth outcomes.
Differences in results of epidemiological studies may be due in part is biases in study
design, differences in level of exposure, methods of exposure assessment, sample size,
and statistical analyses performed. Further research is needed to fully understand the
association between in utero As exposure and birth outcomes. The associations between
in utero As exposure, birth weight and gestational age, and mediation by epigenetic

dysregulation be discussed further in Chapters 6 and 7.
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2.5 Arsenic methylation

Section 2.5, Arsenic methylation, was published in Bozack AK*, Saxena
R*, Gamble M V. 2018. Nutritional Influences on One-Carbon Metabolism:
Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018. 38:40129.

(Bozack et al., 2018c). (*these authors contributed equally to this article).

Arsenic in drinking water is predominantly inorganic arsenate (InAsV) or ar-
senite (InAs™™!), but once ingested, it undergoes methylation in a process that facilitates
urinary As elimination (Buchet et al., 1981). In 1945, Challenger reported a model in
which InAs undergoes alternate reduction and oxidative methylation reactions (Chal-
lenger, 1945), illustrated in Figures 2.1 and 2.2. Briefly, InAs™! is methylated by arsenic-
3-methyltransferase (AS3MT) (Lin et al., 2002), using S-adenosylmethionine (SAM) as
the methyl donor, to form monomethylarsonic acid (MMAs"Y) (Del Razo et al., 2001).
MMASsY is then reduced to monomethyl-arsonous acid (MMAs™!), an intermediate with
very high cytotoxicity and genotoxicity (Petrick et al., 2001, 2000; Styblo et al., 2000).
MMAs!! is subsequently methylated by AS3MT to form dimethylarsinic acid (DMAs")
(Challenger, 1945; Lin et al., 2002; Thomas et al., 2004). DMAs" is rapidly excreted
in urine and is considerably less toxic than MMAs'" InAs™ or InAsY (Styblo et al.,
2000). While other identified methyltransferase enzymes are capable of methylating As
(Zakharyan et al., 1999, 1995), AS3MT catalyzes these methylation reactions with a
Km in the nanomolar range, indicating that it is the most physiologically relevant en-
zyme for As methylation (Lin et al., 2002). Glutathione (GSH) may increase the speed
of the reduction steps, influence the activity of AS3MT, and sequester As. Hayakawa
et al. 2005 proposed a pathway in which AsGSH complexes are substrates for AS3MT.
Using a mathematical model based on the known biochemistry of As derived from cel-
lular and experimental studies, our group found that the Challenger pathway of As

methylation, along with the GSH effects, is sufficient to understand and predict ex-
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Figure 2.2: Arsenic methylation. According to the Challenger pathway (Challenger,
1945), AS3MT catalyzes the oxidative methylation of arsenite using SAM as the methyl
donor, forming MMAs" and SAH. MMAs" is then reduced to MMAs!! before a subse-
quent oxidative methylation step, yielding DMAsY and SAH. Abbreviations: AS3MT,
arsenic-3-methyltransferase; DMAsY, dimethylarsinic acid; MMAs™, monomethylar-
sonous acid; MMAsY, monomethylarsonic acid; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine. (Bozack et al., 2018c).

perimental data (Lawley et al., 2014). Additional experimental studies are needed to
determine the relative roles that alternative pathways play in As methylation.

AS3MT is predominantly expressed in the liver, but ASSMT mRNA has
also been detected in the kidneys, adrenal gland, bladder, heart, and brain (Lin et al.,
2002). Work by Thomas’s group (Drobna et al., 2009; Hughes et al., 2010) using
ASSMT knockout mice illustrates the profound role of AS3MT in As elimination, as
mice deficient in ASSMT accumulate a body burden of As that is 16-20 times greater
than wild-type mice and exhibit severe systemic toxicity and early death.

There are controversies surrounding the influence of As metabolism on tox-
icity owing in part to analytical challenges. For example, because trivalent arsenicals
are readily oxidized to pentavalent forms by environmental oxygen, it is difficult to dis-
tinguish between the valence states of As metabolites, and the potential for artifact is
high. Because of this limitation, most human studies report the percentages of total As
%InAs+V  ZMMAs"™V and %DMAs"™*V. Some studies have provided conflicting
information about the portion of DMAsY versus DMAs™! that may be present in urine
(Mandal et al., 2001; Del Razo et al., 2001; Valenzuela et al., 2004). This reported dis-

II1

crepancy may be due to the high reactivity of DMAs", which can be rapidly oxidized
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to DMAsY (Kobayashi and Hirano, 2008). Additionally, one chromatographic protocol
that treats DMAsY with metabisulfite and thiosulfate can inadvertently generate thio-
DMAsY (Hansen et al., 2004), a relatively minor arsenical species (5% of total As) that

has been identified in human urine (Raml et al., 2007).

Arsenic Methylation and Toxicity

Arsenic metabolites vary considerably in their toxicity. Trivalent arsenicals
have greater cytotoxicity and genotoxicity than pentavalent forms. Using real-time cell
sensing in two human cell lines, Le’s group (Moe et al., 2016), in agreement with the
work of others (Petrick et al., 2000), reported that MMAs!! is the most cytotoxic As
metabolite, followed by DMAs™, InAs'™ InAsY, MMAsY, DMAsY, and the chicken feed
additive Roxarsone. Studies utilizing hamster cells from a variety of tissues including
kidney and heart demonstrate that MMAs'™! is the most cytotoxic arsenical species in all
cell types tested (Petrick et al., 2001). In epidemiological studies, a higher percentage
of MMAs"™*V in urine has been associated with increased risk for bladder, breast,
lung, and skin cancer, as well as skin lesions, peripheral vascular disease, hypertension,
atherosclerosis (Figure 2.3), and decreased birthweight (Ahsan et al., 2007; Chen et al.,
2003a,b; Gilbert-Diamond et al., 2013; Hsueh et al., 1997; Huang et al., 2006, 2008a;
Laine et al., 2015; Lindberg et al., 2008; Lépez-Carrillo et al., 2014; Melak et al., 2014;
Pu et al., 2007; Steinmaus et al., 2006, 2010; Tseng et al., 2005; Wu et al., 2006; Yu et al.,
2000). In contrast, the risk of metabolic syndrome and diabetes has been negatively
associated with %MMAs in urine (Chen et al., 2012; Kuo et al., 2017). Most, but not
all, of these studies used prevalent cases and therefore cannot establish temporality or
rule out the possibility of reverse causation, i.e., that having a disease influences the
ability to methylate As. However, in a recent nested case-control study of As-induced

skin lesions, we found that participants falling into the lowest tercile of %DMAS in
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Figure 2.3: Summary plot of odds ratios and 95% CIs for health outcomes reported to
be associated with %MMAs in urine (Ahsan et al., 2007; Chen et al., 2012, 2003a,b;
Gilbert-Diamond et al., 2013; Hsueh et al., 1997; Huang et al., 2006, 2008a; Laine et al.,
2015; Lindberg et al., 2008; Li et al., 2013b,a, 2015; Lépez-Carrillo et al., 2014; Melak
et al., 2014; Pu et al., 2007; Steinmaus et al., 2006, 2010; Tseng et al., 2005; Wu et al.,
2006; Yu et al., 2000). Abbreviations: %MMAs: percent monomethyl-arsenical species;
CI: confidence interval. (Bozack et al., 2018c).

urine were at higher risk for development of skin lesions 2-7 years later (Niedzwiecki
et al., 2018).

Arsenic methylation capacity differs between species, individuals, and pop-
ulations. In Bangladesh, members of our group have found that genetic variation in
the ASSMT gene is a strong genetic predictor of As methylation capacity (Gao et al.,
2015; Jansen et al., 2016). Single-nucleotide polymorphisms (SNPs) in ASSMT have

also been associated with the proportion of As metabolites in urine in other populations
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(Agusa et al., 2009; Balakrishnan et al., 2017; Engstrom et al., 2011; Herndndez et al.,
2008a,b), as well as As-related health outcomes such as skin lesions and skin cancer (En-
gstrom et al., 2015; Gao et al., 2015). In addition, epigenetic regulation may influence
As methylation capacity. In a study of Argentinean women, the ASSMT haplotype was
found to be associated with the methylation status of the ASSMT gene — which influ-
enced AS3MT gene expression — and with As methylation capacity (Engstrom et al.,

2013).

2.6 One-carbon metabolism and nutritional
influences on arsenic methylation

(Section 2.6, One-carbon metabolism and nutritional influences on
arsenic methylation, was published in Bozack AK*, Saxena R*, Gamble
M V. 2018. Nutritional Influences on One-Carbon Metabolism: Effects on
Arsenic Methylation and Toxicity. Annu Rev Nutr. 2018. 38:40129. (Bozack
et al., 2018c). (*these authors contributed equally to this article).
Directly relevant to Chapters 3 and 4 on the influence of one-carbon
metabolism (OCM) nutrients on As methylation, this section will describe the OCM
pathway. It will also provide an overview of current evidence of the association between

OCM-related nutrients and As methylation capacity.

One-carbon metabolism

Methylation reactions are dependent on the methyl donor SAM, a critical
cosubstrate in OCM (Figure 2.4). Several micronutrients including folate, vitamin By
(cobalamin), betaine, choline, riboflavin, and vitamin Bg (pyridoxal phosphate) play

critical roles in OCM. FA is a synthetic form of folate used in food fortification. FA
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must be reduced to 5-methyltetrahydrofolate (5-methyl-THF) by dihydrofolate reduc-
tase to become metabolically active in OCM. In the folate cycle, a one-carbon unit is
transferred from serine to tetrahydrofolate (THF) to form essential role in pulling the
pathway forward. Despite the fact that multiple micronutrients influence OCM, folate
nutritional status appears to be the primary determinant of circulating homocysteine
concentrations in most studies of adults. For example, in a cross-sectional survey, we
observed a high prevalence of high homocysteine in Bangladesh, and plasma folate and

Bis were found to explain 15% and 5% of the variance in homocysteine, respectively

(Gamble et al., 2005a).

OCM and Arsenic Metabolism in Animal Models

Early studies in animal models provided experimental evidence that nutri-
tional regulation of OCM influences the methylation and toxicity of As. In 1987, Vahter
and Marafante (Vahter and Marafante, 1987) reported that rabbits fed diets deficient
in methyl donors (methionine, choline, or protein) had significantly lower urinary ex-
cretion of total As and DMASs, and increased As retention in tissues; similar results
were reported by others in mice (Tice et al., 1997). Finnell’s group conducted an ele-
gant series of studies on neural tube defects (NTDs) that employed mice nullizygous for
several folate-binding proteins involved in cellular uptake of folate from the circulation
(e.g., Folbp-1 and -2) and/or enterocytes (reduced folate carrier). Mice were injected
with sodium arsenate early in gestation during critical periods for neural tube closure.
For all genotypes studied, dietary folate deficiency caused a reduction in urinary ex-
cretion of DMAs, and Folbp-2 null mice were more susceptible to As-induced NTDs
(Spiegelstein et al., 2003, 2005; Wlodarczyk et al., 2001). While As exposure has not
yet been solidly linked to N'TD risk in humans, studies are under way, and a recent

study in Bangladesh reported that As exposure reduced the efficacy of FA in preventing
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Figure 2.4: One-carbon metabolism. FA, arising from fortified foods or nutri-
tional supplements, is reduced to DHF and THF by dihydrofolate reductase. Ser-
ine hydroxymethyl-transferase transfers one-carbon units from serine to THF, with
PLP as a coenzyme, forming 5,10-methylene-THF. This is either used for the synthe-
sis of thymidylate or reduced to 5-methyl-THF. Dietary folates can enter one-carbon
metabolism as 5-methyl-THF. The methyl group of 5-methyl-THF is transferred to ho-
mocysteine in a reaction catalyzed by MTR and utilizing B1s as a cofactor, generating
methionine and THF. Alternatively, in the liver, betaine can donate a methyl group
for the remethylation of homocysteine in a reaction catalyzed by BHMT. Methion-
ine adenosyltransferase enzymes activate methionine to form SAM the methyl donor
for numerous acceptors, including arsenicals, GAA (the precursor to creatine), and
DNA in reactions that involve substrate-specific methyltransferase enzymes. These
methylation reactions generate the methylated products and SAH, a potent product
inhibitor of most methyltransferases. SAH is hydrolyzed to generate homocysteine,
which is either remethylated to regenerate methionine or directed to the transsulfura-
tion pathway and ultimately glutathionine synthesis. Abbreviations: AS3MT, arsenic-
3-methyltransferase; BHMT, betaine homocysteine methyltransferase; DHF, dihydro-
folate; DMAsY, dimethylarsinic acid; DNMT, DNA methyltransferases; FA, folic acid;
GAA, guanidinoacetate; GAMT, guanidinoacetate-Nmethyltransferase; InAs™, arsen-
ite; MMAs™, monomethylarsonous acid; MMAsY, monomethylarsonic acid; MRP, mul-
tidrug resistance proteins; MTR, methionine synthase; PCF'T, proton coupled folate
transporter; PLP, pyridoxal phosphate; SAH, textitS-adenosylhomocysteine; SAM, S-
adenosylmethionine; SLC19A1, solute carrier family 19 (folate transporter), member
1, also known as RFC1; THF, tetrahydrofolate; TS, thymidylate synthetase. (Bozack
et al., 2018c).
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NTDs (Mazumdar et al., 2015).

The utility of rodent models in understanding the effects of OCM-related
micronutrients on As methylation capacity is limited by the facts that (a) there are
profound differences between species in As metabolism efficiency (both mice and rats
are extremely efficient in As methylation); (b) animals are less prone to developing
As-related cancers than are humans; and (c) rodents are much less prone to developing
folate deficiency than are humans due to coprophagia. In addition, it is challenging
to mimic chronic, often decades-long, lower-dose population-based As exposure levels

using rodent models.

Human Studies on Folate and Arsenic Metabolism and
Toxicity

Early human data suggesting a role for folate in As toxicity came in the
form of isolated case reports. For example, an interesting case study of a girl deficient
in MTHFR, the enzyme responsible for the reduction of 5,10-methylene-THF to 5-
methyl-THF, developed severe symptoms of As toxicity following exposure to an As-
containing pesticide, while no other exposed family members were affected (Brouwer
et al., 1992). Several studies on nutrition and As are summarized in Appendix Table 2.3.
For example, in 2002, Smith’s group Chung et al. (2002) reported a cross-sectional study
of 11 families exposed to As-contaminated drinking water in Chile (N = 44) in which the
correlations of As methylation patterns between fathers and mothers were low, but they
increased substantially with adjustment for folate and homocysteine, indicating that
folate and homocysteine are sources of variation in As methylation. Two years later,
Smith’s group (Mitra et al., 2004) reported a nested case-control study of As-related skin
lesions (keratosis and melanosis) in a population with very high water As concentrations

in West Bengal, India. While they did not measure As metabolites, there was a positive
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trend in risk for skin lesions associated with lower quintiles of folate intake (P for trend
= 0.006). In a subsequent case-control study of this population, diet was assessed
using a 24-h recall, and the concentrations of selected micronutrients were measured
in serum; %MMAs was observed to be significantly lower among participants in the
highest tercile of serum folate compared to the lowest tercile (Basu et al., 2011). This
same group conducted another study employing dietary questionnaires in As-exposed
regions of the western United States, in which they found that participants falling in the
lower quartiles for dietary protein, iron, zinc, and niacin had higher %MMAs and lower
%DMAs in urine compared to the highest quartile (Steinmaus et al., 2005). While they
found no significant associations with dietary folate intake, the study was conducted
years after mandatory fortification of cereals, breads, pastas, flours, and other grain
products in the US food supply with FA; therefore, all of the study participants likely
had fairly high folate intake.

Our group has conducted a series of studies in Bangladesh, a population
with chronic As exposure, to better characterize the interconnections between folate,
As metabolism, and As toxicity.

We first conducted a cross-sectional study of As-exposed adults in Bangladesh,
in which we observed that plasma folate was negatively associated with %MMAs and
positively associated with %DMAs Gamble et al., 2005b. We then studied the effect
of 400 ug FA per day, the US recommended dietary allowance, on As metabolism in a
randomized, double-blind, placebo-controlled trial among 200 folate-deficient (plasma
folate < 9 nmol/L) Bangladeshi adults. After 12 weeks of supplementation, the treat-
ment group had a significantly larger increase in %DMAs and decreases in %InAs and
%MMAs in urine relative to the placebo group; treatment effects were observed as early

as one week post-intervention (Gamble et al., 2006). In addition, FA supplementation

lowered blood As (bAs) by 14% and blood MMAs by 22% (Gamble et al., 2007). More
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recently, in the Folic Acid and Creatine Trial (FACT) conducted among 622 As-exposed
Bangladeshi adults selected independent of folate status, a larger decrease in bAs was
observed in the treatment group receiving 800 ug FA per day for 12 weeks relative
to the placebo group (Peters et al., 2015a). In addition, increases in As methylation
capacity were observed among the treatment groups receiving 800 ug FA per day and
400 pg FA per day relative to placebo as measured by the change in %InAs, %MMAs,
and %DMAs in urine between baseline and week 12 (Bozack et al., 2018b) (Reported
in detail in Chapter 3). FACT included a 12-week wash-out period during which half
of the participants in the FA treatment groups were switched to placebo to examine
the effects of cessation of supplementation on As methylation. Arsenic metabolites re-
verted to pre-intervention levels 12 weeks after FA supplementation was discontinued,
highlighting the importance of maintaining adequate folate nutritional status over time.
This has important policy implications, as prolonged maintenance of FA effects may
be more readily achieved through food FA-fortification programs than through recom-
mendations for over-the-counter FA supplements, as the latter has limited long-term
compliance.

In 2009, we reported the results of a nested case-control study of skin le-
sions (274 cases and 274 controls) in Bangladesh in which we found that low folate,
hyperhomocysteinemia, and low urinary creatinine were associated with risk for sub-
sequent development of skin lesions after controlling for age, urinary As, and use of
betel nut (a mild stimulant and known carcinogen commonly chewed by Bangladeshi
adults) (Pilsner et al., 2009). These findings are consistent with those of an analysis of
dietary folate and skin lesions in India by Smith and colleagues (Melak et al., 2014).
Similar results were found in relation to urothelial carcinoma. In a casecontrol study of
177 cases and 488 controls in a population in Taiwan exposed to low concentrations of

As in drinking water, higher %DMAs in urine and higher plasma folate concentrations
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were associated with a decreased risk for urothelial carcinoma. Furthermore, a sig-
nificant interaction was observed between urinary As methylation profiles and plasma
folate in affecting urothelial carcinoma risk (Huang et al., 2008b). More recently, in
a larger nested case-control study (N = 876 cases and 876 controls) of gene X nutri-
tion X environment interactions, hyperhomocysteinemia and lower %DMAs in urine
were both associated with increased risk for development of skin lesions 27 years later
(Niedzwiecki et al., 2018). We also found TYMS rs1001761 was associated with in-
creased skin lesion risk at water As exposure > 50 ug/L. The latter finding highlights a
potential role of OCM in As toxicity independent of As methylation. The TYMS gene
encodes thymidylate synthetase, which utilizes 5,10-methylene-THF for the methylation
of 2-deoxy-uridine-5-monophosphate (dUMP) to 2-deoxy-thymidine-5-monophosphate
(dTMP) and is critical for DNA synthesis and repair (Figure 2.4) (Carreras and Santi,
1995). These findings raise the possibility that DNA damage involving thymidylate
synthetase may be a mechanism of As toxicity at higher As concentrations. Consis-
tent with this hypothesis, a recent study from the Stover group identified thymidylate
biosynthesis as a sensitive target for As at levels observed in human populations (As
trioxide at 0.5 uM, equivalent to 75 pug/L As in water) (Kamynina et al., 2017). The
study found that As exposure to cell cultures impaired folate-dependent dTMP biosyn-
thesis, resulting in uracil misincorporation into DNA and genomic instability. Further,
folate deficiency exacerbated the impact of As on uracil misincorporation and genomic
instability, providing a potential additional mechanism linking folate deficiency to skin
lesion risk (Kamynina et al., 2017).

Recent, large epidemiological studies have confirmed our findings relating
folate to As methylation, including in populations with lower As exposure. In a cross-
sectional study of 1,027 women in Mexico with a median urinary As of 25.9 ug/g

creatinine, micronutrient intake was estimated using a food frequency questionnaire;
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folate intake was associated with significantly lower %InAs and higher methylation
ratio of DMAs/InAs (Lépez-Carrillo et al., 2016). In addition, in an analysis of the
2003-2004 National Health and Nutrition Examination Survey, dietary folate intake
was negatively associated with urinary %InAs and positively associated with %DMAs
in unadjusted models, and red blood cell folate was negatively associated with %InAs in
adjusted models (Kurzius-Spencer et al., 2017). In the SHS, a cohort study of American
Indian adults with low to moderate As exposure, high combined intake of folate and Bg,
as estimated by a food frequency questionnaire, was negatively associated with %InAs
in urine and positively associated with %DMAs (Spratlen et al., 2017). The significant
associations between dietary intake of folate and As metabolism in these studies differ
from the results of a dietary intake analysis by members of our group that reported no
association with dietary folate intake in Bangladesh (Heck et al., 2007). However, the
prolonged cooking times traditionally used in Bangladesh can degrade folate in foods,
making it more difficult to accurately measure true folate intake. Such considerations
highlight the importance of using circulating folate concentrations, particularly in this
region of the world.

Several studies relating OCM to As methylation have been conducted in
pregnant women. During pregnancy, OCM influences exposure of the fetus to As, as
InAs, MMAs, and DMAs are all transported through the placenta. Furthermore, As
concentrations and As metabolites are similar in maternal and umbilical cord blood
(Concha et al., 1998; Hall et al., 2007). OCM is altered during pregnancy owing to
the demands of fetal development. For example, maternal plasma folate levels change
dramatically over the course of pregnancy. Additionally, endogenous choline synthesis
is induced by estrogen and upregulated during pregnancy and lactation (Zeisel, 2009)
(Zeisel 2009).

The relationship between OCM-related micronutrients and As metabolism in
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pregnant women has been investigated in several studies. In a cross-sectional study
of women at 14 weeks gestation in Bangladesh (N = 753), Vahters group reported an
inverse association between plasma folate terciles and urinary %InAs. Women who
were deficient in folate, vitamin Bjy, and zinc had significantly higher %InAs and
lower primary methylation index (MMAs/InAs) compared to women who were not
deficient in any of the three nutrients (Li et al., 2007). Vahter’s group conducted a
subsequent longitudinal study of Bangladeshi women (N = 324) assessed at gestational
weeks 8, 14, and 30. They observed significant negative associations between gestational
week and urinary %InAs and %MMASs, and a significant positive association between
gestational age and %DMAs; however, neither plasma folate nor B, were associated
with the proportions of As metabolites (Gardner et al., 2011). The conclusion that
these micronutrients have little effect on As methylation during pregnancy may be
complicated by changes in OCM during pregnancy. In addition, all women received
a daily supplement of 400 ug FA beginning at week 14, which may have impacted As

metabolism.

Impact of Other OCM-Related Nutrients on Arsenic

Methylation

Although the association between folate and As methylation has been broadly
studied, other micronutrients involved in OCM (Figure 2.4) may influence As methy-
lation capacity. Below, we summarize research on the associations between creatine,
vitamin Bjs, choline, and betaine and As methylation profiles in humans. These OCM
micronutrients are less widely examined than folate in terms of their relationship to As
methylation, and are potential avenues for future research directions.

Creatine. Creatine is a nitrogenous organic acid that is present in foods

and is also synthesized endogenously. Our group (Bozack et al., 2018b; Gamble et al.,
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2005b, 2006; Hall et al., 2009) and others (Basu et al., 2011; Kile et al., 2009) have
consistently reported that urinary creatinine, a degradation product of creatine, is a
strong predictor of As methylation capacity; it is positively associated with %DMAs in
urine and negatively associated with %InAs. The synthesis of creatine, the precursor of
creatinine, consumes approximately 50% of all SAM-derived methyl groups (Mudd and
Poole, 1975; Stead et al., 2006). In omnivores, roughly half of creatine requirements
are met through dietary intake of creatine, primarily from meat (Brosnan et al., 2011).
Urinary creatinine concentrations therefore reflect both dietary creatine intake and
endogenous creatine synthesis. Creatinine is also commonly used in urinalyses to adjust
for hydration status. Increases in circulating creatine concentrations, e.g., from dietary
intake, lower creatine biosynthesis by inhibiting synthesis of guanidinoacetate (GAA),
the precursor of creatine; in rodents, this has been shown to spare methyl groups and
lower homocysteine (Deminice et al., 2008; Guthmiller et al., 1994; Stead et al., 2001;
Taes et al., 2003). We hypothesized that creatine supplementation may also spare
methyl groups and thereby facilitate the methylation of As, and may underlie the
observed associations between the proportion of urinary As metabolites and urinary
creatinine.

We tested this hypothesis in our FACT study. Creatine supplementation for
12 weeks at 3 g per day (roughly 1.5 times the normal daily creatine turnover for a 70-kg
male) lowered GAA as predicted, illustrating that creatine supplementation inhibited
GAA synthesis (Peters et al., 2015b). Also, the mean decrease in urinary %MMAs in
the creatine treatment group exceeded that of the placebo group at weeks 6 and 12
(P < 0.05); however, creatine supplementation did not affect the change in %InAs or
%DMAs (Bozack et al., 2018b). Creatine treatment effects may have been tempered by
long-range allosteric regulation of OCM. Further research is needed to understand the

strong cross-sectional associations between urinary creatinine and As methylation in
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previous studies. One possibility is that urinary creatinine is somehow related to renal
tubular reabsorption of InAs, a topic that is understudied in the scientific literature.
Further results of this trial are reported in Chapters 3 and 4.

Vitamin Bjs (cobalamin). Vitamin Bis has been inconsistently linked to As
metabolism in human studies, but has not been studied in animal models. In an early
cross-sectional study in Bangladesh in which we oversampled Bis-deficient individuals,
we found plasma Bj, concentrations to be inversely associated with %InAs in urine
and positively associated with %MMAs, with no association with %DMAs (Hall et al.,
2009). We found it difficult to reconcile a mechanism whereby Bis would facilitate
mono- but not dimethylation of As. To test whether this might have been a spurious
finding, we subsequently analyzed the relationship between Biy and As metabolites
in blood and urine in FACT and the Folate and Oxidative Stress Study (FOX). In
baseline samples from the FACT study, there were no significant associations between
Bis and As metabolites in urine (nonsignificant correlations were negative for %InAs
and %MMAs and positive for %DMAs), and all associations with bAs metabolite con-
centrations were negative. In FOX, while B, was positively associated with %MMAs
in urine (7spegrman = 0.12, P = 0.02) the correlation with MMAs concentrations in
blood was null (7spearman = -0.02, P = 0.76) (M.V. Gamble, unpublished data). In
an analysis of the 2003-2004 National Health and Nutrition Examination Survey, in
adjusted models, dietary By, intake was positively associated with urinary %InAs and
negatively associated with %DMAs (Kurzius-Spencer et al., 2017), but other studies
have reported null results (Spratlen et al., 2017) or contrasting directions of association
(Lopez-Carrillo et al., 2016). To date, no studies investigating the treatment effects of
Bis supplementation on As methylation have been published. Additional studies are
needed to better understand the relationship between B, and As methylation.

Choline and betaine. The remethylation of homocysteine to methionine, crit-
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ical for the synthesis of SAM, can be catalyzed either by methionine synthase, which
receives a methyl group from 5-methyl-THF, or by betaine homocysteine methyltrans-
ferase, which utilizes a methyl group from betaine. Thus, folate and betaine can be
used interchangeably for the remethylation of homocysteine. Betaine can be obtained
through the diet or synthesized from choline. Choline can also be obtained from the diet
or it can be synthesized endogenously. Choline may serve as a methyl donor through its
conversion to betaine. However, endogenous choline synthesis, like creatine, is another
significant consumer of SAM, as roughly 30% is synthesized de novo through a path-
way that involves three sequential SAM-dependent methylation reactions catalyzed by
phosphatidylethanolamine N-methyltransferase (PEMT) (Vance and Vance, 2004).

Epidemiological studies of choline and As methylation are few, but their
results are generally consistent with animal studies. In a cross-sectional analysis (N =
1,016) nested within the Health Effects of Arsenic Longitudinal Study (HEALS), an
ongoing cohort in Bangladesh led by Habibul Ahsan, multiple nutrients were found to
be associated with As methylation. In multivariate adjusted models, dietary choline
intake was positively associated with the secondary methylation index (DMAs/MMAS)
(Heck et al., 2007). In a subsequent study of women in Mexico, Lopez-Carrillo et al.
2016 found that higher dietary choline is inversely associated with %MMAs in urine and
positively associated with %DMAs and secondary methylation index. However, results
from epidemiological studies indicate that dietary betaine has a weaker association with
As methylation than choline has. In the HEALS cohort as well as Lépez-Carrillo et
al.’s study of Mexican women, betaine intake was not associated with indicators of As
methylation capacity; however, both studies relied on estimates of betaine intake from
food frequency questionnaires without biological assessment of betaine status.

Our group conducted an 8-week pilot intervention of choline (700 mg/day),

betaine (1,000 mg/day) or choline + betaine supplementation in Bangladesh (N =
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60). Within-participant changes in %MMAs and %DMAs in urine were significantly
different between groups receiving choline, betaine, and choline + betaine (P < 0.05) as
compared to placebo (M.N. Hall and M.V. Gamble, unpublished data). Although the
sample size was small, the data suggest that choline 4+ betaine supplementation resulted
in the largest decrease in %MMAs and increase in %DMAs, supporting the hypothesis
that both dietary choline and betaine impact As methylation. Enthusiasm for larger
intervention studies with choline and betaine has been tempered by the finding that
choline supplementation also increased plasma trimethylamine oxide (TMAO). While
TMAO has been linked to risk for cardiovascular disease (Tang et al. 2013), it is unclear

whether or not this relationship is causal (Zeisel and Warrier, 2017).

2.7 Mechanisms of arsenic toxicity

The biological mechanisms through which As affects cancer and noncancer
health outcomes are not fully understood. Arsenic does not directly act as a mutagen
in mammal cells. However, it is known that As has multiple modes of action, which
may vary between arsenic species. This section will summarize what is known about
oxidative stress and protein binding as potential mechanisms of As toxicity. In addition,
epigenetic dysregulation will be discussed in detail. The role of epigenetic dysregulation
of a mechanism linking chronic As exposure to health outcomes will be further addressed

in Chapters 5-7.

Oxidative stress

Oxidative stress occurs when a biological system is unable to defend against
free radicals or reactive oxygen species (ROS, i.e., oxygen-containing radicals, oxidizing
agents, and species readily transformed into radicals) (Betteridge, 2000). Arsenic expo-

sure can generate oxidative stress when As species cycle between oxidation states (Flora,
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2011). ROS may in turn act as mutagens (Hei et al., 1998). 8-oxo-29-deoxyguanosine
(8-0x0dG), a modified base formed by oxygen radicals that may cause G-C to T-A
transversions during DNA synthesis (Hayakawa et al., 1995), is a biomarker of oxida-
tive DNA damage. DMAs exposure has been associated with 8-oxodG in rodent studies
(Vijayaraghavan et al., 2001; Yamanaka et al., 2001). Although water As concentration
was not associated with urinary 8-oxodG in a cohort of adults in Bangladesh (Harper
et al., 2014), 8-oxodG concentrations were positively associated with urinary %MMAs
in a study of women in Argentina (Engstrom et al., 2010). Glutathione (GSH), an inter-
cellular antioxidant (Forman et al., 2009) that may protect against As-induced oxidative
stress can also serve as a mechanism-based biomarker of oxidative stress (Frijhoff et al.,
2015). Water As concentrations were negatively associated with GSH concentrations

in blood among As-exposed adults in Bangladesh (Hall et al., 2013).

Protein binding

Arsenic, particularly trivalent species, may interfere with biological processes
by binding to cellular proteins. Trivalent As species are able to react with critical
sulfhydryl groups of many enzymes. The protein binding of As differs between metabo-
lites due to three coordination sites on InAs' two on MMAs" and only one on
DMAs™ (Aposhian and Aposhian, 2006). InAs™ has been shown to bind to numerous
proteins with diverse biological roles including tubulin, poly(ADP-ribose)polymerase
(PARP-1), thioredoxin reductase, and estrogen receptor-alpha (Kitchin and Wallace,
2008). InAs'™ may also disrupt the activity of ten-eleven translocation (TET) enzymes,
enzymes involved in active demethyaltion of DNA (discussed in the Epigenetic dysreg-
ulation section below). TET enzymes contain zinc finger domains that coordinate with
zinc cations, which is important for maintaining the structure of the catalytic site (Hu

et al., 2013). InAs™™ can interact with zinc finger domains, disrupting catalytic activity
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Figure 2.5: Epigenetic modifications: Epigenetic modifications include histone mod-
ifications and DNA methylation, which are involved in regulating gene expression
throughout life, genomic imprinting, maintaining genomic stability by preventing DNA
damage, and establishing chromosomal organization. DNA methylation may control
gene transcription by inhibiting transcription factor binding in promoter regions and
recruiting proteins that bind to methylated DNA.

(Liu et al., 2015).

Epigenetic dysregulation

Epigenetic modifications are involved in controlling cellular differentiation
during development, regulating gene expression throughout life, genomic imprinting,
maintaining genomic stability by preventing DNA damage, and establishing chromo-
somal organization (Jaenisch and Bird, 2003; Putiri and Robertson, 2011). Epigenetic
modifications include DNA methylation and histone modifications (Figure 2.5), which
influence gene transcription, and microRNAs (miRNAs), which control gene expression
posttranscriptionally. Alterations to the epigenome can arise stochastically and as a
result of environmental conditions, and contribute to disease onset later in life.

DNA methylation in the form of 5-methylcytosine (5-mC) is perhaps the most
commonly studied epigenetic DNA base modification (Smith and Meissner, 2013). DNA

methylation is the covalent addition of a CH3 group to the 5-carbon position of cytosine,
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and is catalyzed by a family of DNA methyltransferases (DNMT) using the methyl
donor SAM (Figure 2.6). DNMT3 alpha (DNMT3A) and beta (DNMT3B) are involved
in establishing de novo DNA methylation, whereas DNMT1 is involved in maintaining
DNA methylation (Okano et al., 1999). DNA methylation most commonly occurs
at CpG sites, or a cytosine nucleotide followed by a guanine nucleotide (Figure 2.7).
However, DNA methylation can also occur at non-CpG cytosines, at frequencies that
vary by cell type; 25% of methylated cytosines have been identified as non-CpG sites
in human embryonic stem cells, whereas the proportion is less than 1% in somatic cells
(Jang et al., 2017; Laurent et al., 2010; Lister et al., 2009). DNA methylation can
control gene expression by inhibiting transcription factor binding in promoter regions
and recruiting proteins that bind to methylated DNA (Robertson, 2005) (a schematic
drawing transcription regulation is presented in Figure 2.5). Overall, CpG dinucleotides
are depleted in the human genome due to mutability of methylated cytosine, however,
there are regions containing a relatively high frequency of CpGs, referred to as CpG
islands (Gardiner-Garden and Frommer, 1987). The positions of CpGs upstream and
downstream of islands are described as North and South shores and shelves, respectively
(Figure 2.8). Promotors commonly contain CpG islands, with approximately 70% of
promotors having high CpG content (Saxonov et al., 2006). CpGs located in promotor
regions are described by their distance from the transcription start site (e.g., TSS 200
indicates CpGs located within 200 base pairs upstream from the transcription start
site).

5-hydroxymethylcytosine (5-hmC), an intermediate product of the active
demethylation of 5-mC by TET enzymes (Hahn et al. 2014) (Figure 2.6), has also
been found to be a stable epigenetic mark (Bachman et al., 2014) associated with gene
expression (Ficz et al., 2011; Greco et al., 2016; Jin et al., 2011). 5-hmC is enriched

in enhancer regions and gene bodies (Stroud et al., 2011) and methyl-CpG binding
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Figure 2.6: DNA methylation occurs through the covalent addition of a -CHj group
to the 5-carbon position of cytosine in a reaction catalyzed by DNAMT using the
methylation donor SAM, forming 5-mC (Jin and Robertson 2013). Demethylation of
DNA occurs through TET-mediated oxidation of 5-mC, forming 5-hmC, 5-fC, and 5-
caC. 5-caC is subsequently converted to cytosine though TDG-mediated excision repair
(Wu and Zhang 2017). Abbreviations: DNMT, DNA methyltransferase; SAM, S-
Adenosyl methionine; TET, ten-eleven translocation enzymes; 5-mC, 5-methylcytosine;
5-hmC, 5-hydroxymethylcytosine; 5-fC, 5-formylcytosine; 5-caC, 5-carboxylcytosine;
TDG, thymine DNA glycosylase.
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Figure 2.7: DNA methylation at a cytosine-guanine dinucleotide (CpG site).

proteins that interact with 5-hmC have been identified (Mellén et al., 2012; Yildirim
et al., 2011).

Changes in global methylation (i.e., the proportion of methylated cytosines
in the genome overall) have been associated with disease onset (Wilson et al., 2007)
and altered DNAm at CpG sites associated with biologically-relevant genes has been
reported in a broad range of conditions (Abi Khalil, 2014; Cribbs et al., 2015; Fradin
et al., 2012; Klengel et al., 2014; Lu et al., 2013; Neidhart and Neidhart, 2016; Nilsson

et al., 2014). Increasing evidence links environmental exposure to metals, pesticides,
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Figure 2.8: Diagram of genomic regions and CpG islands. Orange circles represent DNA
methylation. Abbreviations: CpG, cytosine-guanine dinucleotide; T'SS, transcription
start site; UTR, untranslated region.

air pollution, and synthetic compounds to epigenetic changes detected in blood DNA
(Hou et al., 2012).

The observations that exposure to As in both early life (Marshall et al.,
2007; Steinmaus et al., 2014) and in adulthood (Steinmaus et al., 2013) increases the
risk of diseases later in life suggests that epigenetic dysregulation may be involved in
the etiology of diseases associated with As exposure and may contribute to arsenics
role as a carcinogen (Bailey et al., 2016; Bailey and Fry, 2014; Carlin et al., 2015).
However, the exact nature of epigenetic disruption is not fully understood. Studies
have reported conflicting findings regarding the directionality of epigenetic changes
induced by As exposure, possibly due to differences between model systems, human
populations, dose and duration of As exposure, and measure of DNAm (e.g., global or
loci-specific) (Reichard and Puga, 2010).

Our group has investigated the association between As exposure and global
DNA methylation. Among adults chronically exposed to As in Bangladesh, urinary,
plasma, and total bAs were positively associated with peripheral blood leukocyte DNA

methylation using the methyl-incorporation assay, which primarily assess %5-mC; how-
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ever, significant associations were only detected among folate-sufficient participants
(Pilsner et al., 2007). In a separate cohort, blood and urinary As were positively as-
sociated with peripheral blood mononuclear cell DNA methylation regardless of folate
status (Niedzwiecki et al., 2013). Although it was hypothesized that As exposure would
be negatively associated with DNA methylation due to SAM consumption in As methy-
lation, these positive associations suggest a compensatory epigenetic response to DNA
methylation. Furthermore, the association between global DNA methylation and As
exposure may be modified by sex. Among participants from both cohorts, there was
a trend toward a positive association among males between %5-mC and As exposure
as measured by water As, urinary As, and bAs concentrations. In the second cohort,
there was a trend toward a positive association among males and a negative association
among females between %5-hmC and As exposure (Niedzwiecki et al., 2015).

Inconsistent results regarding the association between As exposure and global
DNA methylation have been overserved among other populations. In a Spanish cohort,
a negative association was observed between toenail As concentrations and LINE-1
methylation (Tajuddin et al., 2013). In a birth cohort in Bangladesh, high vs. low
tercile of maternal urinary As concentration was associated with increased LINE-1
methylation in maternal and cord blood, but no significant associations were observed
with the methylation of Alu repeats (Kile et al., 2012).

Associations between As exposure and loci specific DNA methylation have
also been investigated, commonly using epigenome-wide association studies (EWAS).
Site-specific methylation can be quantified using array hybridization. Illumina (San
Diego, CA) has developed high-throughput DNA methylation microarrays (Fan et al.,
2006), allowing for efficient profiling of methylation at a single-site resolution in large-
scale EWAS. Samples are treated with bisulfite to convert unmethylated cytosines to

uracil (Bibikova et al., 2006) (Figure 2.9). Uracil nucleotides are converted to thymine
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during PCR, and resultant DNA is hybridized to probes on the Illumina BeadChip ar-
ray. Methylation status is then determined by a single-base extension that incorporates
one of four labeled nucleotides at each CpG site. Labeled nucleotides are fluorescently
stained and scanned to determine the intensities of the methylated or unmethylated
segments, reflecting the methylation proportion. Figure 2.9 shows a diagram of the
bisulfite conversion process and hybridization to type I and type II probes. Methyla-
tion is commonly described by Beta-values, which can be interpreted as the percentage
of methylation at a given site, or M-values, the logit-transformation of Beta-values
(Du et al., 2010). The Illumina Infinium HumanMethylation450 BeadChip (450K), an
array that interrogates methylation levels at approximately 485,000 loci representing
over 99% of RefSeq genes (Illumina, 2012), has been used in numerous epidemiological
studies of the effects of environmental exposures on the methylome in adults, children,
cord blood, and human tissues. In 2016, the 450K array was replaced by the Infinium
MethylationEPIC BeadChip (850K), covering over 850,000 loci (Illumina, 2015). The
850K array includes 91.1% of sites on the 450K and additional sites located in en-
hancer and open chromatin regions. A validation study of the 850K demonstrated
nearly perfect correlation with the 450K for duplicated sites (7pegrson = 0.992) and high
replicability (7pearson = 0.997) (Moran et al., 2015).

A 2015 review of EWAS of As exposure identified seven studies (Argos, 2015),
however this number has increased substantially in recent years, with 14 published
manuscripts identified through a PubMed search in June, 2019. A description of EWAS
of As exposure is presented in Appendix Table 2.4. In summary, these studies have
investigated associations between in utero exposure and DNA methylation measured
primarily in cord blood or placenta, and between As exposure in adulthood and DNA
methylation measured primarily in whole blood. Nine have measured DNA methylation

at birth or in childhood (Bozack et al., 2018a; Broberg et al., 2014; Cardenas et al., 2015;
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Figure 2.9: Illumina Infinium assay. Samples are treated with bisulfite to convert
unmethylated cytosines to uracil, and subsequently uracil nucleotides are converted
to thymine nucleotides by PCR. The resultant DNA is hybridized to probes on the
[lumina BeadChip array, with hybridization stopping at the locus of interest (type
I probes) or one base short of the locus of interest (type II probes). Methylation
status is determined by a single-base extension that incorporates one of four DNP- or
Biotin-labeled nucleotides. Labeled nucleotides are fluorescently stained and scanned
to determine the intensities of the methylated or unmethylated segments, which reflects
the methylation proportion of a given locus. The Infinium I assay includes two probes
for each loci, targetting either unmethylated or methylated segments. Methylation
status is indicated by the nucleotide incorporated downstream of the target cytosine.
The Infinium IT assay has one probe for each loci, and methylation status is indicated
by the guanine or adenine or nucleotide incorporated at the target cytosine.
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Gliga et al., 2018; Green et al., 2016; Kaushal et al., 2017; Kile et al., 2014; Koestler
et al., 2013; Rojas et al., 2015) and five have included adult populations (Ameer et al.,
2017; Argos et al., 2015; Demanelis et al., 2019; Guo et al., 2018; Liu et al., 2014).
Most studies have relied on relatively small samples sizes ranging from 44-400, which
reduces power, particularly after adjustment for multiple comparisons. The majority
of studies have reported findings based on the 450K microarray; Demanelis et al. is
the only published EWAS of As exposure to date that has measured DNA methylation
using the 850K microarray (Demanelis et al., 2019).

The association between low-level in utero As exposure and was assessed in
the New Hampshire Birth Cohort. In a subsample of 134 mother-infant pairs, quartiles
of maternal urinary As levels at 24-28 weeks gestation were associated with differen-
tial methylation levels of 68,353 loci (nominal P < 0.05); however no loci remained
significant after controlling for multiple comparisons (Koestler et al., 2013). In 343
mother-infant pairs of the same cohort, associations between DNA methylation and
placental, postpartum maternal toenail, and maternal urinary As concentrations were
assessed. After false discovery rate (FDR) adjustment, 163 CpGs were associated with
placental As concentrations (q < 0.05), one CpG was associated with maternal toenail
As concentrations, and no loci were associated with maternal urinary As concentrations
(Green et al., 2016).

Additional EWAS of in utero As exposure have focused on medium-high
levels of exposure. In a prospective birth cohort in Bangladesh, DNA methylation
was measured in 44 mother-infant pairs using the 450k microarray (Kile et al., 2014).
Maternal drinking water As concentrations were associated with one CpG in cord blood
(FDR < 0.05) (Kile et al., 2014), 518 CpGs in placental tissue (FDR < 0.05), and no
CpGs in human umbilical vein endothelial cells (HUVEC) (Cardenas et al., 2015). In

a separate Bangladeshi birth cohort nested in a randomized micronutrient trial, DNA
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methylation was measured in cord blood of 127 mother-infant pairs (Brosnan et al.,
2011). Maternal urinary As concentrations collected early in the gestational period
were associated with methylation at three loci (FDR < 0.05) among boys; no significant
loci were identified among girls or in relation to maternal urinary As concentrations
collected late in gestation. DNA methylation was measured in a cord blood in a subset
(N = 38) of Biomarkers of Exposure to Arsenic (BEAR) prospective birth cohort in
Mexico (Rojas et al., 2015). Relative to maternal urinary As concentrations, 4,771
differentially methylated loci were identified (FDR < 0.05). In a Taiwanese birth cohort,
579 differentially methylation loci were identified in cord blood relative to maternal
urinary As (FDR < 0.05) (Kaushal et al., 2017)).

In a study conducted by Gliga et al., the association between in utero As
exposure and DNA methylation at age 9 was assessed in a subset (N = 113) of a birth
cohort in Taiwan with moderate levels of As exposure (Gliga et al., 2018). Maternal
urinary As levels in early pregnancy were associated with DNA methylation of 9 loci
in the full sample, 57 loci among boys, and 15 among girls (FDR < 0.05).

Among EWAS of adults, a study in the US with low-level As exposure, no loci
were differentially methylated relative to dichotomized toenail As concentrations after
correction for multiple comparisons (Liu et al., 2014). Addition EWAS of adults have
included moderate-high levels of As exposure. In a study of 96 women in Argentina,
six differentially methylated loci were identified relative to urinary As levels (Ameer
et al., 2017). In a study of three generations of families in China with and without As
exposure (N = 102), drinking water exposure was associated with DNA methylation at
85 loci (Guo et al., 2018).

Two EWAS of As-exposed adults in Bangladesh have been conducted by
Habibul Ahsans group. In the Bangladesh Vitamin E and Selenium Trial (BEST), DNA

methylation was measured among 400 participants using the 450K microarray (Argos
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et al., 2015). Four differentially methylated loci were identified relative to urinary As
levels, and three of these loci were also differentially methylated relative to bAs levels
at the Bonferroni-correct threshold of P < 1 x 1077. Most recently, DNA methylation
was measured among 396 participants of the Health Effects of Arsenic Longitudinal
Study (HEALS) using the 850K microarray (Demanelis et al., 2019). Thirty-four loci
were identified as differentially methylated with urinary As levels, and 24 loci were
identified as differentially methylated with water As levels (FDR < 0.05). Eight CpG
were differentially methylated at FDR < 0.05 with both measures of exposure.

Across studies, no loci have been consistently found to be differentially methy-
lated in respect to As exposure. However, it is difficult to compare results across studies
due to differences in populations, exposure levels, measure of exposure, tissue type, and
statistical methods. Argos et al. implemented a lookup approach to assess nominal sig-
nificance in the BEST study of loci previously identified to be differentially methylated.
Eight CpGs previously associated with As exposure or As-related health outcomes in
EWAS achieved nominal significance (P < 0.05) in BEST (Argos et al., 2015). De-
manelis et al. compared 26 top significant loci in HEALS with results from the BEST
study (Demanelis et al., 2019). Fifteen were found to be nominally significant in BEST
(P < 0.05), 14 of which displayed the same direction of association. Comparing results
of associated gene ontology analyses may provide information about common pathways
affected by As exposure; however, gene ontology analyses have been limited by the
small number of As-associated differentially methylated loci identified in most EWAS.

An additional limitation of EWAS of As exposure is limited data regarding
changes in gene expression. In the BEAR cohort, Rojas et al. compared methylation
levels at loci identified as being differentially methylated with As exposure to expression
levels of genes identified as being differentially expressed (Rojas et al., 2015). Among

54 genes exhibiting both differential methylation and expression, methylation and ex-
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pression levels were significantly correlated in 12 genes. Among As-exposed women in
Argentina, Ameer et al. also measured gene expression (Ameer et al., 2017). However,
there was no overlap between genes differentially expressed with As exposure and genes
containing As-related differential DNA methylation. Among adults in Bangladesh, Ar-
gos et al. assessed expression of the genes containing the top 35 loci associated with As
exposure (Argos et al., 2015). Among 28 genes with expression data, DNA methylation
was associated with gene expression of 15 genes at P < 0.10.

Although studies have consistently linked As exposure to epigenetic dysreg-
ulation, additional research is needed to fully understand the impact of As exposure on
the epigenome, particularly at low levels of exposure and in diverse populations. Addi-
tionally, few studies have addressed the biological implications of observed associations
between As exposure and changes in DNA methylation, including the impact on gene

expression and health outcomes.

2.8 Summary and Rationale

As described in this chapter, there is strong evidence from observational
epidemiological studies of the influence of OCM-related nutrients on As methylation
capacity; however, this relationship is not completely understood and current research
is primarily based on observations in cross sectional studies. In a previous RCT, our
group found that 400 yg/day FA supplementation decreased bAs concentrations and
increased As methylation capacity measured in urine compared to placebo among folate
deficient adults (Gamble et al., 2006, 2007) (Section 2.6). In FACT, we observed that
the decrease in bAs concentrations with 800 yg/day FA exceeded that of placebo among
participants recruited independent of folate status. Using data from FACT will allow us
to investigate the effects of FA and creatine treatment on As methylation capacity, as

well as treatment effect modification by baseline nutritional status of OCM nutrients.
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Results from these analyses will be presented in Chapters 3 and 4.

It is hypothesized that epigenetic dysregulation may be one biological mech-
anism underlying the associations between chronic As exposure and health outcomes.
Arsenic exposure has been associated with changes in the epigenome, specifically DNA
methylation in multiple epidemiological studies (Section 2.7), although results have dif-
fered between studies due to differences in populations studied, measures and level of
exposure, tissue type, and platform used to measure DNA methylation. In addition,
the link between As exposure, epigenetic dysregulation, and health outcomes has not
been fully established. Using data from two diverse As-exposed cohorts (the SHS cohort
in the US and a prospective birth cohort in Bangladesh) will allow us to investigate
the relationship between As exposure, epigenetic dysregulation, and health outcomes.
Specifically, we will examine the associations between urinary As levels and loci-specific
DNA methylation in SHS, and mediation of the association between in utero As expo-
sure and birth outcomes in the Bangladeshi birth cohort. Results from these analyses
will be presented in Chapters 5-7. Finally, a summary of our conclusions and future

directions will be presented in Chapter 8.
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3.1 Abstract

Background: Arsenic (As) exposure through drinking water persists in many
regions. Inorganic As (InAs) is methylated to monomethyl-arsenical species (MMAs)
and dimethyl-arsenical species (DMAs), facilitating urinary excretion. Arsenic methy-
lation is dependent on one-carbon metabolism, which is influenced by nutritional factors
such as folate and creatine.

Objective: This study investigated the effects of folic acid (FA) and/or crea-
tine supplementation on the proportion of As metabolites in urine.

Design: In a 24-week randomized, double-blinded, placebo-controlled trial,
622 participants were assigned to receive FA (400 or 800 pg/day), 3 g creatine/day, 400
ug FA + 3 g creatine/day, or placebo. The majority of participants were folate suffi-
cient; all received As-removal water filters. From weeks 12-24, half of the participants
receiving FA received placebo.

Results: Among groups receiving FA, the mean decrease in In(%InAs) and
%MMAs and increase in %DMAs exceeded that of the placebo group at weeks 6 and 12
(P < 0.05). In the creatine group, the mean decrease in %MMAs exceeded that of the
placebo group at weeks 6 and 12 (P < 0.05); creatine supplementation did not affect
change in %InAs or %DMAs. The decrease in %MMAs at weeks 6 and 12 was larger
in the 800 yg FA than the 400 ug FA group (P = 0.034). There were no differences
in treatment effects between the 400 ug FA and creatine+FA groups. Data suggest a
rebound in As metabolite proportions after FA cessation; at week 24, In(%InAs) and
%DMAs were not significantly different than baseline levels among participants who
discontinued FA supplementation.

Conclusions: The results of this study confirm that FA supplementation
rapidly and significantly increases methylation of InAs to DMAs. Further research is

needed to understand the strong cross-sectional associations between urinary creatinine
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and As methylation in previous studies.
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3.2 Introduction

Chronic arsenic (As) exposure is a major global public health issue (Naujokas
et al., 2013). In Bangladesh, roughly 57 million people are exposed to concentrations in
drinking water exceeding the World Health Organizations guideline of 10 ug/L (Govern-
ment of the People’s Republic of Bangladesh et al., 2001; World Health Organization,
2012). Chronic As exposure is associated with a range of health outcomes including
skin lesions, skin and internal cancers, neurological impairment, cardiovascular and
pulmonary diseases, and endocrine disruption (Naujokas et al., 2013).

Ingested inorganic As (InAs) undergoes a series of stepwise biotransforma-
tion reactions in which it is methylated by arsenic methyltransferase (AS3MT) (Thomas
et al., 2007) using the methyl donor S-adenosylmethionine (SAM) to form monomethy-
larsonic acid (MMAsY) and dimethylarsinic acid (DMAs"Y) (Figure 3.1) (Challenger,
1945). Variation in As methylation capacity between populations and individuals may
modify the association between As exposure and health outcomes (Loffredo et al.,
2003). Complete methylation of As to DMAsY is important as toxicological studies
have demonstrated that MMAs™ is the most toxic As species (Petrick et al., 2000;
Moe et al., 2016). Although the relatively toxicity of MMAs" and MMAsY is difficult
to assess in human studies because MMAs!! is rapidly oxidized to MMAs", a higher
proportion of urinary MMAs+V) has been associated with higher risk of As-induced
skin lesions (Zhang et al., 2014; Yu et al., 2000; Pierce et al., 2013), peripheral vascular
disease, skin and bladder cancer, and atherosclerosis, as reviewed by Steinmaus et al.
2010.

Arsenic methylation is dependent on one-carbon metabolism for SAM syn-
thesis (Hall and Gamble, 2012). In this pathway, the one-carbon unit carried by 5-
methyl-tetrahydrofolate (5-MTHF) is transferred to homocysteine to form methionine,

which is activated to form SAM. Dietary creatine may also impact As metabolism. En-
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Figure 3.1: Arsenic methylation. Ingested InAs undergoes a series of stepwise biotrans-
formation reactions. As'l is actively methylated by AS3MT using the methyl donor
SAM to form MMAsY. MMAs" is reduced to MMAs"™ and MMAs" is methylated
to form DMAsY. Abbreviations: As, arsenic; As™, arsenite; AS3MT, arsenic arsenic
(+3 oxidation state) methyltransferase; DMAsY, dimethylarsinic acid; InAs, inorganic
As; MMAsY, monomethylarsonic acid; MMAs™, monomethylarsonous acid; SAM, S-
adenosylmethionine.

dogenous biosynthesis of creatine consumes an estimated 40% of SAM (Brosnan et al.,
2011). Dietary creatine consumption from animal sources downregulates endogenous
creatine biosynthesis, reducing the loss of methyl groups incurred by creatine biosynthe-
sis. Among omnivores, approximately half of the bodys supply of creatine is provided
by food (Brosnan et al., 2011).

We have examined the role of folate nutritional status on As methylation in
several prior studies (Gamble et al., 2005, 2006, 2007). The effects of supplementa-
tion with 400 pg folic acid (FA)/day, the U.S. recommended daily allowance (RDA),
among Bangladeshi adults with low plasma folate (< 9 nmol/L) were tested in a ran-
domized controlled trial (RCT). After 12 weeks, the treatment group had a significantly
larger increase in the percentage of urinary dimethyl-arsenical species (%DMAs) and de-
creases in urinary log(%InAs), the percentage of urinary monomethyl-arsenical species
(%MMAs), (Gamble et al., 2007) total blood As (bAs), and blood MMAs (Gamble
et al., 2007) as compared to the placebo group. Changes in total bAs in the RCT we
present here have been previously published (Peters et al., 2015a). Among As-exposed
Bangladeshi adults selected independent of folate status, a larger decrease in In(bAs)
was observed in the treatment group receiving 800 ug FA/day for 12 weeks relative to

the placebo group. Urinary creatinine, a product of creatine, has also been negatively
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associated with urinary %InAs and positively associated with urinary %DMAs (Gam-
ble et al., 2006, 2005; Ahsan et al., 2007; Hall et al., 2009; Basu et al., 2011; Peters
et al., 2014).

It is not known if FA supplementation increases As methylation in a popu-
lation of mixed folate-deficient and -sufficient individuals, which may have important
policy implications. The current RCT investigated the effects of 400 ug/day and 800
ug/day FA supplementation on urinary As metabolites among the general population
of As-exposed adults in Araihazar, Bangladesh. We also tested the effect of reducing

methylation demand through creatine supplementation on As methylation.

3.3 Subjects

The Folic Acid and Creatine Trial (FACT) is an RCT conducted in 2010-2012
that has been previously described (Peters et al., 2015a). Briefly, FACT participants
were recruited from the Health Effects of Arsenic Longitudinal Study (HEALS), a
prospective cohort study of > 30,000 adults living in Araihazar, Bangladesh that was
initiated in 2000 (Ahsan et al., 2006). HEALS participants were married, residing in
the study area for at least five years, and drinking from their household well for at least
three years. FACT participants were randomly selected from the HEALS cohort and
were eligible if they were drinking for at least one year from a household well that had
an As concentration > 50 ug/L. Exclusion criteria were pregnancy, taking nutritional
supplements, having proteinuria, renal disease, diabetes, gastrointestinal problems, or

other health problems.
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3.4 Methods

Study Design

The study design has been described in detail by Peters et al. (2015a). A total
of 622 participants were recruited (Appendix Figure 3.5). The sample size was selected
to achieve 80% power at alpha = 0.05 to detect a moderate effect size in the mean
differences in change in total bAs concentrations or percent urinary As metabolites
between two treatment groups (i.e., 0.45 SD) and assuming some participants might
not complete the study. Participants were randomly assigned to one of five treatment
groups: placebo (N = 104), 400 ug FA/day (referred to as 400FA; N = 156), 800 pg
FA/day (800FA; N = 154), 3 g creatine/day (creatine; N = 104), and 3 g creatine and
400 yg FA/day (creatine+400FA; N = 104). To ensure an equal number of men and
women in each treatment group and balance between treatment groups, men and women
were randomized separately and in blocks, and assigned to treatment groups in the
ratio 1 (placebo):1.5 (400FA):1.5 (800FA):1 (creatine):1 (creatine+400FA). The order
of treatment assignments within the blocks was determined by a random permutation
generated by a statistician at Columbia University. One data management specialist
in the United States and one in Bangladesh assigned letters to treatment groups (i.e.,
A, B, C, D, E). The creatine dose of 3 g/d was selected to over-compensate for daily
creatine loss, approximately 1.9 g for a 20- to 39-year-old 70-kg male, and thus to
be sufficient to downregulate endogenous creatine synthesis (Brosnan et al., 2011). All
supplements were obtained from Atrium Innovations, Inc. (Westmount, Quebec). Field
staff received barcode-labeled pill bottles from a pharmacist and distributed bottles in
order of the random treatment assignment. With the exception of the data management
specialists who assigned treatment groups, all participants, field staff, village health

workers, laboratory technicians, and investigators were blinded to the treatment for
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the duration of the study.

The study consisted of two 12-week phases (Figure 3.2). During the first
phase, participants received daily supplements or placebo according to their treatment
group assignment. The primary outcome of interest (previously published) was total
bAs (Peters et al., 2015a). For the current analyses, data from the first phase of the
study was employed to evaluate our a priori secondary outcomes, i.e., the effects of
FA and/or creatine supplementation on As methylation capacity. During the second
phase of the study, participants in the 400FA and 800FA groups were randomly as-
signed to continue FA supplementation (400 ug FA/day, referred to as 400FA/FA: N
= 77; 800 ug FA/day, 800FA/FA: N = 77) or receive placebo (400FA/placebo: N =
76; 800FA /placebo: N = 74) for the duration of the trial (weeks 12 to 24). Partici-
pants in the creatine and creatine+400FA groups were also given placebo during the
second phase in order to maintain the study blind. Data from the second phase of the
study was used to determine if a rebound in urinary As metabolites occurred after FA

supplementation was discontinued.

Ethics

The study protocol was approved by the Columbia University Medical Cen-
ter Institutional Review Board and the Bangladesh Medical Research Council. Staff

physicians in Bangladesh obtained informed consent from participants.

Field work

Five trained teams, each consisting of one interviewer and one physician,
recruited participants and performed all follow-up home visits during which biological
samples were collected. Venous blood samples were collected at baseline, week 12, and

week 24. Urine samples were collected at baseline and weeks 1, 6, 12, 13, 18, and
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Treatment Week
0 1 6 12 24
n=90 Placebo, n=90
Placebo — ¢ : |
400 pg FA/day, n=65
]
|
400 pg FA/day =133 ,
(400FA) I I I Placebo, n=68
i
800 pug FA/day, n=69
]
1
800 pg FA/day :n—1=29 :
(800FA) Placebo, n=60
!
3 g creatine/day In:9|4 | IPlace‘bo, n=94 |
(Creatine) U T 1 |
3 g creatine + 400 In:9|6 | IPlacebo, n=96 |
ug FA/day U T 1 |
(Creatine+400FA)

Figure 3.2: Study design. Abbreviations: 400FA, 400 yg FA/day treatment group;
800FA, 800 ug FA/day treatment group; Creatine, 3 g creatine/day treatment group;
creatine+400FA, 3 g creatine and 400 ug FA /day treatment group.

24. Study recruitment and follow-up was conducted from December 2009 through May
2011.

All participants received READ-F As removal filters (READ-F filter; Brota
Services International, Bangladesh) and were repeatedly encouraged to use them for all
drinking and cooking water throughout the study (Sanchez et al., 2016). During the
first phase, all participants received two pill bottles: one containing FA pills or matched
placebo pills, and one containing creatine pills or matched placebo pills. During the
second phase, all participants received one pill bottle containing FA pills or matched
placebo pills. Village health workers performed daily home visits, during which they
observed participants take the pills or inquired about compliance. At the end of each
study phase, pill bottles were collected and pill counts were performed. Compliance
ranged from 79.1% to 100% (median: 99.5%; interquartile range: 98.3%, 100.0%), and
did not differ substantially between treatment groups or study phases (Peters et al.,

2015a).

99



Twelve participants were dropped from the study due to adverse events (N
= 6; placebo group: abdominal cramps; 400FA group: hypertension; 800 FA group:
abdominal cramps, severe vertigo, bilateral hydronephrosis; creatine group: severe ver-
tigo), pregnancy (N = 3; 400FA, creatine, and creatine+400FA groups), missing base-
line blood sample (N = 1; creatine group), and dropout (N = 2; placebo and 400FA
groups). The remaining sample consisted of 610 participants (placebo: N = 102; 400FA:
N = 153; 800FA: N = 151; creatine: N = 101; creatine+400FA: N = 103) (Appendix
Figure 3.5).

Sample handling

Venous blood was collected in EDTA vacutainer tubes. Blood samples were
stored in IsoRack cool packs (Brinkmann Instruments, Riverview, FL) at 0°C. Within
four hours, samples were transported to the field clinic in Araihazar. Plasma was
separated from venous blood by centrifugation at 3,000 xg for 10 minutes at 4°C. Whole
blood and plasma samples were stored at -80°C and shipped on dry ice to Columbia
University for analysis. Urine was collected in 50-mL acid-washed polypropylene tubes,
stored in portable coolers for transport to the field clinic within four hours, frozen at

-20°C, and shipped to Columbia University on dry ice.

Water arsenic

To assess baseline As exposure, unfiltered water samples from the tube wells
used by study participants were collected. Samples were collected in 20-mL polyethy-
lene scintillation vials, acidified to 1% using high-purity Optima HCI (Fisher Scientific)
for at least 48 hours, diluted 1:10, and analyzed using high-resolution inductively cou-
pled plasma mass spectrometry with germanium spike to correct for fluctuations in

sensitivity. To monitor As removal by the filters, filtered water was tested in the field
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with Hach EZ Arsenic test kits; approximately 50 filters were replaced during the study
(Sanchez et al., 2016).

Laboratory measures

Laboratory methods have been described in detail by Peters et al. (Peters
et al., 2015a). Briefly, total bAs in whole blood was assessed using a PerkinElmer
Elan DRC II ICP-MS (Waltham, MA) with an AS 93+ autosampler (intra- and inter-
assay CVs: 2.7% and 5.7%, respectively). Plasma folate and By were assessed using
radioimmunoassay (SimulTRAC-SNB; MP Biomedicals, Santa Ana, CA) (plasma folate
intra- and inter-assay CVs: 5% and 13%; B12 intra- and inter-assay CVs: 6% and 17%).
Plasma total homocysteine was measured with high performance liquid chromatography
(HPLC) with fluorescence detection (homocysteine intra- and inter-assay CVs: 5% and
%).

Urinary As metabolites were measured using HPLC separation of arsenobe-
taine, arsenocholine, As'™ AsV, MMAs (MMAs!™ + MMAsY), and DMAs, and detec-
tion by ICP-MS with dynamic reaction cell as described by Reuter et al. 2003 (Reuter
et al., 2003) (intra- and inter-assay CVs for arsenobetaine + arsenocholine; 10.1%,
12.2%; Ast™ + AsV: 2.7%, 4.7%; MMAs: 2.8%, 3.9%; DMAs: 0.6%, 1.3%). As™ can
oxidize to As" during sample storage and analysis, and therefore total InAs (As™ +

AsVY) is reported. Specific gravity (SG) was measured by refractometer.

Study sample

Six follow-up urine samples were missing, and 18 urine samples with missing
SG were removed from the dataset. We suspect that some participants may have added
water to urine collection cups in an effort to increase fluid volume. Therefore, urine

samples with SG < 1.001, outside the normal range (28), were removed from the dataset
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(N = 620 out of 4239 samples). Samples with %InAs > 55 were also considered to be
outside of normal values (Vahter, 1999) and removed (N = 22 out of 3619 samples);
participants without a baseline urine sample (N = 50) or without the majority of urine
samples (i.e., four or more time points) (N = 17) were also removed. One participant
with baseline SG of 1.002, but biologically implausibly high total urinary As, was also
removed. A total of 542 participants were included in analyses (placebo: N = 90; 400FA:
N = 133; 800FA: N = 129; creatine: N = 94; creatine+400FA: N = 96) (Appendix
Figure 3.5). With the exception of urine As metabolites, baseline characteristics did
not differ significantly between participants included and excluded from analyses.

The concentrations of urinary As metabolites were adjusted for between-
individual differences in urine dilution at each time point by multiplying the sample
concentration by the ratio (mean SG - 1)/(subjects SG - 1) (Miller et al., 2004). Ar-
senobetaine and arsenocholine are non-toxic dietary sources of As, (Syracuse Research
Corporation, 2007) and were therefore excluded from analyses. Seven samples had

I concentrations below the limit of detection (LOD). These samples were

urinary As
replaced using values of LOD/2. The proportions of each As metabolite in urine were

calculated by dividing the concentration of each species by the concentration of total

urinary As (As'' + AsYV + MMAs + DMAs).

Statistical analysis

An intent-to-treat approach was used in all analyses. Summary statistics for
baseline characteristics by treatment group were calculated. Overall differences between
treatment groups at baseline were detected using the Kruskall-Wallis test for continuous
variables and the Chi-square test for categorical variables. One-way ANOVA was used
to detect treatment group differences in urinary As metabolites and nutritional factors

at baseline and follow-up, where %InAs, red blood cell (RBC) folate, plasma folate,
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and homocysteine were log transformed to meet model assumptions. To compare each
of the four treatment groups vs. the placebo group, Dunnett’s t-test with multiple
comparisons was used to control the Type I experiment-wise error rate for each As
metabolite variable.

Linear models with repeated measures were applied to the outcomes of per-
cent urinary As metabolites measured over time to examine treatment effects during
the first phase. Percent InAs was log transformed to improve model fitting and re-
duce the impact of extreme values. Models included predictors of time, treatment
group, and group by time interactions. The interaction parameters indicate treatment
group differences in mean within-person change since baseline. A generalized estimating
equation approach was used to estimate model parameters and test hypotheses using all
available data and accounting for within-subject correlations in the repeated measures.
Wald test was used to detect differences in the within-person change in As metabolite
proportions between each treatment group and the placebo group. Wald test was also
used to examine if within-person change in the proportion of urinary As metabolites
differed between the 400FA, 800FA, and creatine+400FA treatment groups. To aid
interpretation, group differences in the mean within-person changes were derived from
relevant model parameters.

The rebound in urinary As metabolites after cessation of FA supplementation
during the second phase (weeks 12 through 24) was similarly assessed using linear
models with repeated measures applied to the 400FA and 800FA groups. The models
that described the data well included parameters for treatment groups, time (weeks 0,
12, and 24), continuation status of FA supplementation, and two-way interactions of
group by FA continuation, group by time, and time by FA continuation. Time by FA
continuation interactions indicate differences in mean within-subject change in percent

As metabolites between groups that continued and discontinued FA supplementation.
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From the model parameters, we derived the differences between FA groups in the mean
within-person changes over periods of interest to describe the rebound effect.
Analyses were performed using SAS 9.4 (Cary, NC) or R 3.2.2 (Vienna, Aus-

tria) (R Core Team, 2015).

3.5 Results

Baseline characteristics by treatment group are presented in Table 3.1. Par-
ticipants ranged in age from 24 to 55, and approximately half (51.5%) were male. There
were no statistically significant differences between treatment groups in age; sex; BMI,
history of betel nut use or smoking; land ownership; water, blood, and urinary As con-
centrations; urinary As species concentrations; or nutritional status, including red blood
cell and plasma folate, folate status, plasma By, B1s status, plasma homocysteine, and
hyperhomocysteinemia. Urinary creatinine was significantly correlated with %InAs at
baseline (Spearman correlation coefficient r; = -0.28, P < 0.001) and %DMAs (r; =
0.13, P = 0.002). There were no significant treatment group differences in baseline
percent urinary As metabolites (Kruskall-Wallis test %InAs P = 0.136; %MMAs P =
0.578; %DMAs P = 0.235).

After treatment began, there was an initial decrease in total urinary As among
all treatment groups as a result of using As removal filters. There was also a notable
initial decrease in SG and urinary creatinine concentrations, suggesting that partici-
pants were drinking more water after receiving the filters. We consider this to be a
new toy effect, however, as total urinary As concentration, SG, and urinary creatinine
concentration gradually increased after the first week, indicating that participants wa-
ter intake returned to normal and that they used the water filters less frequently as
the study progressed. After adjusting for SG, the trend in total urinary As remained

(Figure 3.3). Use of the water filters and total urinary As concentrations during this
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trial has been detailed by Sanchez et al 2016. At week 12, the mean total urinary As
concentration was 15% lower than baseline among all participants (P < 0.0001). At a
re-visit conducted one year after the study was completed, the majority of participants
reported decreasing or stopping use of the filters because the water was filtered more

slowly over time.

Treatment effects during the first phase

As we have previously reported, FA supplementation increased plasma and
RBC folate (Peters et al., 2015a) and decreased homocysteine (Peters et al., 2015b) at
week 12 (Table 3.2). Table 3.2 and Figure 3.4 present the mean percent urinary As
metabolites at baseline and weeks 1, 6, and 12. Overall treatment group differences in
log(%InAs) were significant at weeks 1, 6, and 12; differences in %MMAs and %DMAs
were significant at weeks 6 and 12 (ANOVA P < 0.05). At week 1, the 800FA group
had significantly lower log(%InAs) than the placebo group (Dunnett’s t-test P < 0.05).
At weeks 6 and 12, the three groups receiving FA supplements had significantly lower
%InAs and %MMAs, and higher %DMAs compared to the placebo group (Dunnett’s
t-test P < 0.05). The proportions of urinary InAs, MMAs, and DMAs were not signif-
icantly different between the creatine and placebo groups at any follow-up (Dunnett’s
t-test P > 0.05).

Treatment group differences in within-person change in urinary As metabo-
lites between baseline and weeks 1, 6, and 12 were examined using available data from
the 542 subjects included 1,966 observations (week 0: N = 542; week 1: N = 456; week
6: N = 461; week 12: N = 507). The treatment effects on within-person changes in As
metabolite proportions over the first 6 weeks were similar to the effects on the changes
over 12 weeks, indicated by a linear model with 20 parameters where the time variable

had four categories (week 0, week 1, week 6, week12). Therefore, data were described
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Figure 3.3: Urinary arsenic (As) concentrations over time. Total urinary As, SG, and
total urinary As adjusted for specific gravity. Placebo (N = 90); 400FA (N = 133);
800FA (N = 129); Creatine (N = 94); Creatine+400FA (N = 96). Abbreviations: Ab-
breviations: 400FA, 400 ug FA /day treatment group; 800FA, 800 ug FA/day treatment
group; Creatine, 3 g creatine/day treatment group; creatine+400FA, 3 g creatine and
400 pg FA /day treatment group; As, arsenic; SG, specific gravity.
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Figure 3.4: (Previous page.) Percent urinary As metabolites at weeks 0-12. Sym-
bols represent raw means, and lines represent the predicted means from a linear model
with repeated measures of urinary As metabolites. As shown in Table 2, log(%InAs)
was significantly different between treatment groups at weeks 1, 6, and 12; %MMAs
and %DMAs were significantly different between treatment groups at weeks 6 and 12
(ANOVA P < 0.001). The 800FA group had significantly lower log(%InAs) at week 1
than the placebo group (Dunnett’s t-test P < 0.05). The three groups receiving FA
supplements had significantly lower %InAs and %MMAs, and higher %DMAs than the
placebo group at weeks 6 and 12 (Dunnett’s t-test P < 0.05). The proportions of uri-
nary As metabolites were not significantly different between the creatine and placebo
groups at any follow-up (Dunnett’s t-test P < 0.05). Placebo (N = 90); 400FA (N
= 133); 800FA (N = 129); Creatine (N = 94); Creatine+400FA (N = 96). Abbrevia-
tions: Abbreviations: 400FA, 400 pyg FA/day treatment group; 800FA, 800 ug FA/day
treatment group; Creatine, 3 g creatine/day treatment group; creatine+400FA; 3 g cre-
atine and 400 pug FA /day treatment group; As, arsenic; InAs, inorganic arsenic; DMAs,
dimethyl-arsenical species; MMAs, monomethyl-arsenical species.

using a parsimonious model with three categories for the time variable (week 0, week
1, weeks 6 and 12). Table 3.3 displays results from the parsimonious model. The ob-
served geometric mean of %InAs and means of %MMAs and %DMAs were similar to
the model-based estimates (Figure 3.4), indicating that the model fit the data well.
There was a significantly greater mean decrease in mean In(%InAs) from baseline to
week 12 in the 400FA, 800FA, and creatine+400FA groups than the placebo group (P
< 0.05). There were no significant group differences in the mean change in In(%InAs)
between the creatine and placebo groups. The mean decrease in %MMAs at week 1
and weeks 6 and 12 was significantly greater than the placebo group for all treatment
groups (P < 0.05) except for the creatine+400FA group at week 1. The mean within-
person increase in %DMAs was significantly larger in the 800FA group than the placebo
group at week 1; and was significantly larger in the 400FA, 800FA, and creatine4+400FA
groups than the placebo group at weeks 6 and 12 (P < 0.05). The mean increase in
%DMAs at weeks 6 and 12 was not significantly different between the creatine group
and the placebo group.

Using linear models with repeated measures, we also examined if within-
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Table 3.3: Treatment group differences in mean within-person change since baseline in

As metabolite proportions!

Mean change
Week 1 (95% CI)
(week 1 - week 0)

Mean change

Weeks 6 & 12 (95% CI)
(week > 6 - week 0)

In(%InAs) Placebo

0.01 (-0.08, 0.09)

0.05 (0.0, 0.10)

A00FA 20.01 (-0.12, 0.10) 20.09 (-0.17, -0.01)*
800FA -0.10 (-0.22, 0.02) -0.14 (-0.21, -0.06)***
Creatine+400FA  -0.01 (-0.12, 0.10) L0.11 (-0.18, -0.03)**
Creatine -0.06 (-0.17, 0.06) -0.02 (-0.10, 0.06)
%MMAs  Placebo -0.62 (-1.13, -0.12) 0.15 (-0.37, 0.68)
400FA -0.85 (-1.57, -0.14)* 11.80 (-2.53, -1.07)%*%x
S00FA -0.86 (-1.62, -0.09)* 22.60 (-3.35, -1.85)FH**
Creatine+400FA  -0.66 (-1.43, 0.11) 11.85 (-2.61, -1.00)%*
Creatine -0.90 (-1.74, -0.06)* -1.13 (-2.08, -0.19)*
%DMAs  Placebo 0.19 (-1.30, 1.67) 1,17 (-2.18, -0.17)
400FA 1.02 (-0.85, 2.88) 3.25 (1.81, 4.68)****
800FA 2.27 (0.26, 4.28)* 4.57 (3.20, 5.95) %+
Creatine+400FA  0.85 (-1.04, 2.74) 3.11 (1.67, 4.55)%%*

2.11 (0.01, 4.21)*

1.43 (-0.21, 3.06)

1. Treatment group differences in mean changes were derived from relevant group
by time interaction parameters of the linear models with repeated measures where
time was a variable with three categories (week 0, week 1, weeks 6 and 12).

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 for group by time interaction
parameters of the linear models with repeated measures.

Abbreviations: 400FA, 400 yg FA /day treatment group; 800FA, 800 ug FA /day
treatment group; creatine, 3 g creatine/day treatment group; creatine+400FA,

3 g creatine and 400 ug FA/day treatment group; As, arsenic; InAs, inorganic
arsenic; DMAs, dimethyl-arsenical species; MMAs, monomethyl-arsenical species.

person change in the proportion of urinary As metabolites between baseline and weeks
1, 6, and 12 differed between the 400FA, 800FA, and creatine+400FA treatment groups.
Changes in the proportion of all metabolites from baseline to week 1 or weeks 6 and
12 did not differ between the 400FA and 800FA groups, or between the 400FA and
creatine+400FA groups, with the exception that the decrease in %MMAs from baseline

to weeks 6 and 12 was larger in the 800FA group than the 400FA group (P = 0.034).
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Treatment effects in the second phase

Proportions of urinary As metabolites after FA cessation in the 400FA and
800FA groups are shown in Table 3.4. At week 24, mean In(%InAs) and %DMAs in
both FA dose groups that discontinued FA supplementation were not significantly dif-
ferent than baseline levels. From baseline to week 24, there was a significantly greater
mean decrease in %InAs and increase in %DMAs in both groups that continued FA sup-
plementation compared to groups that discontinued supplementation (%InAs: time by
FA continuation interaction P = 0.028; %DMAs: time by FA continuation interaction
P = 0.0005). A similar pattern was observed in %MMAs with a significant difference
at week 24 between groups that discontinued and continued FA supplementation (time
by FA continuation P = 0.048); however, %MMAs at week 24 remained lower than

baseline in the 400FA group that discontinued FA supplementation (P = 0.018).

3.6 Discussion

The purpose of this RCT was to investigate the effect of FA and creatine
supplementation on As methylation among a population of mixed folate-deficient and
-sufficient individuals. FA supplementation significantly increased As methylation; at
weeks 6 and 12, there was a greater decrease in In(%InAs) and %MMAs and increase in
%DMAs among groups that had received 400 or 800 pg FA/day compared to placebo.
The higher dose of FA had a greater effect on As methylation, as the decrease in
%MMAs from baseline to weeks 6 and 12 was larger in the 800FA group than the 400FA
group. Previously published findings from this trial demonstrated that supplementation
of 800 ug FA/day, but not 400 yg FA/day, decreased total bAs concentrations to a
significantly greater extent than placebo (Peters et al., 2015a).

These findings are in agreement with our previous 12-week RCT of the effects
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of supplementation with 400 ug FA /day to folate-deficient adults in Bangladesh who did
not receive As removal filters (Gamble et al., 2006). In that study, FA supplementation
resulted in significant decreases in log(%InAs) and %MMAs, and increases in %DMAs
in urine as compared to placebo. Arsenic methylation capacity was also assessed by the
primary methylation index (PMI, calculated as MMAs/InAs) and secondary methyla-
tion index (SMI, calculated as DMAs/MMAs). Similar to the current study, effects
were observed as early as one week after treatment began; SMI significantly increased
by the week 1 follow-up in the group receiving FA compared to placebo.

Results from this trial provide evidence supporting the hypothesis that FA
supplementation increases As methylation capacity, presumably by enhancing the syn-
thesis of SAM, the methyl donor for As methylation, through provision of folate-derived
methyl groups for one-carbon metabolism. Notably, effects of FA supplementation were
observed in a population that was predominantly folate sufficient (plasma folate > 9
nmol/L in 80.2% of total participants). Although the study was powered to detect dif-
ferences in the full sample of both folate-deficient and -sufficient individuals, stratified
analyses suggest that results were not driven by changes among participants who were
folate-deficient at baseline. At week 12, the mean changes in percent As metabolites
were similar between the folate-deficient and -sufficient strata in the groups receiving
FA supplementation. In the 400FA treatment group, the mean changes in As metabolite
proportions for participants with baseline deficient (N = 31) and sufficient folate status
(N = 102) were, respectively: log(%InAs): -0.08, -0.04; %MMAs: -1.91 -1.98; %DMAs:
2.67, 2.25. Similarly, in the 800FA treatment group, the mean changes for folate de-
ficient (N = 23) and sufficient participants (N = 106) were, respectively: log(%InAs):
-0.07, -0.13; %MMAs: -1.96, -2.26; %DMAs: 2.83, 3.72.

The results suggest that percent urinary As metabolites returned to baseline

levels 12 weeks after cessation of FA supplementation, as mean %InAs and %DMAs
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were not significantly different than baseline levels in those groups that discontinued
FA supplementation. However, as previously reported, although bAs concentrations
did increase after discontinuation of FA supplementation, the increase did not achieve
statistical significance (Peters et al., 2015a). In light of results regarding urinary As
metabolites, the follow-up period may not have been long enough to observe a complete
rebound in bAs after cessation of FA supplementation.

Creatine supplementation moderately influenced the proportion of As metabo-
lites in urine. Although no significant differences were observed in the change in
In(%InAs) and %DMAs between the creatine and placebo groups at any time point,
the decrease in %MMAs was significantly greater at week 1 and weeks 6 and 12 in
the creatine group than the placebo group. In previously published results, creatine
supplementation did not affect total bAs (Peters et al., 2015a). Our a priori hypothesis
was that creatine supplementation would increase As methylation capacity by decreas-
ing creatine biosynthesis, a major consumer of SAM methyl groups (Brosnan et al.,
2011), and multiple studies have reported strong positive cross-sectional associations
between urinary creatinine and As methylation capacity (Gamble et al., 2005, 2006;
Ahsan et al., 2007; Hall et al., 2009; Basu et al., 2011; Peters et al., 2014). In the
current study, we also observed significant correlations between urinary creatinine and
%InAs and %DMAs. As we reported previously, supplementation of 3 g creatine/day
did decrease creatine biosynthesis in this study population; concentrations of plasma
guanidinoacetate, a precursor to creatine in the creatine biosynthetic pathway, sig-
nificantly decreased with creatine supplementation, indicating a reduction in creatine
biosynthesis (Peters et al., 2015b). The current findings lend support to the hypothe-
sis that a decrease in creatine biosynthesis achieved through creatine supplementation
may influence As methylation, however, the magnitude of the effects may be somewhat

tempered by long-range allosteric regulation of one-carbon metabolism that regulate
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intracellular SAM concentrations. For example, SAM inhibits methylenetetrahydro-
folate reductase (MTHFR) (Jencks and Mathews, 1987), thereby decreasing synthesis
of 5-MTHF and releasing 5-MTHF mediated inhibition of glycine N-methyltransferase
(GNMT) activity (Wagner et al., 1985). GNMT serves as a major regulator of SAM
concentrations through utilization of SAM for the nonessential conversion of glycine to
sarcosine (Wagner et al., 1985; Luka et al., 2009). In an in silico experiment using a
mathematical model of one-carbon metabolism, when creatine synthesis is set to zero,
flux through GNMT increases by 30%. And, SAM concentrations are further modu-
lated through increased flux through transsulfuration pathway because SAM stimulates
cystathionine [-synthase (Reed et al., 2015). Additional unknown mechanisms may
contribute to the strong cross-sectional associations between urinary creatinine and As
methylation capacity. For example, it is possible that urinary creatinine is somehow
related to renal tubular reabsorption of InAs, a topic that is relatively understudied in
the scientific literature.

As noted above, this study was powered to test the effects of FA and creatine
supplementation on a population of mixed folate-deficient and -sufficient individuals.
Significant effects were observed among folate-sufficient participants receiving FA sup-
plementation. In addition, the trial focused on the effects of increasing the recruitment
of methyl groups to enhance one-carbon metabolism. However, As methylation capac-
ity may also be altered by increasing the availability of other methyl donors involved
in one-carbon metabolism (Ueland, 2011). Further research is needed to explore the
impact of co-supplementation of FA with other methyl donors, such as choline and
betaine, and other micronutrients related to one-carbon metabolism, such as vitamins
Bis, Bg, and Bg. Furthermore, treatment effects may differ by baseline nutritional
status of these micronutrients.

The study limitations include poor compliance with water filter use over
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time and the possibility that some urine samples were diluted with water. However,
it is unlikely that either of these factors differed between treatment groups due to

randomization, and therefore they are not expected to influence the studys conclusions.

3.7 Conclusion

The importance of nutritional factors in modifying As metabolism and toxic-
ity has emerged over the past 20 years (Abernathy et al., 1999), as well as the potential
use of nutritional supplements to mitigate the health effects of chronic As exposure
(Kile and Ronnenberg, 2008). Remediation of As exposure is the most important ap-
proach to limiting health effects (World Health Organization, 2012), however, removal
of As from drinking water may not be immediately feasible in all real-world situations
and exposure to unsafe concentrations of As in drinking water persists in many regions
of the world (Naujokas et al., 2013). Furthermore, adverse health outcomes associated
with chronic As exposure persist after exposure has ended (Steinmaus et al., 2013,
2014). Additional approaches to lower bAs, increase As methylation and potentially
reduce As toxicity are needed. In this trial, FA supplementation significantly increased
As methylation capacity, resulting in an increased proportion of urinary DMAs, the
least toxic and most readily excreted As metabolite. A significant change in the pro-
portion of InAs and DMAs was not observed in the creatine group, although findings
suggest that creatine supplementation decreased %MMAs to a lesser extent than FA.
While these findings are informative, further research is needed to fully understand the
strong cross-sectional relationships previously observed between urinary creatinine and
arsenic methylation (Gamble et al., 2005; Ahsan et al., 2007; Hall et al., 2009; Peters
et al., 2014).

Nutritional interventions may conceivably reduce long-term health risks of As

exposure. For example, folate deficiency has been associated with the subsequent devel-
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opment of skin lesions (Pilsner et al., 2009). FA fortification of grains has been shown to
dramatically decrease the prevalence of folate deficiency (Odewole et al., 2013; Barnabé
et al., 2015) and has been mandated in 87 countries (Zimmerman and Lu, 2015), how-
ever Bangladesh is not among them. Countries with endemic As exposure, such as
Bangladesh, may benefit from FA fortification to reduce folate deficiency in general,
and as a cost-effective method of partially reducing As toxicity as one component of

comprehensive As mitigation programs.
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4.1 Abstract

Background: Arsenic (As) is a human toxicant and carcinogen. Methylation
of inorganic As (InAs) to monomethyl- (MMAs) and dimethyl-arsenical species (DMAs)
facilitates urinary As elimination. Folate and creatine, one-carbon metabolism (OCM)
nutrients, influenced As methylation in a randomized controlled trial (RCT): folic acid
(FA) lowered blood As (bAs) and increased As methylation, and creatine decreased
urinary %MMAs. Choline and betaine are alternative methyl donors in OCM.

Aim: This study examined if baseline plasma folate, choline, betaine, and
vitamin By status modify the effects of 12 weeks of FA and creatine supplementa-
tion on changes in homocysteine, guanidinoacetate (GAA), total bAs, and urinary As
metabolite proportions and indices.

Methods: In a RCT, 622 participants were assigned to receive 400 or 800 ug
FA, 3 g creatine, 400 yg FA + 3 g creatine, or placebo daily. All participants received
As-removal water filters.

Results: Over 12 weeks, relative to placebo, 400 and 800 yg FA/day were
associated with greater mean increases in %DMAs among participants with baseline
betaine concentrations below the median than those with levels above the median (FDR
< 0.05). 400 pg FA/day was associated with a greater decrease in homocysteine among
participants with plasma folate concentrations below, compared with those above, the
median (FDR < 0.03). Creatine treatment was associated with a significant decrease
in %MMAs compared to placebo among participants with choline concentrations below
the median (P = 0.04), but not among participants above the median (P = 0.94); this
effect did not significantly differ between strata (P = 0.10).

Conclusions: Effects of FA and creatine supplementation on As methylation
capacity were greater among individuals with low betaine and choline status, respec-

tively. These findings reveal that the efficacy of nutritional interventions with FA and
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creatine to facilitate As methylation is modified by choline and betaine nutritional

status.
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4.2 Introduction

Chronic arsenic (As) exposure through drinking water is a major public health
concern. Over 140 million people in more than 70 countries are exposed to As concen-
trations > 10 ug/L, the World Health Organization (WHO) guideline (Naujokas et al.,
2013; World Health Organization, 2012). In Bangladesh, approximately 40 million peo-
ple are exposed to drinking water As concentrations exceeding 10 ug/L (Bangladesh
Bureau of Statistics and United Nation Children’s Fund, 2015). Chronic As exposure
has been associated with increased risk of numerous health conditions including car-
diovascular disease, diabetes, skin lesions (melanosis, leukomelanosis, and keratosis),
cancers (bladder, kidney, liver, lung, skin, and prostate), and impaired intellectual
function (Benbrahim-Tallaa and Waalkes, 2008; Naujokas et al., 2013).

Methylation of inorganic As (InAs) to mono- and di-methyl arsenical species
facilitates urinary As excretion (Tice et al., 1997; Vahter and Marafante, 1987). In-
gested InAs is metabolized through a series of reduction and oxidative methylation re-
actions (Challenger, 1945). InAs™ is methylated to monomethylarsonic acid (MMAsY),
reduced to MMAs™ and methylated to dimethylarsinic acid (DMAsY). These sequen-
tial reactions are catalyzed by arsenic-3-methyltransferase (AS3MT) using the methyl
donor S-adenosylmethionine (SAM) (Thomas et al., 2004) (Figure 4.1). Toxicological
studies have demonstrated that MMAs!! is the most cytotoxic and genotoxic As species
(Moe et al., 2016; Petrick et al., 2000). Due to rapid oxidation, it is difficult to distin-
guish between MMAs™ and MMAs" in human studies. However, in epidemiological
studies, a higher proportion of MMAs"™V (%MMAs) and lower %DMAs in urine has
been associated with increased risks for bladder, breast, lung, and skin cancers; skin
lesions; peripheral vascular disease; and atherosclerosis (Kuo et al., 2017; Steinmaus
et al., 2010).

Arsenic metabolism efficiency varies between individuals and is influenced by
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Figure 4.1: Arsenic methylation. As™ is methylated to form MMAsy by AS3MT
using the methyl donor SAM. MMAs" is subsequently reduced to MMAs™ and methy-
lated to form DMAsY. Abbreviations: As'l) arsenite; AS3MT, arsenic arsenic (+3
oxidation state) methyltransferase; DMAsY, dimethylarsinic acid; InAs, inorganic
As; MMAsY, monomethylarsonic acid; MMAs™, monomethylarsonous acid; SAM, S-
adenosylmethionine.

one-carbon metabolism (OCM), the biochemical pathway that synthesizes SAM. Re-
cruitment of one-carbon units into OCM is influenced by folate; OCM is also influenced
by micronutrients that act as cofactors (e.g., vitamin Bys) or alternative methyl donors
(choline and betaine). A one-carbon unit is transferred from 5-methyl-tetrahydrofolate
(5-methyl-THF'), the most prevalent form of naturally occurring folate, to homocysteine
by methionine synthase (MTR) using the cofactor vitamin By to form methionine (Fig-
ure 4.2). Methionine is subsequently activated to SAM. In the liver, betaine can serve as
an alternative methyl donor to remethylate homocysteine. Betaine is obtained through
diet or synthesized endogenously from choline, which in turn can be obtained from
food or synthesized from phosphatidylcholine (PC). When folate status is low, the use
of betaine for homocysteine remethylation is increased (Niculescu and Zeisel, 2002).
Dietary creatine may also influence the availability of SAM. An estimated
50% of SAM is consumed by creatine biosynthesis, in which guanidinoacetate (GAA)
methyltransferase (GAMT) (Brosnan, da Silva, and Brosnan 2011) catalyzes the methy-
lation of GAA to form creatine and S-adenosylhomocysteine (SAH) (Figure 4.2). Di-
etary creatine reduces GAA biosynthesis through the pre-translational inhibition of
arginine:glycine amidinotransferase (AGAT), which catalyzes the synthesis of GAA

from arginine and glycine (McGuire et al., 1984). Dietary sources, predominantly meat,
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Figure 4.2: (Previous page.) (A) One-carbon metabolism (OCM). FA is reduced
to DHF and THF by dihydrofolate reductase. 5,10-methylene-THF is formed by ser-
ine hydroxymethyl-transferase through the transfer of one-carbon units from serine
to THF, which is for thymidylate synthesis or reduced to 5-mTHF. Folate obtained
through the diet can enter one-carbon metabolism as 5-mTHF. A one-carbon unit is
transferred from 5-mTHF to homocysteine by MTR using vitamin Bis as a cofactor
to form methionine and THF. Homocysteine can also be remethylated in the liver by
BHMT using betaine as the methyl donor. Methionine is activated to from SAM by
methionine adenosyltransferase enzymes. SAM serves as the methyl donor for numer-
ous reactions including arsenic methylation, the biosynthesis of creatine from GAA, and
DNA methylation, generating the methylated products and SAH. SAH, which serves as
a product inhibitor for most methyltransferase enzymes, hydrolyzed to homocysteine,
and can either be remethylated to methionine or be directed towards the transsulfura-
tion pathway. Adapted with permission from (16). (B) Major consumers of SAM.
An estimated 50% of SAM is consumed by the final step of endogenous creatine syn-
thesis by GAMT, and 40% of SAM is consumed by phosphatidylcholine biosynthesis
by PEMT. (C) Creatine metabolism and the methionine cycle. In the kidney,
AGAT transfers an amidino group from arginine to glycine, producing GAA and or-
nithine. Dietary and/or supplemental creatine reduces GAA biosynthesis through the
pretranslational inhibition of AGAT. GAA is released from the kidney and taken up
by the liver where it is methylated by GAMT using the methyl donor SAM to form
creatine and SAH. SAH is hydrolyzed to homocysteine. 5-mTHF can regulate SAM
and SAH levels through potent inhibition of GNMT. Creatine is transported to tissues
including skeletal muscle, heart, and brain, and phosphorylated to phosphocreatine.
Creatine and phosphocreatine are converted to creatinine through a nonenzymatic
reaction and excreted in urine. Abbreviations: 5-mTHF, 5-methyl-tetrahydrofolate;
AGAT, arginine:glycine amidinotransferase; BHMT, betaine homocysteine methyl-
transferase; DHF', dihydrofolate; GAA, guanidinoacetate; GAMT, guanidinoacetate N-
methyltransferase; MTR, methionine synthase; OCM, one-carbon metabolism; PEMT,
phosphatidylethanolamine N-Methyltransferase; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine; THF, tetrahydrofolate.

provide approximately half of the daily requirement for creatine, but this proportion is
lower for vegetarians (Brosnan et al., 2011).

Our group and others have reported that dietary folate intake and folate sta-
tus are positively associated with As methylation capacity (reviewed in Bozack et al.
2018b). We have also studied the effect of FA supplementation on As metabolism and
elimination in Bangladeshi adults. In a 12-week randomized controlled trial (RCT)

among participants with low plasma folate (< 9 nmol/L), 400 yg FA/day supplemen-
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tation, the U.S. recommended daily allowance (RDA), was associated with a larger
increase in urinary %DMAs and decreases in In(%InAs), %MMAs (Gamble et al.,
2006), total blood As (bAs) concentration, and blood MMAs concentration compared
to placebo (Gamble et al., 2007). In the Folic Acid and Creatine Trial (FACT), an RCT
among adults recruited independent of folate status, we observed a larger increase in
urinary %DMAs and decreases in %InAs and %MMAs after 12 weeks of 400 or 800 pg
FA/day supplementation (Bozack et al., 2018a), and a larger decrease in In(bAs) with
800 pg FA/day supplementation compared to placebo (Peters et al., 2015a). Supple-
mentation with 400 and 800 ug FA resulted in significant increases in plasma betaine,
illustrating the sparing effect of FA on betaine for homocysteine remethylation (Hall
et al., 2016).

The associations between additional OCM-related micronutrients and As
methylation capacity have been investigated in human studies (Bozack et al., 2018b).
Urinary creatinine, a product of creatine metabolism and a biomarker of dietary crea-
tine intake and endogenous creatine biosynthesis, has been consistently associated with
lower %InAs and higher %DMAs in urine in cross-sectional analyses (Basu et al., 2011;
Bozack et al., 2018a; Gamble et al., 2005, 2006; Hall et al., 2009, 2006; Kile et al.,
2009; Pilsner et al., 2009). In the FACT study, 3 g/day creatine supplementation
was associated with a larger decrease in plasma GAA compared to placebo, indicat-
ing downregulation of endogenous creatine synthesis (Peters et al., 2015b). Creatine
supplementation was associated with a larger decrease in urinary %MMAs compared
to placebo at 6 and 12 weeks, but, surprisingly, was not associated with changes in
%InAs or %’DMAs (Bozack et al., 2018a). The association between choline and betaine
and As methylation capacity has been investigated using food frequency questionnaire
data. Dietary choline, but not betaine, has been positively associated with As methy-

lation capacity as measured by %InAs, %DMAs, DMAs/InAs (Lépez-Carrillo et al.,
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2016) and DMAs/MMAs (Heck et al., 2007; Lépez-Carrillo et al., 2016) in urine. Find-
ings regarding the association between vitamin B and the proportion of urinary As
metabolites are less consistent; results differ in the direction and significance of the
associations across studies (Hall et al., 2009; Lépez-Carrillo et al., 2016; Spratlen et al.,
2017).

It is not known if FA and creatine supplementation treatment effects are mod-
ified by OCM-related micronutrients. Given the reciprocal use of folate vs. choline/betaine
for the remethylation of homocysteine, we hypothesized that participants with low base-
line levels of OCM-related micronutrients would experience greater treatment effects
due to a limited supply of methyl donors prior to treatment. The objectives of the
analyses presented here are to determine if baseline folate, choline, betaine, and vita-
min Biy status modify the effects of FA and creatine supplementation on changes in
homocysteine, GAA, bAs concentration, and urinary As metabolite proportions and

methylation indices.

4.3 Methods

Subjects

FACT was a randomized, double-blind, placebo-controlled trial to investigate
the effects of FA and creatine supplementation on change in total bAs, and has been
described in detail previously by Peters et al. (Peters et al., 2015a). Participants were
randomly recruited from the Health Effects of Arsenic Longitudinal Study (HEALS)
(Ahsan et al., 2006), a cohort of over 30,000 adults in Araihazar, Bangladesh. Par-
ticipants were eligible for FACT if they were drinking from a household well with As
concentration > 50 ug/L for > one year prior to enrollment. Participants were excluded

if they were pregnant, taking nutritional supplements, or had proteinuria, renal disease,
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diabetes, gastrointestinal problems, or other health issues.

Study design

A total of 622 participants were recruited. Participants were provided with
READ-F As removal filters (READ-F filter; Brota Services International, Bangladesh)
and were encouraged to use the filters for all drinking and cooking water during the trial
(Sanchez et al., 2016). As previously described (Peters et al., 2015a), participants were
assigned to one of five treatment groups: 400 ug FA /day (referred to hereafter as 400FA;
N = 156), 800 ug FA/day (800FA; N = 154), 3 g creatine/day (creatine; N = 104), 3 g
creatine and 400 pg FA /day (creatine+400FA; N = 104), and placebo (N = 104). The
FA doses of 400 and 800 pg/day were selected to meet and exceed the U.S. RDA; the
creatine dose of 3 g/day was selected to exceed daily creatine loss (approximately 2 g
for 70 kg 20-39 year-old males) (Brosnan et al., 2011), to be sufficient to downregulate
endogenous creatine synthesis. Supplements were provided by Atrium Innovations, Inc.
(Westmount, Quebec).

During the first 12-week phase, participants received daily supplements or
a placebo; during the second 12-week phase, participants in the FA treatment groups
were randomly assigned to continue their FA treatment (400FA: N = 77; 800FA: N =
77) or to receive a placebo (400FA /placebo: N = 76; 800FA /placebo: N = 74), and
participants in the creatine and creatine+400FA groups received a placebo to maintain
the study blind.

Results regarding changes in bAs (Peters et al., 2015a) and urinary As methy-
lation (Bozack et al., 2018a) have previously been published. The current analyses
utilized data from the first phase of the trial to investigate the a priori hypothesis that
baseline nutritional status modifies the association between FA and/or creatine sup-

plementation and changes in total bAs, urinary As metabolite proportions and indices,
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homocysteine, and GAA between baseline and week 12.

Ethics

The Columbia University Medical Center Institutional Review Board and the
Bangladesh Medical Research Council approved the study protocol. Informed consent

was obtained by staff physicians in Bangladesh.

Field work and participant follow-up

Field work was conducted in 2010-2012. Five pairs of field staff (an inter-
viewer and physician) conducted recruitment and home visits during which venous
blood (baseline and weeks 12 and 24) or urine samples (baseline and weeks 1, 6, 12,
13, 18, and 24) were collected. During daily home visits, health workers observed or
inquired about participants taking the pills. Pill counts were conducted at weeks 12
and 24. Compliance was high (range: 79.1-100%; median: 99.5%; interquartile range:
98.3-100.0%) and did not differ substantially between treatment groups (Peters et al.,

2015a).

Laboratory measures

Sample handling procedures and laboratory methods have previously been
described in detail (Howe et al., 2017; Peters et al., 2015a,b). Venous blood sam-
ples were collected in EDTA vacutainer tubes, stored at 4°C in IsoRack cool packs
(Brinkmann Instruments; Riverview, FL). Urine samples were collected in 50-mL acid-
washed polypropylene tubes and stored in portable coolers. Samples were transported
to our Araihazar field clinic within 4 hours. Blood plasma was separated using cen-
trifugation. Blood and urine samples were shipped to Columbia University on dry ice

and stored at -80°C and -20°C, respectively.
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Total bAs was measured using Inductively Coupled Plasma Mass Spectrome-
try (ICP-MS) (PerkinElmer Elan DRC II; Waltham, MA; with an AS 93+ autosampler)
(intra- and inter-assay CVs: 2.7% and 5.7%, respectively) (Hall et al., 2006). Plasma
folate and vitamin B, were measured by radioimmunoassay (SimulTRAC-SNB, MP
Biomedicals) (intra- and inter-assay CVs: 5% and 13% for plasma folate; 6% and 17%
for vitamin Bys).

High performance liquid chromatography (HPLC) with fluorescence detection
was used to measure total plasma homocysteine (Pfeiffer et al., 1999) (intra- and inter-
assay CVs: 5% and 7%) and plasma GAA (Carducci et al., 2002) (intra- and inter-
assay CVs: 8% and 9%). Plasma choline and betaine were measured using liquid
chromatographytandem mass spectrometry (LC-MS/MS) (Holm et al., 2003; Yan et al.,
2012) (intra- and inter-assay CVs: 2.2% and 5.8% for plasma choline; 2.5% and 5.6%
for plasma betaine).

Urinary arsenobetaine, arsenocholine, As'™ AsY, MMAs, and DMAs were
separated by HPLC and measured by ICP-MS with dynamic reaction cell (Reuter
et al., 2003) (intra- and inter-assay CVs: 10.1% and 12.2% for arsenobetaine and ar-
senocholine; 2.7% and 4.7% for As'™ and AsV; 2.8% and 3.9% for MMAs: 0.6% and
1.3% for DMAs). The sum of trivalent and pentavalent forms of each As metabolite
are reported due to oxidation during storage. A refractometer was used to measure

specific gravity (SG).

Study sample

Eleven participants discontinued the study due to adverse events (N = 6;
placebo: abdominal cramps; 400FA: hypertension; 800 FA: abdominal cramps, ver-
tigo, bilateral hydronephrosis; creatine: vertigo), pregnancy (N = 3; 400FA, creatine,

and creatine+400FA), and dropout (N = 2; placebo and 400FA). One participant was
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dropped due to a missing baseline blood sample.

The current analyses used data from venous blood samples at baseline and
week 12 and urinary As metabolites at baseline, week 1, week 6 and week 12. Due to
missing baseline samples, two participants were excluded from analyses stratified by
choline and betaine status, and one participant was excluded from analyses stratified
by vitamin B and plasma folate status. An additional two participants with missing
week 12 blood samples were excluded. A total of 605 participants were available for
blood biomarker analyses stratified by baseline choline and betaine status and 606
participants were available for analyses stratified by vitamin By, and plasma folate
(placebo: N = 101; 400FA: N = 152; 800FA: N = 149; creatine: N = 100 and 101,
respectively; creatine+400FA: N = 103). GAA was measured in a subset of participants
to evaluate the effect of creatine supplementation on GAA (Peters et al., 2015b); 400FA
and 800FA groups were excluded from analyses of change in GAA.

Missing urine biomarkers or biomarkers associated with missing SG data (N
= 5) were excluded from analyses of changes in urinary As metabolites. SG < 1.001
is accepted to be outside of the normal range (Vahter et al., 2006). Values < 1.001
for SG (N = 48 at baseline; N = 46 at week 12) or %InAs (N = 1 at baseline; N
= 5 at week 12) were also excluded (Vahter, 1999). A total of 511 participants were
included in analyses of the change in urinary As metabolites stratified by choline and
betaine and 512 participants were included in analyses stratified by vitamin B, and
plasma folate (placebo: N = 85; 400FA: N = 128; 800FA: N = 122; creatine: N =
87 and 88, respectively; creatine+400FA: N = 89). Samples with urinary As' and
AsY concentrations below the limit of detection (LOD) were replaced with LOD/2
(0.025 pg/L) (baseline As'™ N = 5; baseline As" N = 3; week 12 As'! N = 6; week 12
AsV' N =9). %InAs, %WMMAs, and %DMAs in urine were calculated by dividing the

concentration of each species by the sum of As'™ + AsV + MMAs + DMASs concentra-
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tions. Primary methylation index (PMI) and secondary methylation index (SMI) were
calculated (MMAs/InAs and DMAs/MMAs, respectively). Arsenobetaine and arseno-
choline were excluded from these calculations because they are non-toxic forms of As

from dietary sources (Syracuse Research Corporation 2007).

Statistical analysis

Means and SDs were calculated for baseline characteristics for each treatment
group. Differences between treatment groups were assessed using the Chi-square test for
categorical variables and the Kruskal-Wallis test for continuous variables. Participants
were classified as high or low choline, betaine, plasma folate, and vitamin Bi, using a
median cut-off point (choline: 11.4 nmol/mL; betaine: 43.6 nmol/mL; plasma folate:
13.5 nmol/L; vitamin Byy: 214.9 pmol/L). Differences in baseline homocysteine, GAA,
bAs, and urinary As metabolite proportions and indices between treatment groups
within each nutrient strata were also assessed using the Kruskal-Wallis rank sum test.

The distributions of each outcome (i.e., within-person changes at week 12 in
bAs concentration, homocysteine concentration, and urinary As metabolite proportions
and indices) and baseline variables were examined. Blood As, homocysteine, %InAs,
and SMI were right skewed and natural log-transformation was used to reduce the
skewness of the baseline and week 12 variables so that the within-person change met
linear model assumptions. Levene’s test was used to check the linear model assumption
of homoscedasticity.

Analyses of treatment group effects were performed by intent-to-treat. For
each nutrient stratum, mean differences between treatment and placebo groups in
within-person changes of bAs concentration, homocysteine concentration, or urinary
As metabolite proportions and indices were estimated using linear regression models.

In the case of heteroscedasticity, standard errors and P-values were calculated by a
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heteroscedasticity-consistent covariance matrix estimation using the sandwich package
in R (Zeileis, 2004). Due to baseline treatment group differences in urinary As metabo-
lite proportions and As methylation indices between strata of choline, betaine, and fo-
late, and in GAA within folate strata (data not shown), models predicting within-person
change in urinary As metabolite proportions and As methylation indices stratified by
choline, betaine, and folate were adjusted for baseline As metabolite proportions or As
methylation indices, respectively. Models predicting change in GAA stratified by folate
were adjusted for baseline GAA. A Wald test was used to detect differences between
strata (above vs. below median) in the treatment effect. To adjust for multiple tests in
detecting differences in treatment effects between strata, the Benjamini-Hochberg ad-
justment on P-values was used to control for the false discovery rate (FDR) (Benjamini
and Hochberg, 1995).

Linear models with repeated measures were used to further examine whether
the observed treatment effects on within-person changes in As metabolite proportions
over 12 weeks stratified by choline status may be present at weeks 1 or 6 (N = 538 for
participants with data on change from baseline to weeks 1, 6 or 12). The natural-log
transformation of %InAs at each time point was used. Changes in the proportions
of each metabolite since baseline were calculated for weeks 1, 6, and 12. Models in-
cluded control variable for baseline metabolite proportion, and predictors of treatment
group, time categories and group-by-time interactions, which indicate treatment group
differences in mean within-person change since baseline. Model parameters were esti-
mated using a generalized estimating equation approach to account for within-subject
correlations in the repeated measures.

Analyses were performed using R version 3.2.2 (Vienna, Austria) (R Core

Team, 2015) and SAS 9.4 (Cary, NC).
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4.4 Results

Baseline participant characteristics are presented in Table 4.1. Participants
had a mean age of 38 years (range: 24-55), and approximately half of participants
were male (50.5%). There were no significant baseline differences in demographics, As
exposure, or nutritional factors between treatment groups (P > 0.05). The majority
of participants were folate sufficient (> 9 nmol/L in plasma: 80.2%) and vitamin By

sufficient (> 151 pmol/L: 75.9%).

Treatment effects on homocysteine

There were significant differences in the change in homocysteine over 12 weeks
between participants with baseline plasma folate below and above the median (Ta-
ble 4.2). The mean within-person decrease in In(homocysteine) relative to placebo was
significantly greater in the low folate stratum with 400FA (low folate: B =-0.33, P <
0.001; high folate: B =-0.16, P < 0.001; Wald test for difference between strata: P =
0.011, FDR = 0.024) and creatine+400FA supplementation (low folate: B = -0.31, P
< 0.001; high folate: B =-0.14, P < 0.002; Wald test P = 0.012, FDR = 0.024). The
difference between strata in the effects of 800FA on change in In(homocysteine) was
similar but with lower statistical significance (low folate: B = -0.34, P < 0.001; high

folate: B =-0.20, P < 0.001; Wald test P = 0.049, FDR = 0.065).

Treatment effects on As methylation: FA

When stratifying by baseline betaine, mean within-person decreases in In(%InAs)
relative to placebo were greater among participants below the median with 400FA (low
betaine: B =-0.19, P = 0.009; high betaine: B =-0.06, P = 0.28) and 800FA supple-
mentation (low betaine: B = -0.29, P < 0.001; high betaine: B = -0.11, P = 0.035)

(Table 3). The difference in treatment effects between strata with 800FA was nominally
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Table 4.2: Linear models for change in In(homocysteine) over 12 weeks, by baseline
plasma folate strata.’

Low strata High strata
Change? (< median) (> median) Wald test?
B (95% CI) P B (95% CI) P P o
400FA -0.33 (-0.43,-0.23) <0.001 -0.16 (-0.25,-0.08) <0.001  0.011 0.024
S800FA -0.34 (-0.45,-0.23) <0.001 -0.20 (-0.29,-0.11) <0.001  0.049 0.065

Creatine -0.05 (-0.15, 0.06) 0.38 -0.02 (-0.11, 0.07) 0.67 0.7 0.7
Creatine+400FA -0.31 (-0.42, -0.21) <0.001 -0.14 (-0.22,-0.05)  0.002 0.012 0.024
1. Placebo used as reference group. Baseline plasma folate median = 13.50 nmol/L. 2. Week 12 -
week 1, treatment vs. placebo. 3. Test for difference between strata.

Abbreviations: 400FA, 400 ug FA /day treatment group; 800FA, 800 ug FA/day treatment group;
Creatine, 3 g creatine/day treatment group; creatine+400FA, 3 g creatine and 400 pg FA /day
treatment group.

significant (Wald test P = 0.04, FDR = 0.17). The decrease in %MMAs relative to
placebo was greater among participants in the low betaine stratum with 400FA (low
betaine: B =-3.06, P < 0.001; high betaine: B =-1.35, P = 0.01; Wald test P = 0.03,
FDR = 0.10). Significantly greater mean within-person increases in %DMAs relative
to placebo were also observed in the low betaine strata with 400FA (low betaine: B
= 1.02, P < 0.001; high betaine: B = 1.37, P = 0.07; Wald test P = 0.011, FDR =
0.044) and 800FA (low betaine: B = 7.07, P < 0.001; high betaine: B = 3.49, P =
0.001; Wald test P = 0.022, FDR = 0.044). Differences in 400FA treatment effects be-
tween betaine strata were reflected in a greater mean within-person increase in In(SMI)
relative to placebo in the low stratum (B = 0.39, P < 0.001) than the high stratum (B
= 0.14, P = 0.001) (Wald test P = 0.005; FDR = 0.021). Linear models with repeated
measures indicated an increasing effect size of 400FA and 800FA on the change in As

metabolite proportions at weeks 1, 6, and 12 (Appendix Table 4.5).

Treatment effects on As methylation: Creatine

We observed differences in creatine treatment effects on the mean within-

person changes in As metabolites proportions over 12 weeks between participants above

143



Table 4.3: Linear models for change in As metabolite proportions over 12 weeks, by
baseline choline strata.’

Low strata High strata
Change? (< median) (> median) Wald test®
B((9%CI) P B(5%CI) P P FDR
In(%InAs)*
100FA 20.12 (-0.24, 0.01) 0.078 -0.12 (-0.24, 0.00) 0.048 0.955  0.955
S800FA -0.15 (-0.27, -0.03) 0.017 -0.23 (-0.34, -0.12) <0.001 0.344  0.688
Creatine 0.05 (-0.09, 0.19) 0.466 -0.11 (-0.22, 0.00) 0.053 0.077  0.306

Creatine+400FA  -0.12 (-0.30, 0.06) 0.185 -0.14 (-0.25,-0.03) 0.012 0.855  0.955
%MMASs®

400FA -3.00 (-4.09, -1.91) <0.001 -1.25 (-2.25, -0.25) 0.014  0.02 0.078
S800FA -3.23 (-4.34, -2.12) <0.001 -1.76 (-2.72, -0.80) <0.001 0.049  0.097
Creatine -1.47 (-2.88,-0.07) 0.04 0.05 (-1.09, 1.18) 0.936  0.098  0.108
Creatine+400FA -2.91 (-4.11, -1.72) <0.001 -1.55 (-2.72,-0.38) 0.01  0.108  0.108
%DMASs*

400FA 4.53 (2.03, 7.04) <0.001 2.71(0.71,4.72) 0.008 0.265  0.931
S800FA 5.54 (3.21, 7.88) <0.001 4.58 (2.72, 6.44) <0.001 0.524  0.931
Creatine 0.93 (-1.98, 3.83)  0.53  1.53 (-0.41, 3.47) 0.121 0.734  0.931
Creatine+400FA  3.10 (-0.24, 6.44) 0.069  3.27 (1.35,5.19) 0.001 0.931  0.931

1. Placebo used as reference group. Baseline choline median = 11.42 nmol/mL. 2. Week

12 - week 1, treatment vs. placebo. 3. Test for difference between strata. 4. Adjusted

for baseline In(%InAs). 5. Adjusted for baseline %MMAs. 6. Adjusted for baseline %DMAs.
Abbreviations: 400FA, 400 ug FA/day treatment group; 800FA, 800 yg FA/day treatment
group; Creatine, 3 g creatine/day treatment group; creatine+400FA, 3 g creatine and 400 g
FA /day treatment group; InAs, inorganic arsenic; MMAs, monomethyl-arsenical species;
DMAs; dimethyl-arsenical species.

and below the median baseline choline (Table 4.4 and Figure 4.3). Creatine treatment
led to a significant decrease in urinary %MMAs compared to placebo among partici-
pants in the low choline stratum (B = -1.47, P = 0.04), but not among participants
in the high stratum (B = 0.05, P = 0.94), although the difference in the treatment
effect was not significant (Wald test P = 0.10). While there were no clear creatine
effects on %InAs or %DMA, the three percentages are interrelated and changes in PMI
and SMI were analyzed to evaluate overall direction of creatine treatment effects on As
methylation. There was a significant mean within-person decrease in PMI and increase
in In(SMI) among participants in the low choline stratum (PMI: B = -0.16, P = 0.035;

In(SMI): B = 0.14, P = 0.035), but not among participants in the high stratum (PMI:
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B = 0.06, P = 0.37; In(SMI): B = 0.02, P = 0.69). Effect sizes for change in PMI
differed between strata, but the statistical significance was marginal after correcting
for multiple tests (Wald test P = 0.028; FDR = 0.06). A similar pattern was observed
when stratifying by betaine: the increase in In(SMI) was significant in the low betaine
stratum (B = 0.14, P = 0.033), but not the high betaine stratum (B = 0.04, P = 0.46;
Wald test P = 0.26) (Appendix Table 4.6).

In linear models with repeated measures, the mean within-person decrease in
%MMAs was significantly greater in the creatine group than the placebo group among
participants in the low choline stratum beginning after one week of supplementation
(P = 0.028), and remained significantly greater at weeks 6 (P = 0.003) and 12 (P =
0.022) (Appendix Table 4.5). However, mean within-person changes in %MMAs were
not significantly different between the creatine and placebo groups in the high choline

stratum at any follow-up point.

Treatment effects on GAA: Creatine.

The mean within-person decrease in In(GAA) with creatine treatment relative
to placebo was significant in the high choline and plasma folate strata (high choline:
B =-0.21, P < 0.001; high folate: B = -0.22, P < 0.001) (Appendix Table 4.6). The
treatment effect was not significant in the low strata for either nutrient, although it was
suggestive in the low folate stratum (low folate stratum: B = -0.10, P = 0.052). The
difference in treatment effects by strata were marginally significant before correction
for multiple tests (Wald test P = 0.083 for difference between choline strata; P = 0.091
for difference between folate strata).

Complete results for regression analyses stratified by baseline choline, betaine,
vitamin By, and plasma folate concentrations for all treatment groups are presented

in Appendix Table 1. We did not observe differences in the mean within-person change
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Table 4.4: Linear models for change in As metabolite proportions over 12 weeks, by
baseline betaine strata.!

Low strata High strata

Change? (< median) (>median) Wald test®

B(9%CI) P B(%CI) P P FDR
In(%InAs)*
400FA -0.19 (-0.33, -0.05) 0.009 -0.06 (-0.17, 0.05) 0.281 0.153  0.306
S800FA -0.29 (-0.43, -0.16) <0.001 -0.11 (-0.22,-0.01) 0.035 0.042  0.167
Creatine -0.02 (-0.15, 0.12)  0.787 -0.07 (-0.19, 0.05) 0.264 0.589  0.786
Creatine+400FA  -0.15 (-0.32, 0.02) 0.084 -0.13 (-0.26, -0.01) 0.035 0.877  0.877
%MMASs®
400FA -3.06 (-4.20, -1.92) <0.001 -1.35 (-2.33,-0.38) 0.007 0.026  0.102
S800FA -2.93 (-4.02, -1.84) <0.001 -2.14 (-3.18, -1.11) <0.001 0.302  0.403
Creatine -1.09 (-2.44, 0.26) 0.112 -0.44 (-1.65, 0.77) 0.476  0.48 0.48
Creatine+400FA -2.78 (-4.02, -1.55) <0.001 -1.69 (-2.86, -0.51) 0.005 0.206  0.403
%DMASs*
400FA 6.02 (3.29, 8.75) <0.001 1.73 (-0.16, 3.62) 0.073 0.011  0.044
S800FA 7.07 (4.62, 9.51) <0.001 3.49 (1.63, 5.35) <0.001 0.022  0.044
Creatine 2.03 (-0.77, 4.83)  0.155 1.03 (-1.15,3.21) 0.353 0.579  0.579

Creatine+400FA  4.15 (0.91, 7.38)  0.012  2.68 (0.54, 4.81) 0.014 0.455  0.579

1. Placebo used as reference group. Baseline betaine median = 43.63 nmol/mL. 2. Week

12 - week 1, treatment vs. placebo. 3. Test for difference between strata. 4. Adjusted

for baseline In(%InAs). 5. Adjusted for baseline %MMAs. 6. Adjusted for baseline %DMAs.
Abbreviations: 400FA, 400 ug FA/day treatment group; 800FA, 800 yg FA/day treatment
group; Creatine, 3 g creatine/day treatment group; creatine+400FA, 3 g creatine and 400 g
FA /day treatment group; InAs, inorganic arsenic; MMAs, monomethyl-arsenical species;
DMAs; dimethyl-arsenical species.

in In(bAs) with FA or creatine supplementation between the high and low strata of
choline, betaine, vitamin By, or plasma folate. In addition, the mean within-person
changes in In(homocysteine), In(bAs), or urinary As metabolite proportions with FA

or creatine treatment relative to placebo did not differ by vitamin Bq, strata.

4.5 Discussion

Arsenic methylation capacity is influenced by OCM. Folate plays an impor-
tant role in recruiting one-carbon units for the remethylation of homocysteine and the

synthesis of SAM. The availability of one-carbon units is also impacted by other nu-
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trients including the alternative methyl donor betaine, its precursor choline (Chiuve
et al., 2007; Holm et al., 2005), and possibly the cofactor vitamin Bj. This study in-
vestigated whether these nutrients modify FA and creatine treatment effects on changes
in total homocysteine and GAA concentrations (biomarkers of OCM and endogenous
creatine synthesis, respectively), total bAs concentrations, and urinary As metabolite

proportions and methylation indices.

Treatment effects on homocysteine

In agreement with previous studies of the homocysteine-lowering effects of
FA treatment (Homocysteine Lowering Trialists’ Collaboration, 1998), we observed a
greater mean decrease in homocysteine concentration among participants with lower

baseline plasma folate concentrations.

Treatment effects on As metabolites

We observed that the effect of FA supplementation on the change in As
methylation capacity was more pronounced among participants with baseline plasma
betaine concentrations below the median. 400FA was associated with significant changes
in urinary %InAs and %DMAs among participants in the low betaine stratum, but not
among participants in the high betaine stratum. The mean within-person increase in
%DMAs with 800FA relative to placebo was also significantly greater among partic-
ipants in the low betaine stratum compared with the high betaine stratum. These
observations support our hypothesis that FA treatment effects would be greater among
those with nutritional deficiencies. The complementary role of folate for the remethyla-
tion of homocysteine under conditions of low betaine is well characterized (Obeid, 2013),
and the effects of this on increasing As methylation are relatively straightforward to

interpret.
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Urinary creatinine has been associated with lower %InAs and higher %DMAs
in previous cross-sectional analyses (Basu et al., 2011; Bozack et al., 2018a; Gamble
et al., 2005, 2006; Hall et al., 2009, 2007; Kile et al., 2009; Pilsner et al., 2009), consis-
tent with results from cross-sectional analyses at baseline in the current study. Creatine
supplementation was associated with a mean within-person decrease in %MMAs over-
all at weeks 1, 6 and 12, (as previously reported) (Bozack et al., 2018a). Here we find
that compared to placebo group, creatine supplementation was associated with a rapid
decrease in %9MMAs at week 1 that then plateaus at weeks 6 and 12 among participants
with choline concentrations below the median. Creatine treatment was not associated
with a change in %MMAs among participants with choline above the median. Among
numerous other roles, choline serves as a precursor in the biosynthesis of betaine, an
alternative methyl donor in OCM. Plasma choline and betaine concentrations are sig-
nificantly correlated (Holm et al., 2003; Nurk et al., 2012), including in the current
study (7spearman = 0.45; P < 0.001 at baseline). Both synthesis of PC and creatine
are major consumers of SAM (Figure 2.4). Low choline status stimulates PC synthesis
from phosphatidylethanolamine (PE) via PE methyl transferase (PEMT), requiring 3
molecules of SAM per molecule of PC (Kennedy, 1957). While the resulting PC can be
converted to choline and then betaine, much PC is needed to satisfy other essential roles
of choline and PC in processes such as lipid transport, cell signaling and maintaining
the structural integrity of cell membranes. We speculate that when choline concentra-
tions are low and PEMT is upregulated, more SAM may be used in the PC synthesis,
resulting in a low-SAM scenario, e.g., below the KM of ASSMT for SAM, allowing a
more pronounced impact of creatine supplementation in As methylation. In support
of this hypothesis, SAM concentrations in whole blood were lower in the low choline
strata than in high choline strata (t-test P = 0.017), though we do not know how well

this reflects hepatic SAM concentrations. Possibly, the cross-sectional relationships
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between urinary creatinine and %InAs and %DMAs are related to OCM but also in
part to renal tubular reabsorption of InAs under conditions of more concentrated urine
(Ginsburg and Lotspeich, 1963), whereas creatine treatment effects are directly related
to liver-specific OCM alterations that are attenuated over time by long-range allosteric
regulation of hepatic SAM concentrations. The relationships between choline status
and creatine supplementation are likely complex, and achieving a fuller understanding
of these findings requires further study.

We did not observe effect modification of FA or creatine treatment on the
change in As methylation by vitamin By status. Vitamin By serves as a cofactor for
the remethylation of homocysteine, and vitamin By, deficiency limits the availability
of one-carbon units carried by 5-methyl-THF for the synthesis of SAM (Green et al.,
2017). Although one might expect that vitamin Bjs status would modify treatment
effects on As methylation capacity, evidence of the association between vitamin By,
and As methylation capacity is inconsistent (Hall et al., 2009; Lépez-Carrillo et al.,
2016; Spratlen et al., 2017). In addition, this may not have been detected due to the
relatively low prevalence of vitamin B, deficiency among study participants.

Similarly, we did not observe effect modification of FA or creatine treatment
on the change in As methylation by baseline plasma folate status. This suggests that FA
supplementation enhances As methylation capacity even among individuals with high
folate status. This finding may also be due to elevated homocysteine in this population.
Although 38.9% of study participants had hyperhomocysteinemia (> 13 umol/L ) at
baseline, 63% of women and 72.9% of men had homocysteine levels above the normal
range defined by the U.S. CDC (4.5-7.9 ymol/L for women and 6.3-11.2 umol/L for
men) (Centers for Disease Control and Prevention, 2003). Given this high prevalence
of elevated homocysteine, FA treatment may have the effect of lowering homocysteine

and SAH even among participants classified as having plasma folate above the median.
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Treatment effects on guanidinoacetate

Creatine supplementation pre-translationally inhibits AGAT to downregulate
the first step of creatine synthesis (Figure 2). As previously reported, creatine sup-
plementation lowered GAA concentrations (a product of AGAT) in the overall study
population; as expected, FA did not affect GAA (Peters et al., 2015b). However, sig-
nificant treatment effects of creatine in lowering GAA were observed in the high strata
of choline and plasma folate but not in the low strata. This may reflect reduced sta-
tistical power in stratified sub-samples. However, an alternative explanation is that
the hepatic methylation of GAA that exists prior to creatine supplementation is not
inhibited by creatine supplementation (da Silva et al., 2009) and may be more active
in a folate replete state when hepatic SAM concentrations are expected to be relatively
high. It should be noted that sample size limited our power to identify effects when
stratifying by baseline nutritional status. The sample size for this RCT was originally
selected to identify our primary outcomes of total treatment group effects. In addi-
tion, we selected the median baseline value to categorize participants as having high or
low baseline nutritional status. This approach was reasonable for choline and betaine,
micronutrients for which there are no reference ranges to determine deficiency, to max-
imize power. However, we were not able to determine if threshold effects could result

in effect modification at different baseline micronutrient levels.

4.6 Conclusion

This study contributes to an understanding of the relationship between FA
and creatine supplementation, OCM-related micronutrients, and As methylation capac-
ity, and their dependence on nutritional status. Although removal of As from drinking

water is the primary and most effective approach to decreasing As-related morbidity
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and mortality (World Health Organization, 2012), As exposure remains a persistent
public health concern in many regions of the world (Naujokas et al., 2013), including
the U.S. (Mantha et al., 2017). Our group has previously reported the effects of FA
and creatine supplementation on total bAs concentrations and As methylation capacity
(Bozack et al., 2018a; Gamble et al., 2006, 2007; Peters et al., 2015a). We have ob-
served that FA supplementation significantly lowers bAs and increases As methylation
capacity, and creatine supplementation decreases the urinary proportion of MMAs.
Interestingly, FA treatment effects on As methylation did not differ by baseline fo-
late status, though the effects of FA and creatine supplementation on As methylation
capacity were greater among individuals with low choline and betaine status. These ob-
servations are particularly relevant among As-exposed individuals who may or may not
be folate deficient but who have sub-optimal choline status, including populations in
the U.S. (Zeisel, 2009). Although further research is necessary to fully understand the
relationship between OCM-related micronutrients and As metabolism, these findings
highlight the potential of nutritional interventions to reduce the adverse health effects

of As exposure, particularly in regions with a high prevalence of nutrient deficiencies.

152



4.7 Bibliography

Ahsan, H; Chen, Y; Parvez, F; Argos, M; Hussain, A I; Momotaj, H; Levy, D; van
Geen, A; Howe, G, and Graziano, J. Health Effects of Arsenic Longitudinal Study
(HEALS): Description of a multidisciplinary epidemiologic investigation. Journal
of Ezposure Science and Environmental Epidemiology, 16(2):191-205, 2006. doi:
10.1038/sj.jea.7500449.

Bangladesh Bureau of Statistics and United Nation Children’s Fund. Bangladesh
multiple indicator cluster survey 2012-2013 final report. Technical report, Dhaka,
Bangladesh, 2015.

Basu, A; Mitra, S; Chung, J; Guha Mazumder, DN; Ghosh, N; Kalman, D; von Ehren-
stein, O S; Steinmaus, C; Liaw, J, and Smith, A H. Creatinine, diet, micronutrients,
and arsenic methylation in West Bengal, India. Environmental Health Perspectives,
119(9):1308-1313, 2011. doi: 10.1289/ehp.1003393.

Benbrahim-Tallaa, L and Waalkes, M P. Inorganic arsenic and human prostate cancer.
Environmental Health Perspectives, 116(2):158-64, 2008. doi: 10.1289/ehp.10423.

Benjamini, Y and Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society, 57
(1):289-300, 1995.

Bozack, A K; Hall, M N; Liu, X; llievski, V; Lomax-Luu, A M; Parvez, F; Siddique, A B;
Shahriar, H; Uddin, M N; Islam, T, and Graziano, J H. Folic acid supplementation
enhances arsenic methylation: results from a folic acid and creatine supplementation

randomized controlled trial in Bangladesh. American Journal of Clinical Nutrition,
109(2):380-391, 2018a. doi: 10.1093/ajen/nqy148.

Bozack, A K; Saxena, R, and Gamble, M V. Nutritional influences on one-carbon
metabolism: effects on arsenic methylation and toxicity. Annual Review of Nutrition,
38:401-429, 2018b. doi: 10.1146 /annurev-nutr-082117-051757.

Brosnan, J T; da Silva, R P, and Brosnan, M E. The metabolic burden of creatine
synthesis. Amino Acids, 40(5):1325-31, 2011. doi: 10.1007/s00726-011-0853-y.

Carducci, C; Birarelli, M; Leuzzi, V; Carducci, C; Battini, R; Cioni, G, and Antonozzi, I.
Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an
effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidino-
transferase and guanidinoacetate methyltransferase deficiencies. Clinical Chemistry,

48(10):1772-8, 2002.

Centers for Disease Control and Prevention. Laboratory Procedure Manual: To-
tal Homocysteine (tHcy), NHANES 2003-2004. Technical report, Atlanta, GA,
2003. URL https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/106_c_met_
homocysteine.pdf.

153


https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/l06_c_met_homocysteine.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/l06_c_met_homocysteine.pdf

Challenger, F. Biological methylation. Chemical Reviews, 36(3):315-361, 1945. doi:
10.1021/cr60115a003.

Chiuve, S E; Giovannucci, E L; Hankinson, S E; Zeisel, S H; Dougherty, L. W; Wil-
lett, W C, and Rimm, E B. The association between betaine and choline intakes and
the plasma concentrations of homocysteine in women. American Journal of Clinical
Nutrition, 86(4):1073-1081, 2007. doi: 10.1093/ajcn/86.4.1073.

da Silva, R P; Nissim, I; Brosnan, M E, and Brosnan, J T. Creatine synthesis: hepatic
metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. American
Journal of Physiology, 296(2):E256-61, 2009. doi: 10.1152/ajpendo.90547.2008.

Gamble, M V; Liu, X; Ahsan, H; Pilsner, R; Ilievski, V; Slavkovich, V; Parvez, F;
Levy, D; Factor-Litvak, P, and Graziano, J H. Folate, homocysteine, and arsenic
metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Per-
spectives, 113(12):1683-8, 2005. doi: 10.1289/ehp.8084.

Gamble, M V; Liu, X; Ahsan, H; Pilsner, J R; Ilievski, V; Slavkovich, V; Parvez, F;
Chen, Y; Levy, D; Factor-Litvak, P, and Graziano, J H. Folate and arsenic
metabolism: a double-blind, placebo-controlled folic acidsupplementation trial in
Bangladesh. American Journal of Clinical Nutrition, 84(5):1093-101, 2006. doi:
10.1093/ajen /84.5.1093.

Gamble, M V; Liu, X; Slavkovich, V; Pilsner, J R; Ilievski, V; Factor-Litvak, P; Levy, D;
Alam, S; Islam, M; Parvez, F; Ahsan, H, and Graziano, J H. Folic acid supplemen-
tation lowers blood arsenic. American Journal of Clinical Nutrition, 86(4):1202-9,
2007. doi: 10.1093/ajen/86.4.1202.

Ginsburg, J M and Lotspeich, W D. Interrelations of arsenate and phosphate transport
in the dog kidney. American Journal of Physiology, 205(4):707-714, 1963. doi:
10.1152/ajplegacy.1963.205.4.707.

Green, R; Allen, L H; Bjorke-Monsen, A-L; Brito, A; Guéant, J-L; Miller, J W; Mol-
loy, A M; Nexo, E; Stabler, S; Toh, B-H; Ueland, P M, and Yajnik, C. Vitamin B, de-
ficiency. Nature Reviews Disease Primers, 3:17040, 2017. doi: 10.1038/nrdp.2017.40.

Hall, M; Chen, Y; Ahsan, H; Slavkovich, V; van Geen, A; Parvez, F, and Graziano, J H.
Blood arsenic as a biomarker of arsenic exposure: results from a prospective study.
Toxicology, 225(2-3):225-33, 2006. doi: 10.1016/j.t0x.2006.06.010.

Hall, M; Gamble, M; Slavkovich, V; Liu, X; Levy, D; Cheng, Z; van Geen, A; Yunus, M;
Rahman, M; Pilsner, J R, and Graziano, J. Determinants of arsenic metabolism:
blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentra-
tions in maternalnewborn pairs. Environmental Health Perspectives, 115(10):1503—

1509, 2007. doi: 10.1289/ehp.9906.

154



Hall, M N; Liu, X; Slavkovich, V; Ilievski, V; Pilsner, J R; Alam, S; Factor-Litvak, P;
Graziano, J H, and Gamble, M V. Folate, cobalamin, cysteine, homocysteine, and ar-

senic metabolism among children in Bangladesh. Environmental Health Perspectives,
117(5), 2009. doi: 10.1289/ehp.0800164.

Hall, M N; Howe, C G; Liu, X; Caudill, M A; Malysheva, O; Ilievski, V; Lomax-
Luu, A M; Parvez, F; Siddique, A B; Shahriar, H; Uddin, M N; Islam, T;
Graziano, J H, and Gamble, M V. Supplementation with folic acid, but not creatine,
increases plasma betaine, decreases plasma dimethylglycine, and prevents a decrease

in plasma choline in arsenic-exposed Bangladeshi adults. Journal of Nutrition, 146
(5):1062-1067, 2016. doi: 10.3945/jn.115.227132.

Heck, J E; Gamble, M V; Chen, Y; Graziano, J H; Slavkovich, V; Parvez, F; Baron, J A;
Howe, G R, and Ahsan, H. Consumption of folate-related nutrients and metabolism
of arsenic in Bangladesh. American Journal of Clinical Nutrition, 85(5):1367-74,
2007. doi: 10.1093/ajen/85.5.1367.

Holm, P I; Ueland, P M; Kvalheim, G, and Lien, E A. Determination of choline, betaine,
and dimethylglycine in plasma by a high-throughput method based on normal-phase
chromatography-tandem mass spectrometry. Clinical Chemistry, 49(2):286-94, 2003.
doi: 10.1373/49.2.286.

Holm, P I; Ueland, P M; Vollset, S Emil; Midttun, @; Blom, H J; Keijzer, Miranda B
A J, and den Heijer, M. Betaine and folate status as cooperative determinants of
plasma homocysteine in humans. Arteriosclerosis, Thrombosis, and Vascular Biology,

25(2):379-85, 2005. doi: 10.1161/01.ATV.0000151283.33976.€6.

Homocysteine Lowering Trialists’ Collaboration. Lowering blood homocysteine with
folic acid based supplements: meta-analysis of randomised trials. Homocysteine Low-
ering Trialists’ Collaboration. BM.J, 316(7135):894-8, 1998. doi: 10.1136/BM.J.316.
7135.894.

Howe, C G; Liu, X; Hall, M N; Ilievski, V; Caudill, M A; Malysheva, O; Lomax-
Luu, A M; Parvez, F; Siddique, A B; Shahriar, H; Uddin, M N; Islam, T;
Graziano, J H; Costa, M, and Gamble, M V. Sex-specific associations between one-
carbon metabolism indices and posttranslational histone modifications in arsenic-

exposed Bangladeshi adults. Cancer Epidemiology, Biomarkers and Prevention, 26
(2):261-269, 2017. doi: 10.1158/1055-9965.EPI-16-0202.

Kennedy, E P. Metabolism of lipides. Annual Review of Biochemistry, 26(1):119-148,
1957. doi: 10.1146/annurev.bi.26.070157.001003.

Kile, M L; Hoffman, E; Hsueh, Y-M; Afroz, S; Quamruzzaman, QQ; Rahman, M; Mahi-
uddin, G; Ryan, L, and Christiani, D C. Variability in biomarkers of arsenic exposure

and metabolism in adults over time. Environmental Health Perspectives, 117(3):455—
460, 2009. doi: 10.1289/ehp.11251.

155



Kuo, C-C; Moon, K A; Wang, S-L; Silbergeld, E, and Navas-Acien, A. The association
of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic

review of the epidemiological evidence. Environmental Health Perspectives, 125(8),
2017. doi: 10.1289/EHP577.

Lépez-Carrillo, L; Gamboa-Loira, B; Becerra, W; Hernandez-Alcaraz, C; Hernandez-
Ramirez, R U; Gandolfi, A J; Franco-Marina, F, and Cebrian, M E. Dietary mi-
cronutrient intake and its relationship with arsenic metabolism in Mexican women.
Environmental Research, 151:445-450, 2016. doi: 10.1016/j.envres.2016.08.015.

Mantha, M; Yeary, E; Trent, J; Creed, P A; Kubachka, K; Hanley, T; Shockey, N;
Heitkemper, D; Caruso, J; Xue, J; Rice, G; Wymer, L, and Creed, J T. Estimating
inorganic arsenic exposure from U.S. rice and total water intakes. FEnvironmental
Health Perspectives, 125(5):057005, 2017. doi: 10.1289/EHP418.

McGuire, D M; Gross, M D; Van Pilsum, J F, and Towle, H C. Repression of rat kidney
L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level.
The Journal of Biological Chemistry, 259(19):12034-8, 1984.

Moe, B; Peng, H; Lu, X; Chen, B; Chen, L. WL; Gabos, S; Li, X-F, and Le, X C. Com-
parative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined
using real-time cell sensing. Journal of Environmental Sciences, 49:113-124, 2016.
doi: 10.1016/j.jes.2016.10.004.

Naujokas, M F.; Anderson, B; Ahsan, H; Vasken Aposhian, H; Graziano, J H.; Thomp-
son, C, and Suk, W A. The broad scope of health effects from chronic arsenic

exposure: update on a worldwide public health problem. Environmental Health Per-
spectives, 121(3):295-302, 2013. doi: 10.1289/ehp.1205875.

Niculescu, M D and Zeisel, S H. Diet, methyl donors and DNA methylation: interactions
between dietary folate, methionine and choline. Journal of Nutrition, 132(8):2333S—
2335S, 2002. doi: 10.1093/jn,/132.8.2333S.

Nurk, E; Refsum, H; Bjelland, I; Drevon, C A; Tell, G S; Ueland, P M; Vollset, S E;
Engedal, K; Nygaard, H A, and Smith, A D. Plasma free choline, betaine and
cognitive performance: the Hordaland Health Study. British Journal of Nutrition,
109(3)::511-9, 2012.

Obeid, R. The metabolic burden of methyl donor deficiency with focus on the betaine
homocysteine methyltransferase pathway. Nutrients, 5(9):3481-95, 2013. doi: 10.
3390/nu5093481.

Peters, B A; Hall, M N; Liu, X; Parvez, F; Sanchez, T; van Geen, A; Mey, J L; Sid-
dique, A B; Shahriar, H; Uddin, M N; Islam, T; Balac, O; Ilievski, V; Factor-Litvak, P;
Graziano, J H, and Gamble, M V. Folic acid and creatine as therapeutic approaches

to lower blood arsenic: a randomized controlled trial. Environmental Health Perspec-
tives, 123(12):1294-1301, 2015a. doi: 10.1289/ehp.1409396.

156



Peters, B A; Hall, M N; Liu, X; Parvez, F; Siddique, A B; Shahriar, H; Uddin, M Nasir;
Islam, T; Ilievski, V; Graziano, J H, and Gamble, M V. Low-dose creatine sup-
plementation lowers plasma guanidinoacetate, but not plasma homocysteine, in a
double-blind, randomized, placebo-controlled trial. Journal of Nutrition, 145(10):
2245-52, 2015b. doi: 10.3945/jn.115.216739.

Petrick, J S; Ayala-Fierro, F; Cullen, W R; Carter, D E, and Vasken Aposhian, H.
Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human
hepatocytes. Tozicology and Applied Pharmacology, 163(2):203-207, 2000. doi: 10.
1006 /taap.1999.8872.

Pfeiffer, C M; Huff, D L, and Gunter, E W. Rapid and accurate HPLC assay for plasma
total homocysteine and cysteine in a clinical laboratory setting. Clinical chemistry,
45(2):290-2, 1999.

Pilsner, J R; Liu, X; Ahsan, H; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P;
Graziano, J H, and Gamble, M V. Folate deficiency, hyperhomocysteinemia, low uri-
nary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-
induced skin lesions. Environmental Health Perspectives, 117(2):254-60, 2009. doi:
10.1289/ehp.11872.

R Core Team. R: A Language and Environment for Statistical Computing. Technical
report, R Foundation for Statistical Computing, Vienna, Austria, 2015. URL https:
//www.r-project.org/.

Reuter, W; Davidowski, L, and Neubauer, K. Speciation of five arsenic compounds in
urine by HPLC/ICP-MS, PerkinElmerSCIEX. Technical report, PerkinElmer Life
and Analytical Sciences, 2003.

Sanchez, T R; Levy, D; Shahriar, M H; Uddin, M N; Siddique, A B; Graziano, J H;
Lomax-Luu, A; van Geen, A, and Gamble, M V. Provision of well-water treatment
units to 600 households in Bangladesh: a longitudinal analysis of urinary arsenic
indicates fading utility. Science of The Total Environment, 563:131-137, 2016. doi:
10.1016/j.scitotenv.2016.04.112.

Spratlen, M J; Gamble, M V; Grau-Perez, M; Kuo, C-C; Best, L. G; Yracheta, J;
Francesconi, K; Goessler, W; Mossavar-Rahmani, Y; Hall, M; Umans, J G; Fretts, A,
and Navas-Acien, A. Arsenic metabolism and one-carbon metabolism at low-
moderate arsenic exposure: evidence from the Strong Heart Study. Food and Chem-

ical Toxicology, 105:387-397, 2017. doi: 10.1016/j.fct.2017.05.004.

Steinmaus, C; Yuan, Y; Kalman, D; Rey, O A; Skibola, C F; Dauphine, D; Basu, A;
Porter, K E; Hubbard, A; Bates, M N; Smith, M T, and Smith, A H. Individual
differences in arsenic metabolism and lung cancer in a case-control study in Cordoba,
Argentina. Tozicology and Applied Pharmacology, 247(2):138-45, 2010. doi: 10.1016/
j.taap.2010.06.006.

157


https://www.r-project.org/
https://www.r-project.org/

Thomas, D; Waters, Stephen B, and Styblo, Miroslav. Elucidating the pathway for
arsenic methylation. Tozicology and Applied Pharmacology, 198(3):319-326, 2004.
doi: 10.1016/j.taap.2003.10.020.

Tice, R R; Yager, J W; Andrews, P, and Crecelius, E. Effect of hepatic methyl donor
status on urinary excretion and DNA damage in B6C3F1 mice treated with sodium
arsenite. Mutation Research, 386(3):315-34, 1997. doi: 10.1016/S1383-5742(97)
00004-5.

Vahter, M. Methylation of inorganic arsenic in different mammalian species and pop-
ulation groups. Science progress, 82:69-88, 1999.

Vahter, M and Marafante, E. Effects of low dietary intake of methionine, choline or
proteins on the biotransformation of arsenite in the rabbit. Toxicology Letters, 37(1):
41-46, 1987. doi: 10.1016/0378-4274(87)90165-2.

Vahter, M E; Li, L; Nermell, B; Rahman, A; El Arifeen, S; Rahman, M; Persson, L A,
and Ekstrom, E-C. Arsenic exposure in pregnancy: a population-based study in
Matlab, Bangladesh. Journal of Health, Population, and Nutrition, 24(2):236-45,
2006.

World Health Organization. Arsenic, 2012. URL http://www.who.int/mediacentre/
factsheets/fs372/en/.

Yan, J; Jiang, X; West, A A; Perry, C A; Malysheva, O V; Devapatla, S; Pressman, E;
Vermeylen, F; Stabler, S P; Allen, R H, and Caudill, M A. Maternal choline intake
modulates maternal and fetal biomarkers of choline metabolism in humans. American
Journal of Clinical Nutrition, 95(5):1060-1071, 2012. doi: 10.3945/ajcn.111.022772.

Zeileis, Achim. Econometric computing with HC and HAC covariance matrix estima-
tors. Journal of Statistical Software, 11(10):1-17, 2004.

Zeisel, S H. Importance of methyl donors during reproduction. American Journal of
Clinical Nutrition, 89(2), 2009. doi: 10.3945/ajcn.2008.26811D.

158


http://www.who.int/mediacentre/factsheets/fs372/en/
http://www.who.int/mediacentre/factsheets/fs372/en/

4.8 Appendix

159



9100 V- 100°0> ¥6°¢- S}ooM ¢
71070 ga'1- 100°0> ¢EC S}ooMm 9
770 ¢v0- £00°0 ve1- oM T oqeoeld "sA Y I00F+ouned1)
690 €c0 ¢00 84T~ SooM ¢
20 9¢0- €000 L0°¢- S}oom 9
670 9¢°0- 8¢0°0 ¢'I- oM 0qaoe[d "sA uTYedI))
100°0> ¢9'T- 100°0> vye- SoOM ¢
800°0 6V'1- 100°0> 4% S}ooMm 9
1T°0 80" 60°0 L8°0- oM T oqeoeld "sa 008VA
1700 €0'1- 100°0> ere- SOOM T
8¢0 29°0- 100°0> L1°¢ S}ooMm 9
61°0 19°0- 200 g8°0- oM T oqaoerd "sa 00TV SYININ%
10°0 v1°0- €500 L1°0- Gl 99M
100°0~> 8¢0- 10 1'0- 9 Moo
¢90 €0°0- e€ro ¢10- T 3o9M oqeoerd "sa Y I00F+ounear)
L0°0 1°0- g¥°0 G000 Gl 9PN\
€e0 90°0- 18°0 ¢00 9 oM
¥¢0 80°0- 18°0 ¢0°0- T 399N oqeoe[d "sA duTYRII))
10070 ¢G0- ¥10°0 qro- Gl 9PM
100°0> L8°0" 770 G0°0- 9 I9OM
1200 9T°0- 61°0 10~ T 399N oqaoerd 'sA 008VA
€vo0 ¢l0- 160°0 ¢lo- G 99M
70070 1¢0- 12°0 80°0- 9 Moo
9¢°0 20°0- 6eo ¥0°0- R AN oqaoerd "sa 0O VA (SVuI%)ur
d 90UQISJIP U d OOUQISJIP UBDIA dooAA uosireduwod dnou8 juownjesad], o3}I[OqeIoW IDIUSSIY

(uerpowr <) eyeays Y3y

(uerpawr ) ejRI)S MO

[ OUI[OTD duI[ose( UeIpawt £q PoyIyeI)s g1 pue ‘g
‘T syfoom 9e suornrodoid 9jrjoqelaur Sy Ul 9FURYD UOSIOd-UI)IM URIW I0J SOINSROUI Pojeadal [[IIM S[OPOUL IROUIT :G'§ S[R],

160



"so100ds [eoTuAsIR-[AJoWIP [SYN(] -So1ods [eoruosIe
-[Ajemonowt ‘SYNN ‘otuesre orueSiour ‘syuf (dnois jueurjesary Aep/y. S gop pue auiyesid 8 ¢ ‘y.00F-+oulyeaid ‘dnois jusurjessy

Kep /ouryead § ¢ ‘ouryear)) ‘dnois jueuryesry Lep/ v Sn 008 V1008 ‘dnois quetuyesty Lep /v S 00F VA0 SuoIIRIALIqQY
W /ToWu g ] = URIPaW auIoyD aulfesey *(A[parjoadsar
‘SYINAY% Pue ‘SYININY ‘(syury,)up) suorprodoid a)rjoqeiatt sy auI@se( 10 pajsnipe alom S@POJN ‘S90oUsIafol Sk Pasn 0qaor[d ‘T

1000 c0'e 800°0 AN T oo
100°0> v6'F 10070 89°¢ 9 YoM
6570 L9°0 ¢e0'0 8T T S[99M oqodeld "sA Y, J00F+ouryear)
61°0 €Tl cs 0 Gg'0 CT oOM
6£°0 LT°T 8G°0 ¢80 9 YO\
810 91 cz'0 89T T oo\ oqooerd 'sa suryeaI’)
100°0> ve'¥ 100°0> LG T oo\
100°0> 1€°¢G 100°0> S0°F 9 YOO\
72070 v'e L0°0 LGC T S[99M oqgaoerd sa 008V
1070 €eg 100°0> 6LF CT OOM
200 s G000 rats 9 YoM\
8¢°() 60°T 920 A T S[99M oqooerd "sa OOF VI SYINA%
ﬁN @OQ@&@.@«@ QN@E m Oogwhw.m:u QN@E M@@\(V QmethEOU dnoa8 uﬁ@gﬂmw.ﬁh @uEOQN&@E Umgwmhdﬂ

(uerpowr <) ejea)s YSIH

(uerpouwr ) ejRI)S MO

161



29L'0 T9L'0 6S80 (210 ‘GT°0-) T0°0- 90 (£T°0 ‘22°0-) S0°0- VA00F+ourresip

900 8200 69¢0 (610 °L0°0-) 900 ¢€€00 (T0°0- ‘€0-) 9T°0- ouryeoI))

900 €00 #8200 (12°0°90°0) 800 S¥0'0 (000 ‘2°0-) €T°0- VA008

IST°0 €110 G060 (ST°0 ‘€1°0-) 1000 €20°0 (20°0- ‘92°0-) #1°0- VA00F LN
1€6°0 1€6'0 1000 (61°G ‘Ge’1) L&'e  690°0 (¥99 ‘F2°0-) 01'€ VAOOF-+ounesi)

1€6°0 $€L°0 T¢T°0  (LVe TP0-) €67 €90 (€8¢ '86°1-) €6°0 ouIYeaI))

1€6°0 ¥2S°0 100°0>  (FF9 ‘TL°C) 8¢F T1000> (88°L ‘12°¢) ¥4°¢ VA008

1€6°0 S92°0 8000  (2L¥ ‘12°0) 1.2 1000> (0L ‘€0°Q) €5°F VA00¥ oSVINAY%
80T'0 S0T'0  T00 (8€0-‘CLT) GST- T00°0> (TL'T- ‘TT'H-) 16°C- VAOOF+ourrear)

80T°0 860°0 9£6°0 (8T'T ‘60°T-) GO0  #0°0 (L00- ‘88°C-) L¥'T- auIeal))

L60°0 6700 T00°0> (08°0- ‘¢Le") 9L°T- 100°0> (21'¢- ¥€¥-) €g¢- VA008

8L0°0 200 F¥10°0 (20~ ‘62°g) SZ'1- 100°0> (1671~ ‘60°F-) 00°€- V007 SVININY
G66°0 €¢8°0 <100 (£0°0- ‘62°0-) ¥T°0- S8T°0 (9070 ‘0£°0-) 21°0- VA00F+ourresip

90€°0 2200 €50°0 (000 ‘2z0-) T1°0- 99%°0 (610 ‘60°0-) S0°0 auryeaI))

889°0 ¥¥€'0 100°0> (2T°0- ¥€0-) €¢°0- L10°0 (€0°0- ‘L20-) ST0- V008

6G66°0 SS6°0 8¥0°0  (00°0 ‘¥2°0-) 2T°0- 800 (100 ‘¥20-) T1°0- vA00F »(SVUIY%)ul
660 S0 220 (8070 °S2°0-) 0T'0- 660 (8T°0 ‘6T°0-) 000 VAOOF+ouIeaID

70 cc0 90 (1100207 ¥00- <z0 (€0 °80°07) TT°0 auIyeaI))

€60 €60 ¢€0 (600 °LT07)600- ¥20 (L0°0 ‘82°0-) OT'0- vA008

P70 120 10  (I€0°'€00) 10 960 (SI°0 ‘ST°0-) 00°0 VA00F (svq)ur
€9'0 T€0 €000 (90°0-‘82°0-) LT°0- 200 (1070 ‘61°0-) 60°0- VAOOF+ourrean

€e’0 €80°0 T00°0> (0T°0- '2€°0-) Te°0- ST°0  (£0°0 '8T°0-) 80°0- ouIyRaI)

L0 L0 70 (€1°0°¢0°0) ¥0°0 890 (IT°0 '20°0-) 00 vA00F (VVD)ur
8L°0 620 T100°0> (9T°0- ‘9€°0-) 92°0- T00°0> (80°0- ‘62°0-) ST'0~ VA00F+ouriesin

680 9.0 90 (L00°Cro-)co0- 9¢0 (500 F1°0-) €00 ouTyRaI)

8L°0 6£0 T100°0> (ST°0- ‘I¥°0-) 0£°0- 100°0> (ST°0- ‘1€°0-) €20~ VA008

680 680 T100°0> (S1°0-'CE0-) G2°0- T00°0> (LT°0- ‘GE€°0-) 9270~ VA007 (eureysAdowoy)uy ourjory)
yad d d (ID %%6) g d (IO %%6) g JuouIIRL], oSuey)  ejeng
1591 prepay (ueipewr <) ejeays ySiy (uerpewl >) ejRIIS MO

9)R[0] pUR ‘Tl urUrR)IA ‘DuUIR)dq ‘dur[oyn dutfpseq £q paynens (INS)Ul Pue ‘TN SVINAY SYININY (SVUI%)ul
‘(syq)ur (VyDH)u[ ‘(ourejsLoowoy)ul Ul sxoom g IOA0 0FURYD 9} I0J S[OPOUWL IedUI[ WOLJ (SI00P0 JUOWIRIL], 9F 9[qR],

162



6LG°0 SSF'0 F10°0  (I8% ‘#S0) 89°c 2100 (8€°L ‘16°0) ST  VA00F+ouIresin

6L6°0 6,6°0 €5¢°0 (I2°€‘GT'T) €01 SST°0 (€8 ‘LL°07) €0C ouTyeaI))

770°0 2200 T00°0> (S€°G ‘€oT) 6F7°¢ 1000> (156 ‘T9F) L0'L VA008

P00 1100 €200 (29°€ ‘91°0-) €2°T 100°0> (SL'8 ‘62°€) 509 VA00F oVINAY%
e0v'0 902°0 <000 (1G°0-98°2-) 69T~ T00°0> (GC°T1- ‘T0F-) 8L°C- VAOOF+ouIresin

8F'0 S8F'0 9.F°0 (LL°0°COT-) ¥%°0- 2110 (920 ‘¥¥¢-) 60°1- ouIeaI)

€0¥'0 200 100°0> (IT°T-'8T°¢) 12~ 1000> (P81~ ‘T0¥-) €6°C VA008

g0T'0 920°0 20000 (8€0- ‘€€'2) S€T- 100°0> (86T~ ‘02F-) 90°¢- VA0 <VININY
LL8°0 L2870 G€0'0 (10°0-92°0-) €1°0- ¥80°0 (200 ‘2 0-) ST°0- VA00F+ounesi)

98L°0 68G°0 ¥92°0 (S0°0 ‘61°0-) L0°0- L8L0 (2T°0 ‘GT°0-) 200" ouryeal))

L9T°0 P00 S€0'0 (10°0- ‘22’0-) T1°0- 100°0> (9T°0- ‘€¥°0-) 68°0- VA008

90€°0 €5T°0 T8Z'0  (G0°0 ‘L1°07) 90°0- 600°0 (5070~ ‘€€°0-) 6T°0- VA0 »(SVUuI%)ur
€60 €60 2S0 (2T°0 920-) 900- 190 (FI0°€20-) C0°0- VAOOF+oureain

€60 8.0 680 (8109107 100 190 (220 ‘€1°07) SO0 auIYRAI)

€60 280 S0 (210 F¢0-)900- 2r0o (00 °0£0-) €10 vA008

€60 Le0 LT°0 (8270 °‘G0°0) TT°0 280 (LT°0 ‘91°07) 10°0 VA00F (svq)ur
€60 €20 €000 (90°0-82°0-) LT'0- 2S0°0 (000 ‘T°0-) 0T°0- VAOOF+ouresin

€60 80 G000 (50°0-°2z07)9T°0- T10°0 (£0°0- ‘S2°0-) ¥1°0- ouryeal))

990 670 220 (ST°0‘70°0-) 00 680 (010 ‘60°0-) T0°0 vA00F (VVD)ul
70 T0 T000> (8T°0- ‘8€°0-) 82°0- 1000 (90°0- ‘L2°0-) L1°0- VAOOF+ouriesi)

¢80 €0 ¥90 (L0°0°1T°0-) 200- 9¢0 (S0°0 ‘F1°0-) SO°0- ouTyRaI))

280 ¢80 T000> (LT°0-°L£0-) L&'0- T00°0> (ST°0- '9£°0-) 920~ vA008

280 GL0 T000> (81°0-‘6E0-) 92°0- 100°0> (F1°0- ‘¥£°0-) ¥2°0- VA007 (sureysAoowioy)u] ourejogq
€0e'0 €00 T000  (¥€0°60°0) TZ0 T000> (270 ‘|T°0) 0£°0 VAOOF+ouIes1)

6220 TLT0 1690 (€10 600-) 200 S€00 (820 ‘T0°0) F1°0 QuUTYRII))

IST0 600 T000> (¥€0 ¥1°0) ¥2'0 T1000> (8%°0 ‘G2°0) LE0 vA008

IST°0 P00 1000 (820 ‘20°0) ST'0  100°0> (L¥0 ‘2Z0) ¥£°0 VA00F s (TINS)ul
yad d d (IO %%6) g d (ID %S6) g JuoUIYRAL], o8uey)  ejerls

1591 prem (ueipawn <) ejeays ySiyg

(uerpewr ) ejeI)Ss MO

163



vL0 FL0 €100 (8€0-2ze) 08°T- 2000 (6L°0- ‘S¥'€-) ¥1°2- VA00F+ouryesin

L0 ¥0  9¢0 (10T 'e8T-) cr0- 110 (820 ‘96T ) ¥€T- OUTYRII)

¥L0 .50 1000 (68°0- ‘¢he) 91°c- 100°0> (0% 1- ‘96°¢-) 89°C- VA008

7.0 b0 9000 (¥S0-‘€1°¢-) $8'T- 100°0> (LET- ‘6L°¢) 9G°C- vA00¥ <VININ%
660 660 F0  (1°0°GZ0-)80°0- ¥20 (5000 °T0-) L00- VAOOF+ouryesin

89°0 820 9¢0 (800 °‘12°07) L000- 260 (9T°0 ‘60°0-) ¥0°0 ouIyeaI))

890 ¥0 600 (200 92°0-) ¢I'0- 000 (LO°0- ‘€ 0-) 080- VA008

890 IS0 €r0 (800 °020-) 90°0- 00 (1070 °Sz0-) 8T°0- vA00¥7 »(SVUI%)ul
¥6'0 220 8.0 (Z0°Cr0-) €00 120 (00 ‘1€°0-) 210~ VA00F+ouryesin

€60 €60 8.0 (ST0FT0-) 200 2,0 (220 ‘ST07) €00 ouIyeaI))

€60 ¥L0 ¥0  (T0°Ge0-)80°0- 610 (900 ‘65°0-) ¢TI0~ VA008

7S0 160 T0  (68°0°€00-) €10 60 (ST'0'9T°0-) 10°0- VA00Y (svq)ur
120 110 220 (5070 ‘8T°0-) 90°0- 100°0> (60°0- ‘62°0-) 61°0- VAOOF+ouIresi)

€60 €60 F000 (S0°0- ¥2°0-) ¥1°0- ¥10°0 (£0°0- 22°0-) ST°0- ouIyeaI))

€60 970 S6'0  (0T°0°60°0-) 000 920 (¥I°0 ¥0°0-) S0°0 vA00¥ (VVD)ur
GL0 6.0 T000> (TT°0-‘1€°0-) 13°0- T00°0> (£T°0- ‘€€°0-) €2°0- VAOOF-+ourrear)

GL0 9%°0 €20 (€00 ‘FT°0-) S0°0- €60 (0OT°0‘0T°0-) 000 ouTyedI)

GL0 190 T000> (8T°0- ‘6£°0-) 82°0- T00°0> (ST°0- ¥€°0-) ST 0- VA008

GL0 S0 T000> (F1°0- ‘2€°0-) £€2°0- 100°0> (61°0- “L£°0-) 8T 0- VA00F (eurejsAoowoy)uy . %Tg urejip
¥60°0 TL0°0 2000 (€0 °L0°0) ST°0 0 (LF'0 ‘12°0) $€°0  VAOOF+ounesr)

867°0 8SZ'0 SSF0  (9T°0 ‘2000-) ¥0°0 €00 (820 ‘T0°0) ¥1°0 ouIeaI))

¥60°0 €00 0 (€670 ‘€1°0) €20 0 (0S°0 22°0) 6£°0 VA008

120°0 S00°0 1000 ($2°0 ‘90°0) ST0 0 (£6°0 ‘62°0) 6£°0 VA00F s(TINS)ur
9080 908°0 G6°0 (10 71°0) 0 120  (FT0°T0°) €0°0- VAOOF+ounLaI)

L9L°0 GL8°0 L¥L°0 (IT°0°CT°0-) 20'0- 61€°0 (L0°0 “€2°0-) 80°0- ouTyedI))

L9L°0 29¥'0 28¢°0 (L0°0 ‘8T°0-) €0°0- L08°0 (L1°0 ‘€1°0-) 00 VA008

L9L°0 2980 S¥L0  (IT°0 °61°0-) 20°0- el'0 (€00 ¥2°0-) 1T°0- VA00Y LN
yad d d (ID %%6) g d (IO %%S6) g JUSWIRIL], a8uey) BRI

1591 prem (ueipswn <) eyeays Y3y

uRIpowW >) BjeI)S MO
P T

164



PF6°0 8T8°0 SS0°0  (00°0 ‘€°0-) ST'0- €600 (200 ‘Lz0-) €1°0- VAOOF+ourrear)

QL0 G610 SFT'0 (€070 ‘€Z’0-) 0T°0- 9%L0 (P10 ‘0T°0-) €00 ouryesI))

PP6°0 G850 6100  (£0°0- ‘€°0-) LT°0- 100°0> (2T°0- ‘¢€0-) 8¢ 0- V008

7P6°0 ¥¥76°0 8600 (2070 '92°0-) 21°0-  €0°0  (10°0- ¥2°0-) €1°0- VA00¥ »(sVury)ug
6F°0 910 990 (120 °‘€1°0-) ¥0°0 €10 (S0°0 ‘F€0-) ST'0- VAOOF+ourpear)

780 ¥80 690 (120 ‘€10-) ¥00 880 (6T°0 ‘9T°0-) 10°0 auIyeaI))

290 970 280 (€1°0°€e07) S00- TO (€00 ‘1€°0°) 10" VA008

6V'0 Sz0 ¢0  (1£0°‘€00) ¥10 .60  (ST091T°0-) 0O VA00F (svq)ur
9¢T°0 2L00 0  (IT°0-‘1€°0-) 13°0- 800 (10°0 ‘ST°0-) 60°0- VAOOF+oumesr)

9¢1°0 1600 0 (€10~ '2€°07) 220~ 2S00 (000 ‘02°0-) OT°0- auTYRII))

60€°0 6020 L6£0 (5000 ‘21°0-) ¥0°0- 8550 (0T°0 '90°0-) 200 VA00Y e(VVD)UL
¥20°0 2100 2000 (G0°0- ‘2Z’0-) ¥1°0- 100°0> (12°0- ‘ZF°0-) 1€°0- VA00F+ourresai)

L0 L0 290 (L00°1T°0-) ¢00- 8€0 (9070 ‘GT°0-) G0°0- ouIYRII)

€900 6700 T00°0> (IT°0- ‘62°0-) 02°0- 100°0> (€20~ ‘G¥°0-) €0~ VA008

720°0 T10°0 T00°0> (80°0- ‘G2°0-) 91°0- 100°0> (£2°0- “€¥°0-) €£°0- V007 (purejsAoowoy)u] ,,09e[0q
28L°0 8.0 2000  (S€0°800) ¢z'0 T100°0> (L£0‘CT°0) G20 VA0 +ounesr)

g8L°0 1290 8z'0  (12°0°90°0-) 800 10 (9270 ‘20°0-) ¢1°0 auryeal))

z8L0 790 0 (60 ‘F1°0) L2'0 T000> (€70 ‘6T°0) 1€°0 VA008

28L°0 €87°0 1000 (L£0‘60°0) €20 1000> (I¥°0 ‘LT°0) 620 VA00F s (TINS)ul
79L°0 €260 60  (LT°0‘6T°0-) T0°0- 920 (L0°0‘GZ0-) 60°0- VAOOF+ouriea)

$OL0 ¥2€0 180  (ST°0°61°0-) 200~ 10 (€00 ‘T€0°) #1°0- ouryesI))

$9L°0 680 TF0 (6070 ‘€2'0-) L00- 60 (€10 ‘ST°0-) 10°0- VA008

79L°0 ¥9L°0 ST0  (¥0°0 ‘220-) I1T0- ¥20 (9070 ‘25'0-) 80°0- VA00F LN
790 ¥9°0 .20 (026 SPT) 88T 200  (€1°G ‘FG0) €8°C VAOOF+ourpear)

790 90 eI'0  (1.%°€507) 60¢ 850 (62°€ ‘G8T-) TL0 ouUTYRII)

790 8¢°0 1000 (LL9°69°T) €¢¥ 100°0> (9¢°L ‘86°C) L1°C VA008

790 790 L300 (9%°G‘e€e0) 06'C 1000 (29 ‘€9°T) L6'E VA00¥ oVINA%
yad d d (ID %<6) g d (ID %<6) g JuOUIYea], oSuey) ejeI)S

1S9 prep\  (uerpewr <) ejeays Y3y

ueIpowW >) BjeI)S MO
P T

165



"XOPUI UOIIR[AYJoU ATRPUO0DSS ‘TINS Xopul uorjeAyjouwr Arewrrd

‘TINd ‘setmads eotuasie-[Ayjowip Sy N (] -So0ads [eoTuasIe-TAY1oWOUOU SN -OTUOSIR DIURSIOUT ‘SYU[ 9)R}J9IROUIPIURNS
‘VVO ‘omuesre poolq ‘syq ‘dnoid jueurjesr) Lep/v, Snl 0F pue aunes S ¢ ‘yI00F-+ouryesn (dnois juouriesary Aep
Jouryean 8 ¢ ‘ouryear)) ‘dnoid juawyesry Lep/y S 008 V1008 ‘dnois jueuryesry Aep /v Srl 00F ‘VA00F SUOTIRIALIQY
(VVD)u[ ouroseq 10§ pojsnlpy gl 7/[oWu (G ¢] = URIPIUI 03e[0]

ewseld aurppseq T T/[owd g8 FTg = URIpOW el UIWIRIIA SUI[esRY ()] W /[OWU £9°¢y = URIPOW SUIR)Sq dUl[se "G
"(INS)ul dureseq 10§ pajsnlpy g “(TNJ)U[ outfeseq 10§ paysnlpy L "SYINAY, duleseq 10§ Pasnlpy 9 SYNINY, dul[aseq
10J pagsnlpy -G “(Syury,)uf oureseq 10y pajsnlpy § ‘sosA[eur wolj popnpxe olom sdnois yj008 pue Y007 -siuedoryred
JO 19S(NS ® Ul PoINseswl SeM YyL) ¢ "TW/[OWU g ] = URIPIW SUI[OYD dul[aseq ‘7 ‘dnois eousIofol se pesn 0qeoe[d ‘T

¥68°0 62,0 10000> (9€0 ‘21°0) ¥¢°0 1000> (30 ‘¥1°0) L20 VAOOF+ourpear)

¥68°0 1¢°0 6800 (€2°0°20°0°) IT°0 20¥'0 (L1°0°L0°07) SO0 ourear))

768°0 ¥68°0 100°0> (I¥°0 '8T°0) 0£°0 T100°0> (I¥°0 ‘02°0) T€0 VA008

GLG0 FPT0 €000 (20 °20°0) 020 1000> (€70 ‘12°0) €0 VA00F s (TINS)ul
€F6°0 €F6°0 6880 (£T°0 LT°07) 20°0- 2.0  (€T°0 ‘ST°0-) 200~ VAOOF+ouryear)

6L9°0 6020 €120 (910 ‘TT°0-) 200 €210 (¥0°0 ‘¥20-) 01°0- ouryeaIn)

6L9°0 6050 TIF'0 (800 ‘8T°0-) G0°0- 688°0 (ST°0 ‘€1°0-) 10°0 VA008

6L9°0 €870 ¥9.0 (I1°0°9T°0-) 200~ SL1°0 (F0°0 ‘12°0-) 60°0- vA00F LN
6G8°0 ¢2L'0 80000  (6£9‘G6°0) L9°¢ 00 (I8'G‘TT°0) 96T VAO0F+ourrearn

6580 9520 €800 (96F% ‘1€0-) 2€c Le80 (L9C ‘¥1°C) LT O ouTyRaI))

6G8°0 6S8°0 T00°0> (8G°L ‘9¢72) L6F 1000> (6679 ‘€¢°¢) 92°¢C VA008

658°0 9290 ST0°0  (L8°G '69°0) 92°¢ 1000> (029 ‘S6°1) 60°F VA00F oVINAY%
PP6°0 SIS0 100°0> (L6°0-‘€2°€-) T2~ 1000 (20T~ ‘8¢°¢-) 0€°- VAOOF+ouryear)

760 67.°0 9220 (60 '80°) 6L°0- LIF0 (TL0 ‘€LT-) 090~ ouryear))

P6°0 ¥¥6°0 100°0> (6£7T- ‘6¢¢-) L¥'g- 100°0> (67 1- 'S5°¢-) 25'a- vA008

290 SST'0 8000 (£F°0- ‘FL°C-) 8G'T- T00°0> (69T~ ‘99°¢-) 89'Z- VA00¥ <JVININY
yad d d (1O %s6) g d (1O %s6) g juowIeaL], a8uey) BIRI)S

1891 plepy  (uerpowr <) ejeas ySIH (URIPSW >) vIeI)S MO

166



Chapter 5
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methylation and urinary arsenic: an
epigenome-wide association study
among adults with low-to-moderate
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5.1 Abstract

Background: Chronic exposure to arsenic (As), a human toxicant and car-
cinogen, remains a global public health problem. Health risks persist after As exposure
has ended, suggesting epigenetic dysregulation as a mechanistic link between exposure
and health outcomes.

Objectives: We investigated the association between total urinary As and
locus-specific DNA methylation among American Indian adults with low-to-moderate
As exposure.

Methods: DNA methylation was measured in 2,325 participants using the
[Mlumina MethylationEPIC array. We implemented linear regression models to test dif-
ferentially methylated positions (DMPs) and used DM Rcate to identify regions (DMRs).
We also conducted gene ontology enrichment analysis. Models were adjusted for esti-
mated cell type proportions, age, sex, BMI, smoking, education, estimated glomerular
filtration rate, and study center. Arsenic was measured in urine as the sum of inorganic
and methylated species.

Results: In fully adjusted models, methylation at 20 individual CpGs was
associated with urinary As after false discovery rate (FDR) correction (FDR < 0.05).
After Bonferroni correction, 5 CpGs remained associated with total urinary As levels
(PBonferroni < 0.05), located in SLC7A11, ANKS3, LINGO3, CSNK1D, ADAMTSL/.
We identified one DMR on chromosome 11 (chr11:2,322,050-2,323,247), annotated to
C1lorf2; TSPANS32 genes.

Conclusion: This is one of the first epigenome-wide association studies to
investigate the association between As exposure and locus-specific DNA methylation
using the Illumina MethylationEPIC array and the largest epigenome wide studies
of arsenic exposure. The top DMP was located in SLC7A11A, a gene involved in

cystine/glutamate transport and the biosynthesis of glutathione, an antioxidant that
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may protect against As-induced oxidative stress. Additional DMPs were located in
genes associated with tumor development and glucose metabolism. Further research is
needed to investigate whether As-related DNA methylation signatures are biomarkers

of disease development.
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5.2 Background

Arsenic (As) exposure through drinking water is a global public health con-
cern affecting at least 140 million people (World Health Organization, 2012). In 2001,
the United States (US) Environmental Protection Agency (EPA) lowered maximum
contaminant level (MCL) from 50 to 10 yg/L. With the implementation of this new
standard, the number of people served by public water systems with water arsenic >
10 pg/L has declined from 13 million in 2001 to 296,000 in 2018 U.S. Environmental
Protection Agency (2018). An estimated 2.1 million individuals, however, remain ex-
posed to As in drinking water from private wells (Ayotte et al.), which are not regulated
under the MCL.

Arsenic is a human toxicant and group 1 carcinogen (World Health Organi-
zation, 2011). Chronic As exposure increases the risk of numerous health conditions
including skin lesions, impaired intellectual function, cardiovascular disease, diabetes,
inflammation, and cancers including bladder, lung, kidney, liver, skin, and possibly
prostate (IARC Working Group, 2009; National Research Council, 2013; Moon et al.,
2017). Elevated risk of cancer mortality (Roh et al., 2018; Smith et al., 2018) and
lung disease (Steinmaus et al., 2016) following early-life exposure persists decades af-
ter exposure has been reduced. Epigenetic dysregulation, including changes in DNA
methylation patterns, may provide a mechanistic link between As exposure and health
outcomes with prolonged latency periods (Bailey et al., 2016). DNA methylation can
influence gene expression by inhibiting transcription factor binding in promoter regions
and recruiting DNA binding proteins, and is involved in maintaining chromosomal sta-
bility (Robertson, 2005).

In vitro, animal, and human evidence supports that alterations in the epigenome
are involved in the etiology of As-induced health outcomes and carcinogenesis (Bailey

et al., 2016; Bailey and Fry, 2014; Carlin et al., 2015). In epidemiological studies, As ex-
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posure has been associated with global DNA methylation levels (Intarasunanont et al.,
2012; Kile et al., 2012; Niedzwiecki et al., 2013, 2015; Pilsner et al., 2009, 2007). Locus-
specific DNA methylation has also been assessed in epigenomic-wide association studies
(EWAS) using the [llumina Infinium HumanMethylation BeadChip (450K), which in-
terrogates DNA methylation at > 480,000 loci (Argos, 2015). Studies of in utero As
exposure using cord blood (Broberg et al., 2014; Kaushal et al., 2017; Kile et al., 2014;
Rojas et al., 2015) and studies of adults (Ameer et al., 2017; Argos et al., 2015; De-
manelis et al., 2019) have identified significant associations with DNA methylation at
individual CpG sites; however the number of CpGs identified and their identity differ
between studies.

Inconsistent results between epidemiological studies of the association be-
tween As exposure and epigenetic dysregulation may be due to differences between
populations studied (e.g., age, sex, genetic structure), levels of As exposure, differen-
tial residual confounding, and methods for quantifying DNA methylation. In addition,
EWAS have had limited statistical power due to small sample sizes, particularly when
interrogating a large number of CpG sites (Argos, 2015). The objective of this study
was to investigate the association between total urinary As and locus-specific DNA
methylation in the Strong Heart Study (SHS), a population-based prospective cohort of
American Indian adults with low-to-moderate levels of As exposure primarily through
drinking water (Navas-Acien et al., 2009). DNA methylation in the SHS has been
measured in 2,325 study participants using the Infinium MethylationEPIC BeadChip,
which covers > 850,000 CpG sites.
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5.3 Methods

Study population

The SHS has been described in detail (Lee et al., 1990). Briefly, from 1989-
1991, SHS participants were recruited from 13 tribes in Arizona, Oklahoma, and North
and South Dakota. All tribal members (a random-stratified subset in North and South
Dakota) aged 45-74 years were eligible for enrollment. At baseline, 4,549 adults were
enrolled with a participation rate of 62%. Most participants were born in their com-

munities and have lived there for their entire lives.

Ethics

The study protocols were approved by Institutional Review Boards from the
participating research institutions, the Indian Health Service, and the tribal commu-
nities. One community withdrew consent for future studies, resulting in a sample size
3,516. Participating communities approved this manuscript and received a lay summary

of findings.

Data collection

During baseline visit, a clinical exam was conducted and bio-specimens were
collected by trained and certified nurses and medical examiners. Urinary As concen-
tration: Analytical methods and quality control for urine As measurement has been
described in detail (Scheer et al., 2012). In summary, baseline spot urine samples were
stored in polypropylene tubes and frozen samples were shipped on dry ice to the Penn
Medical Laboratory, MedStar Research Institute (Washington, DC, USA), where they
were stored at < -70°C. In 2009-2010, samples were thawed and an aliquot up to 1.0 mL

was transported on dry ice to the Trace Element Laboratory, Graz University (Austria),
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where they were stored at < -70°C until analysis for total urinary As concentrations
and As metabolite concentrations.

Urinary As concentrations were calculated as the sum of the concentrations
of inorganic (InAs), monomethyl (MMASs), and dimethyl (DMAs) arsenic species, and
are referred to in the manuscript as total urinary As. InAs, MMAs, and DMAs con-
centrations were measured using high-performance liquid chromatography coupled to
inductively coupled plasma mass spectrometry (Agilent 1100 HPLC and Agilent 7700x
ICP-MS, Agilent Technologies, Santa Clara, California) (Scheer et al., 2012). Inter-
assay coefficients of variation: 6.0%, 6.5%, 5.9% for InAs, MMAs, and DMAs, respec-
tively. The limits of detection (LOD) for InAs (As™ + AsY), MMAs, and DMAs was
0.1 ug/L (Scheer et al., 2012). Samples with arsenic species concentrations beneath
the LOD were replaced with LOD/v/2 (InAs: N = 128, 5.5%; MMAs: N = 17, 0.7%;
DMAs: = 0). Concentrations of arsenobetaine, a nontoxic arsenic species found
in seafood (Joint FAO/WHO Export Committee on Food Additives, 1989), were low

(median 0.65 pg/g creatinine), reflecting little seafood intake in the study population.

Epigenome-wide DNA methylation assessment and quality

control

Blood samples were collected in EDTA tubes and DNA from white blood
cells was isolated and stored at <-70°C at the Penn Medical Laboratory, MedStar
Health Research Institute. For epigenetic analyses, DNA samples were shipped to
the Texas Biomedical Research Institute. Genomic DNA was bisulfite-converted and
eluted in buffer. After excluding participants with cardiovascular disease at baseline,
missing data for urinary metal concentrations and/or baseline sociodemographics or
health status, and insufficient DNA (Appendix Table 5.5), DNA methylation was mea-

sured in 2,352 samples (Appendix Figure 5.4). Participants included in analyses of DNA
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methylation were similar to all eligible participants (Appendix Table 5.5). DNA methy-
lation was measured using the Infinium MethylationEPIC BeadChip (850K) (Illumina,
San Diego, CA) according to the manufacturers instructions with samples randomized
within and across plates to minimize potential batch artifacts. Replicate and across-
plate samples were included on each plate. The MethylationEPIC BeadChip provides a
measure of DNA methylation at a single nucleotide resolution at > 850,000 methylation
sites, including > 90% of loci measured by the 450K microarray (Illumina, 2015).
Raw methylation image files were processed using the minfi package (Aryee
et al.,, 2014) in R (R Core Team, 2015). Density plots were generated to analyze
the distribution of beta values, and 18 samples that did not have classical bimodal
distributions were excluded. Normalization was performed using single sample Noob
(Fortin et al., 2017). An additional eight samples were excluded with low median
intensity of methylated and unmethylated channels (logs(intensity) < 10). Probes
determined to be technical failures (P-detection > 0.01 in > 5% of samples) were
removed. Batch effects for plate and row were corrected using the combat function in
the sva package, which employs an empirical Bayesian framework (Leek et al., 2012).
Clustering by batch and row before and after applying combat was visually assessed
using the first two principal components. The proportions of CD8+ T cells, CD4+ T
cells, natural killer (NK) cells, B cells, monocytes, and granulocytes in each sample was
estimated using the Houseman projection method (Houseman et al., 2012). In addition,
probes located in X and Y chromosomes, probes associated with SNPs with a minor
allele frequency > 5% in an admixed American population, and probes previously
identified as cross-reactive were removed prior to analysis (McCartney et al., 2016;
Pidsley et al., 2016). After exclusion of probes and samples, DNA methylation data
measured at 788,753 loci in 2,325 samples were available for analysis. To validate our

data processing and quality control process, we tested for epigenome-wide associations
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with smoking. Classical smoking-induced differentially methylated positions (DMPs)

were highly significant in our study (Domingo et al., 2019, under review).

Other variables

Height and weight were measured for BMI calculation. A trained interviewer
collected data on sociodemographics and health-related behaviors (e.g., age, sex, his-
tory of smoking) (Lee et al., 1990). Diabetes status was determined according to the
American Diabetes Association classification using fasting glucose > 126 mg/dL, 2-h
post-load plasma glucose > 200 mg/dL, hemoglobin HbAlc > 6.5%, or taking diabetes
medication (American Diabetes Association, 2014).

Urinary creatinine was measured at the National Institute of Diabetes and
Digestive and Kidney Diseases Epidemiology and Clinical Research Branch laboratory
(Phoenix, AZ, USA) using an automated alkaline picrate methodology run on a rapid
flow analyzer (Lee et al., 1990). Total urinary As concentrations (ug/L) were divided by
urinary creatinine (g/L) to account for urine dilution. Serum creatinine was measured
in fasting blood samples on a Hitachi 717 platform (Hitachi Ltd.) using an automated
alkaline-picrate rate method (Roche Diagnostics). Serum creatinine, age, and sex were
used to calculate estimated glomerular filtration rate (eGFR) using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation (Levey et al., 2009; Shara
et al., 2012).

Statistical analysis

Descriptive statistics (means and SDs for continuous variables, frequencies
for categorical variables) were calculated for all covariates. To adjust for between-
individual differences in urine dilution, total urinary As concentrations were divided by

urinary creatinine concentrations and expressed as pg/g creatinine. Adjusted urinary
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As levels were right skewed and natural log-transformed to reduce the influence of
extreme values. Associations between estimated cell types proportions and In(total
urinary As) were evaluated using linear models adjusted for age, sex BMI and smoking
status (never smoker, former smoker, current smoker).

DMPs were identified using linear regression models implemented in the
limma package in R with empirical Bayes smoothing of standard errors (Ritchie et al.,
2015). Beta-values were logit transformed to M-values (i.e., M-value = In(Beta-value/(1-
Beta-value))) to meet linear regression model assumptions (Du et al., 2010). Models
were adjusted for sex, age, BMI, self-reported smoking status, education (< high school,
high school graduate or GED, > high school), study center (Arizona, Oklahoma, North
and South Dakota), eGFR, and cell type proportion estimates. Potential systematic
biases were evaluated using QQ-plots and the genomic inflation factor (A). For the
fully adjusted models, A = 0.923, suggesting that our analyses were not impacted by
genomic inflation (Appendix Figure 5.5). Multiple comparisons were accounted for us-
ing the Benjamini and Hochberg method for false discovery rates (FDR) (Benjamini
and Hochberg, 1995) and the Bonferroni correction. Using the p.adjust function in R,
FDR-adjusted P-values were calculated as the number of expected P-values < P di-
vided by the number of observed P-values < P (i.e., for N ordered P-values P; through
Py, FDR = (P; x N)/i); Bonferroni-adjusted P-values were calculated as P multiplied
by the number of tests (i.e., P; gonferroni = P1 x N).

Sensitivity analyses were performed for the potential effect modifiers of sex,
study center, and diabetes status. For participants without diabetes, specific gravity
was used to correct total urinary As concentrations (ug/L) for between-individual dif-
ferences in urine dilution by multiplying the sample urinary As concentration by the
ratio (mean specific gravity - 1)/(participant’s specific gravity - 1) (Miller et al., 2004).

limma analyses were performed for each strata and nominal P-values were calculated.
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Differentially methylation regions (DMRs) were tested using the DMRcate
package in R, which uses a Gaussian kernel smoothing function to grouping of significant
probes identified by limma (Peters et al., 2015). DMRcate was applied using a Gaussian
kernel bandwidth A = 1,000 with a smoothing factor C = 2. The bandwidth value
defines the maximum distance in nucleotides used to group methylated loci.

Gene ontology (GO) analysis was conducted using the GOmeth (Geeleher
et al., 2013) function implemented in the R package missMethyl (Phipson et al., 2015).
The GOmeth algorithm identifies GO terms that contain an overrepresentation of genes
with DMPs while accounting for differences in the a priori probabilities of genes to
include DMPs based on representation among probes included on the MethylationEPIC
BeadChip. All probes tested in limma analyses and probes identified as significantly
associated with urinary As levels at FDR < 0.05 were used as input for the GOmeth

function.

Evaluation of previously identified signals

To identify previous studies investigating the association between As exposure
and loci-specific DNA methylation, we searched PubMed for the terms arsenic and DNA
methylation. Loci associated with As exposure reported by those studies measuring
DNA methylation using the Illumina HumanMethylation BeadChip or the Infinium
MethylationEPIC BeadChip were included in a lookup approach. Loci with a nominal
P < 0.05 in the limma analysis described above were considered statistically significant.

All analyses were performed using R 3.4.3 (R Core Team, 2015).
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5.4 Results

Participant characteristics

The mean (SD) age of participants was 56.2 (8.1) years, 58.5% of participants
were female, and 41.6% of participants had diabetes (Table 5.1). Total urinary As levels
ranged from 1.7 - 113.0 ug/g creatinine, with mean (SD) 11.7 (10.6) yg/g creatinine
and median (interquartile range, IQR) 8.6 (5.2, 14.4) ug/g creatinine. Total urinary As
was associated with the imputed proportions of NK cells and B cells: on average, with
every one-unit increase in In(ug total As/g creatinine), there was an increase of 5% in
the proportion of NK cells (P = 0.004), and a decrease of 5% in the proportion of B
cells (P < 0.001) (Appendix Table 5.6). Total urinary As was borderline associated
with the imputed proportions of monocytes (P = 0.06) and not associated with the

imputed proportions of CD8+ T cells, CD4+ T cells, and granulocytes.

Differentially methylated positions

In locus-specific analyses, 788,753 methylated positions were tested for asso-
ciations with In(total urinary As), of which 39,857 (5.1%) were significantly associated
with As at a nominal P < 0.05. After adjusting for multiple comparisons using an FDR,
and Bonferroni approach, 20 (FDR < 0.05) and five (Ppgonferroni < 0.05) loci remained
significantly associated with In(total urinary As), respectively (Figure 5.1). Table 5.2
summarizes the loci significant at the FDR threshold, and includes effect size estimates
from models of Beta-values for interpretation of results. Most significant loci (N =
13) were located within gene bodies. Two genes, leucine rich repeat and Ig domain
containing 3 (LINGO3) and casein kinase 1 delta (CSNK1D) contained two FDR-
significant CpGs located within the same genomic feature (in LINGO3, ¢g22294740 and
cg08059112 are located 74 nucleotides apart; in CSNK1D, cg20493718 and cg21369801
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Table 5.1: Participant characteristics (N = 2,325).

N (%)

Female 1,361 (58.5)
Age, mean years (SD) 56.2 (8.1)
Total urinary As, mean pg/g creatinine (SD) 11.7 (10.6)

< 5 yg/g creatinine 533 (22.9)

5 - 10 ug/g creatinine 1,252 (53.8)

> 10 pg/g creatinine 540 (23.2)
Study center

Arizona 312 (13.4)

Oklahoma 981 (42.2)

North and South Dakota 1,032 (44.4)
Education

< High school diploma 963 (41.4)

High school diploma or GED 658 (28.3)

> High school diploma 704 (30.3)
Smoking

Never smoker 684 (29.4)

Former smoker 748 (32.2)

Current smoker 893 (38.4)
BMI, mean (SD) 30.3 (6.1)
Diabetes® 968 (41.6)

a. Fasting glucose (> 126 mg/dL), 2-h post-load plasma glucose
(> 200 mg/dL), HbAlc (> 6.5%), or taking diabetes medication.

are located 18 nucleotides apart). Of the 20 FDR-significant loci, the association be-
tween urinary As levels and DNA methylation was positive at 18 loci and inverse at two
loci (cg06690548 and cg00500428). Among all probes, urinary As levels also appeared
to be related to hypermethylation: 87% of the top 100 probes ranked by P-values were
positively associated with As, and 58% of all probes were positively associated with As

(Figure 5.2).

Sensitivity analyses

Results were consistent in stratified analyses by sex (Appendix Table 5.7),

study center (Appendix Table 5.8), and diabetes status (Appendix Table 5.9). By sex,
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Figure 5.2: Volcano plot for the epigenome-wide association of total urinary arsenic
levels and methylation levels. limma models adjusted for age, sex, BMI, self-reported
smoking status, education (< high school, high school graduate or GED, > high school),
study center (Arizona, Oklahoma, North and South Dakota), estimated glomerular fil-
tration rate, and cell type proportion estimates. The solid line represents the Bonferroni
threshold and the dashed line represents the FDR threshold for significance.
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all 20 FDR-significant sites achieved significance at a nominal P of 0.05 for females
and males. By study center, one loci was not associated with urinary As (cg20509831
located in A1BG-AS1; A1BG; ZNF497: nominal P = 0.839) and 3 loci were border-
line significant (cgl8616702 located in ADAMTSLY; MIR4257: nominal P = 0.066;
cg09280971: nominal P = 0.055; cg07317306: nominal P = 0.075) in the smallest stra-
tum representing Arizona (N = 312) while all FDR-significant loci achieved nominal
significance among participants located in Oklahoma and North and South Dakota. By
diabetes status, all FDR-significant loci achieved nominal significance in both strata
with the exception of one CpG among participants without diabetes when using uri-
nary creatinine concentrations to correct for urine dilution (cg14595618 located in HK1:
nominal P = 0.088), and two CpGs among participants without diabetes when using
specific gravity to correct for urine dilution (cg14595618 located in HK1: nominal P =
0.283, and ¢g14827056 located in EIF2C2: nominal P = 0.062).

Evaluation of previously identified differentially methylated
positions

Out of 396 PubMed results containing the terms arsenic and DNA methy-
lation, 14 reported EWAS of the association between As exposure and DNA methy-
lation; 13 measured DNA methylation using the 450K microarray and one measured
DNA methylation using the 850K microarray (Chapter 2, Table 2.4). Across these
studies, 5,801 unique CpGs were associated with As exposure after adjustment for
multiple comparisons (criteria used in each manuscript to determine significance are
summarized in Appendix Table S7); 4,631 were included on the 850K microarray and
evaluated in the current study, of which 191 achieved nominal significance in current
study (P < 0.05). Among studies of adults, these nominally significant CpGs included

cg06121226 (located in SLC4A4 ), identified as significantly associated with total blood

184



and urinary As levels among adults in Bangladesh (N = 400) (Argos et al., 2015),
and cg05428706, cg19534475 (ATP1B3), and cg06466147 (GBAP1) identified as sig-
nificantly associated with urinary or water As levels among a separate cohort of adults
in Bangladesh (N = 396) (Demanelis et al., 2019). cgl14718533 was found to be signifi-
cantly associated with urinary As levels in a meta-analysis including both Bangladeshi
cohorts (Demanelis et al., 2019) and was nominally significant in our study. In addition,
cg15019001 (HLA-DPB2), cg22809683 (LAMC1), cg07466788 (SLC16AS3), cg19504605
(ZFP41), ¢g22143856 (ZNF389), cgl3251666, and cgl3844779, identified as differen-
tially methylated between As-exposed and control families in China (N = 102) (Guo
et al., 2018), was nominally significant in our analyses. An additional 179 CpGs previ-
ously identified as associated with in utero As exposure (Cardenas et al., 2015; Gliga
et al., 2018; Green et al., 2016; Kaushal et al., 2017; Kile et al., 2014; Rojas et al., 2015)
were nominally significant in the current study. Demanelis et al. also reported all nom-
inally significant loci, allowing us to check for significance of our FDR-significant CpGs.
cg04940901 (DNAH1) and cg09280971 were associated in urinary or water As levels
among the Bangladeshi cohort, and c¢g00500428 (HCFC1R1; THOC6) was associated
with urinary As levels in the meta-analysis reported by Damanelis et al. at nominal P

< 0.05 (Demanelis et al., 2019).

Differentially methylated regions

One DMR was identified including 20 CpGs located on chromosome 11 (chr11:
2,322,050-2,323,247) (Figure 5.3). Table 3 lists the 20 CpGs ordered by genomic coor-
dinates. This region spans the body, first exon, and TSS200 of C11orf21, and the first
exon, TSS200, TSS1500, and 5UTR of TSPANS32. Overall, the DNA methylation in
this region was low, ranging from less than 1% to 12%. Fifteen of the 20 loci located

within this region were positively and significantly associated with total urinary As lev-
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Figure 5.3:  Genomic region including the differentially methylated region
chr11:2,322,050-2,323,247 (shaded area). Odds of methylation and 95% CI for In(total
urinary arsenic levels) from limma models adjusted for age, sex, BMI, self-reported
smoking status, education (< high school, high school graduate or GED, > high school),
study center (Arizona, Oklahoma, North and South Dakota), estimated glomerular fil-
tration rate, and cell type proportion estimates. Non-linear trend in odds of methylation
related to arsenic is indicated by a solid blue line fitted using polynomial splines.

els at a nominal P < 0.05. With the exception of ¢g02537342, all CpGs were positively

correlated with each other (P < 0.05).

Gene Ontology analysis

GO analysis identified 198 GO terms overrepresented among genes containing

FDR-significant DMPs (molecular function: N = 59 GO terms; biological process: N =
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112 GO terms; cellular component: N = 27 GO terms); however, none of these terms
achieved statistical significance after accounting for multiple comparisons. Table 5.4
presents the top 20 GO terms ranked by P-value. This list includes several sets related
terms associated with the transport of cysteine. For example, GO:0015175 (neutral
amino acid transmembrane transporter activity) is a parent of GO:0005294 (neutral L-
amino acid secondary active transmembrane transporter activity), and G0O:0005294 is
a parent of GO:0015328 (cystine secondary active transmembrane transporter activity)

and GO:0015327 (cystine:glutamate antiporter activity).

5.5 Discussion

This EWAS investigated the relationship between low-to-moderate levels of
As exposure and loci-specific DNA methylation in a population-based prospective co-
hort study of American Indian adults. Twenty novel CpGs were associated with total
urinary As levels (FDR < 0.05); methylation levels of 18 CpGs were positively associ-
ated with As levels, and methylation levels of 2 CpGs were negatively associated with
As levels. In addition, one DMR located in chromosome 11 and including the genes
Cl1orf21 and TSPANS32, was identified.

The most significantly associated CpG, cg06690548, had decreased methyla-
tion levels with higher total urinary As levels. ¢g06690548 is located in the gene body
of solute carrier family 7 member 11 (SLC7A11), a protein coding gene for a subunit of
the amino-acid transporter cystine:glutamate antiporter system x.”, which exchanges
cystine for glutamate within cells (Lim and Donaldson, 2011), providing cysteine for
glutathione (GSH) biosynthesis (Conrad and Sato, 2012). Additionally, although not
FDR significant, GO terms related to cystine:glutamate transport were identified as
overrepresented among genes containing DMPs (e.g., GO:0015327, cystine:glutamate

antiporter activity, and GO:0015328, cystine secondary active transmembrane trans-
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porter activity). GSH is an endogenous antioxidant (Forman et al., 2009) and may be
protective against As-induced oxidative stress. In a cross-sectional study of As-exposed
adults in Bangladesh, water As concentrations were negatively associated with GSH
concentrations in blood (Hall et al., 2013). Possible explanations for the observed asso-
ciation between As exposure and GSH concentration are that As depletes GSH through
the induction of reactive oxygen species, or that As affects GSH biosynthesis through
an epigenetic mechanism. Nominally significant results from GO enrichment analysis
included several sets related terms associated with the transport of cysteine, further
confirming the involvement of SLC7A11A in these pathways. A paralog of SLC7A11,
solute carrier family 7 member 5 (SLC7A5) was also identified as containing a differ-
entially methylated CpG (cg07021906). SLC7A5 is involved in the transport of amino
acids including glutamine (Pochini et al., 2014), which may be deaminated to gluta-
mate and used for GSH biosynthesis (Liu et al., 2014). SLC7A5 may also be involved in
tumor promotion through the intracellular transport of leucine; leucine is an activator
of mTORCI1, a kinase associated with oncogenic processes (Bhutia and Ganapathy,
2016).

Additional DMPs may be biologically responsive to As exposure. Urinary As
levels were positively associated with DNA methylation of ¢g22294740 and cg08059112,
located in the 5UTR of LINGO3. LINGO3 is a member of the LINGO/LERN trans-
membrane protein family, which is commonly expressed in the nervous system, including
brain tissue (Haines and Rigby, 2008). LINGO3 has also been identified as a gene hub,
or key gene within a network of co-expressed genes, in metastatic melanoma tumors
(Wang et al., 2018). Urinary As levels were also positively associated with DNA methy-
lation of ¢g20493718 and ¢g21369801, located in the gene body of CSNK1D. The casein
kinase 1 (CK1) protein family is involved in a broad range of cellular processes includ-

ing control of DNA replication and repair, apoptosis, and circadian rhythm (Schittek
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and Sinnberg, 2014). CK1 proteins have also been association with regulation of the
tumor suppressor protein p53; specifically, CSNK1D can phosphorylate both p53 and
regulatory protein MDM2 (Schittek and Sinnberg, 2014). Prenatal As exposure has
been associated with differential expression (Fry et al., 2007; Rojas et al., 2015) and
DNA methylation (Rojas et al., 2015) of CSNK1D in cord blood. In our study, As
exposure was also positively associated with DNA methylation of cg14595618, located
in the gene body of hexokinase 1 (HK1), a protein coding gene involved in glucose
metabolism. Although the association between HK1 and diabetes or diabetes-related
outcomes has not been established, genetic variation in HK1 has been associated with
hemoglobin HbAlc levels, a marker of chronic glycemia (Bonnefond et al., 2009; Paré
et al., 2008). Arsenic may also impact glycolysis by directly binding to enzymes in-
volved glucose metabolism; in a study of As-binding proteins, hexokinases including
HK1 were identified as As-binding proteins and As-exposed cells exhibited reduced
glycolysis activity (Zhang et al., 2015).

Seven of the 20 CpGs associated with total urinary As levels at FDR < 0.05
were novel to the 850K (cg07317306, cg27178850, cg09280971, cg14595618, cg04940901,
cgl8616702, cg20509831), all of which were located in ENCODE DNase hypersensitive
sites and one of which was located in a FANTOMS5 enhancer (cg09280971). The EN-
CODE project has mapped DNase sites, associated with accessible chromatin regions
(The ENCODE Project Consortium, 2012). The three significant CpGs not anno-
tated to a RefSeq gene (cg07317306, cg27178850, cg09280971) were, however, anno-
tated to DNase hypersensitive sites, suggesting that they may have functional roles.
Two of these CpGs were also annotated to genes by the GENCODE Consortium
(cg07317306 annotated to RP4-735C1.4;RP4-735C1.4 and cg27178850 annotated to
RP11-467K18.2), which utilizes both manual and automated annotation processes, and

has identified transcripts not included in the RefSeq database (Harrow et al., 2012).
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Results were robust in sensitivity analyses stratifying by sex, study center,
and diabetes status. This study includes American Indian participants recruited from
three genetically, environmentally, and culturally distinct study centers in Arizona, Ok-
lahoma, and North and South Dakota. Overall, results were consistent across study
centers, providing internal validity to our analysis and suggesting that factors associated
with study center do not modify the observed relationship between As exposure and
DNA methylation. In addition, analyses stratified by diabetes status were consistent.
Due to the effect of uncontrolled diabetes on urine osmolality (Voinescu et al., 2002),
in overall analyses, we corrected for between-individual differences in urine dilution by
dividing total urinary As concentrations by urinary creatinine concentrations. In anal-
yses of participants without diabetes, total urinary As concentrations were corrected
for both urinary creatinine and SG. All FDR-significant CpGs achieved significance at
a nominal P < 0.05 among participants with diabetes. Among those without diabetes
cg14595618 located in HK1 was not significantly associated with total urinary As con-
centration corrected for urine dilution using urinary creatinine (nominal P = 0.088) or
SG (nominal P = 0.283). We assessed possible interaction between As exposure and
diabetes status on DNA methylation at c¢g14595618 using a linear model including the
interaction term In(total urinary As) x diabetes status and adjusted age, sex, BMI,
smoking status, education, study center, eGFR, and cell type proportion estimates. In-
teraction between As levels and diabetes status was statistically significant (P = 0.001)
(data not shown). Due to the role of HK1 in glucose metabolism, further research is
needed to determine the relationship between As exposure, diabetes status, and HK1
DNA methylation.

The one identified DMR (chr11:2,322,050-2,323,247) included the open read-
ing frame C110rf21 and spanned several functional regions of tetraspanin 32 (TSPAN32),
including the TSS1500, TSS22, 5UTR, and 1st exon. Although no CpGs annotated to

192



TSPANS32 were statistically significant after adjustment for multiple comparisons in
DMP analysis, 15 of the 20 CpGs in this DMR were positively associated with urinary
As levels at a nominal P < 0.05. C11orf21/TSPAN32 is located in a genomic region
containing a cluster of imprinted genes (Smith et al., 2007) and alterations of this re-
gion have been associated with Beckwith-Wiedemann syndrome, a condition associated
with abnormal growth and tumors in childhood (Koufos et al., 1989). Genetic varia-
tion in Cllorf21 /TSPAN32 has been associated with chronic lymphocytic leukemia in
a genome-wide association study (Berndt et al., 2013).

Previous EWAS among adults have found conflicting results. Studies of adult
populations have included cohorts in Bangladesh, identifying four CpGs associated with
As measured in urine or blood at Pgopferron; < 0.05 (N = 400; three CpGs overlapped
for both exposure measures) (Argos et al., 2015) and 50 CpGs associated with As mea-
sured in urine or drinking water at FDR < 0.05 (N = 396; eight Cpgs overlapped for
both exposure measures) (Demanelis et al., 2019). In addition, in a study of women in
Argentina (N = 93), differential methylation was found at six loci (Ameer et al., 2017),
and in a study of families in China (adults and children; N = 102), differential methy-
lation was found at 85 loci (Guo et al., 2018). To understand the overlap between loci
previously identified as differentially methylated with As exposure, we used a lookup ap-
proach of studies analyzing the association between As exposure and DNA methylation
measured using the 450K or 850K microarrays. CpGs previously associated with As
exposure were evaluated in the current study. Among 4,631 CpGs previously-identified
as associated with As exposure after adjustment for multiple comparisons, 191 achieved
nominal significance in our analyses (P < 0.05). This overlap between significant loci
may be due to differences in population, time of exposure, tissue evaluated, and analyt-
ical methods. Of the 14 studies identified in our lookup approach, nine evaluated the

association between prenatal As exposure and DNA methylation (eight measured DNA
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methylation in cord blood or placental samples and one measured DNA methylation in
blood mononuclear cells collected at 9 years). Only one study reported results of DNA
methylation measured using the 850K microarray (Demanelis et al., 2019).

This study was limited by measuring DNA methylation in peripheral blood,
and observed associations may not be present in other tissues, although As exposure
is known to affect a broad range of tissues (Naujokas et al., 2013). Peripheral blood
leukocytes, moreover, consist of a mixture of cell types including T cells, B cells, NK
cells, monocytes, and granulocytes. Due to epigenetic control of cellular differentiation
(Khavari et al., 2010), DNA methylation patterns differ between cell types, and blood
cell composition may be associated with environmental exposures (Lura et al., 2018;
Stiegel et al., 2016). Therefore, EWAS using mixtures of cell types may be subject
to confounding. In the current study, the Houseman regression calibration method
(Houseman et al., 2012) was implemented to estimate leukocyte composition, and the
proportions of six cell types were controlled for in all models. This method is generally
accepted to remove confounding by cell type, although EWAS results may be influenced
by variation in cell subtype proportions (Bauer et al., 2015). The study was also limited
by lack of data on gene expression. Although CpGs located in biologically relevant genes
were identified, it is not known if alterations in these epigenetic markers are associated
with functional changes in gene expression.

The strengths of this study include the use of the 850K microarray to mea-
sure DNA methylation, the large sample size in a population with low-to-moderate
levels of As exposure, and the robustness of the findings in sensitivity analyses. Previ-
ous EWAS of As exposure have predominantly measured DNA methylation using the
450K microarray, which interrogates < 480,000 CpGs; the 850K microarray, however,
interrogates < 850,000 CpGs, including > 90% of 450K loci and increased coverage
of regulatory elements including ENCODE DNase hypersensitive sites and FANTOMS5
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enhancers (Pidsley et al., 2016). This study was also strengthened by the large sample
size (N = 2,325) compared to EWAS of As exposure, which N ranged from < 50 - 400.
Because power in EWAS depends on sample size, effect size, and correction for multiple
testing, large sample size is particularly advantageous for 850K studies to allow for the

detection of small effect sizes.

5.6 Conclusion

To our knowledge, this is the largest study to investigate the association be-
tween chronic As exposure, mostly through drinking water (Navas-Acien et al., 2009),
and epigenome-wide DNA methylation in blood, and the one of the first using the 850K
microarray. In a cohort of American Indian adults with low-to-moderate levels of ex-
posure, significant associations between total urinary As levels and DNA methylation
were observed at 20 novel CpGs, including loci located in genes involved in As-related
mechanistic pathways and health outcomes. Further investigation is necessary to de-
termine whether As-related DNA methylation signatures serve as biomarkers of disease

development.
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5.8 Appendix

Table 5.5: Descriptive characteristics of eligible participants and participants selected
for DNA methylation analysis.

Included Eligible
(N = 2,325) (N = 2,731)

Age, median (IQR) 55 (49, 62) 55 (49, 62)
Sex (% male) 41.46 40.75
Smoking status

% Current 38.41 37.79

% Former 32.17 32.95
BMI, median (IQR) 29.59 (26.22, 33.63) 29.67 (26.29, 33.69)
Education

No high school 17.51 17.18

Some high school 23.91 23.43

Completed high school 58.58 59.39

Total urinary arsenic (ug/g creatinine) 8.56 (5.24, 14.42)  8.43 (5.15, 14.32)
Abbreviation: IQR, interquartile range.

Table 5.6: Linear models for the association between In(total urinary arsenic) and
imputed cell type proportions. Models were adjusted for age, BMI, smoking status,
and sex.

Cell type Mean proportion B (95% CI) P
CD8+ T 0.07 0.001 (-0.004, 0.002)  0.41
CD4+ T 0.18 -0.002 (-0.006, 0.002)  0.35
NK 0.12 0.005 (0.002, 0.009)  0.004
B cells 0.08 -0.005 (-0.007, -0.002) <0.001
Monocytes 0.05 0.002 (0.000, 0.004)  0.06
Granulocytes 0.51 0.001(-0.007, 0.008)  0.81
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Missing urine metals (N=375)
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(N=380)
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Quality control
Non-bimodal distributions (N=18)
Low median intensities (N=8)
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* 5 participants missing education, 2 smokings status, 11 BMI, 52 LDL
cholesterol, 14 hypertension treatment, 111 eGFR, 30 diabetes

Figure 5.4: Flowchart of eligible participants and participants selected for DNA methy-
lation analysis.
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Figure 5.5: Q-Q plot from limma models of M-values of In(total urinary arsenic levels)
adjusted for age, sex, BMI, self-reported smoking status, education (< high school, high
school graduate or GED, > high school), study center (Arizona, Oklahoma, North and
South Dakota), estimated glomerular filtration rate, and cell type proportion estimates.
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6.1 Abstract

Prenatal arsenic (As) exposure is associated with adverse birth outcomes and
disease risk later in life, which could be mediated through epigenetic dysregulation. We
evaluated the association between As and gestational age that was mediated through
DNA methylation using data from a Bangladeshi birth cohort. As exposure was mea-
sured in maternal drinking water at < 16 weeks gestational age and maternal toenails
collected < 1 month postpartum. Cord blood DNA methylation was measured using
Infinium HumanMethylation450 array (N = 44, discovery phase). Top loci identified in
the discovery phase were then pyrosequenced in a second group (N = 569, validation
phase). Structural equation models (SEM) evaluated the direct and indirect effects of
As and DNA methylation on gestational age. In the discovery phase, As was associated
with differential DNA methylation of 139 loci that were associated with gestational age
(P < 1.10x107% |Bregression] > 0.10). Each doubling in water As concentration de-
creased gestational age by 2 days, which was fully mediated through the main principal
component of the top-ten CpGs (P < 0.001). In the validation phase, there were direct
and indirect effects of miR124-3 and MCC DNA methylation on gestational age. In an
adjusted SEM model, mediation of the association between As and gestational age by
miR124-8 was borderline significant (P = 0.061). This study therefore identified DNA
methylation at specific loci in cord blood that mediated the effect of As exposure on
gestational age. Specifically, prenatal As exposure was associated with lower methyla-
tion of miR124-3 that mediated the exposure-response of As on gestational age. Future
research should evaluate if these epigenetic changes are persistent and associated with

disease risk.
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6.2 Introduction

Arsenic-contaminated drinking water is a global public health problem. World-
wide, it has been estimated that > 200 million people are chronically exposed to drink-
ing water that contains As levels that surpass the World Health Organization and the
US Environmental Protection Agency standard of 10 yg/L (Naujokas et al., 2013).
Bangladesh has been particularly affected by As-contaminated drinking water, where
national surveys estimate that 20 million people rely on drinking water supplies that
exceed the Bangladesh national standard of 50 ug/L (Naujokas et al., 2013). This is a
pressing environmental health problem because As is classified as a known Group 1 hu-
man carcinogen by the International Agency for Research on Cancer (IARC Working
Group, 2009). Additionally, As readily crosses the placenta and maternal exposures
are highly correlated with foetal concentrations (Concha et al., 1998). Many studies
have linked maternal As exposure with adverse reproductive outcomes and adverse
health effects in early childhood. For instance, prenatal As exposure has been associ-
ated with increased risk of spontaneous abortions, still birth, reduced birth weight, and
both neonatal and infant mortality (Quansah et al., 2015). Prenatal As exposure has
also been associated with increased susceptibility to infections during early childhood
(Rahman et al., 2011; Farzan et al., 2013b) and adverse neurological and cognitive de-
velopment (Quansah et al., 2015; Farzan et al., 2013b; Dangleben et al., 2013; Tyler
and Allan, 2014; Cardenas et al., 2015¢, 2016). Additionally, studies have also observed
that As exposure early in life, particularly during gestation, increases the risk of disease
and susceptibility to adverse health conditions later in life (Farzan et al., 2013a; Bailey
et al., 2016).

The disruption of foetal programming events through epigenetic mechanisms
has been postulated to mediate the association between environmental toxicants and

health effects later in life (Saffery and Novakovic, 2014; Marsit, 2015; Perera and Herb-
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stman, 2011). Epidemiological studies in adults and children report that As acts as an
epigenetic toxicant and alters DNA methylation in cord or adult whole blood Argos
et al. (2015); Cardenas et al. (2015a) (Argos, 2015; Cardenas et al., 2015a,b; Broberg
et al., 2014; Gribble et al., 2014; Kile et al., 2012, 2014; Kaushal et al., 2017; Phookphan
et al., 2017; Rojas et al., 2015). These studies provide convincing data that As expo-
sure in the environment can alter DNA methylation in leukocytes, although there is
less information linking these DNA methylation alterations to health outcomes.

In this study, our goal was to examine the association between As expo-
sure, DNA methylation in cord blood leukocytes, and reproductive outcomes in an
established prospective birth cohort recruited in Bangladesh. We utilized a two-stage
approach to test the hypothesis that DNA methylation at specific loci would mediate
the association between prenatal As exposure and reproductive health outcomes. This
two-stage approach was economical and potentially reduced the possibility of false dis-
coveries by coupling an agnostic epigenome-wide association study in a small discovery
set with a larger candidate gene association study using pyrosequencing as a second

technology.

6.3 Methods

Study population

This analysis was nested in a prospective birth cohort recruited by Dhaka
Community Hospital (DCH) Trust in Bangladesh (N = 1,458). The details describing
this cohort have been previously described (Kile et al., 2014). Briefly, pregnant women
of < 16 weeks of gestational age were recruited into a prospective birth cohort by
DCH Trust in Bangladesh. Participants were eligible for the cohort if they had a single

pregnancy, used a tube well as the main source of drinking water, and planned to live in
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their current residence for the duration of the pregnancy. As part of the study protocol,
women received monthly prenatal vitamins and gave birth at a local clinic or at home
with DCH trained medical personnel.

This analysis was nested within the larger birth cohort. It was designed to
examine the potential mediating effect of As-induced DNA methylation changes on
reproductive outcomes using a more economical two-stage approach. We randomly
selected 44 newborns to span a range of drinking water As concentrations (< 1-510
ug/L) for the discovery phase, which measured DNA methylation in whole cord blood
with Infinium HumanMethylation450 (450K) BeadChip technology. For the validation
phase, we randomly selected 569 newborns from the cohort, which measured DNA
methylation in whole cord blood using pyrosequencing. Twenty-five samples from the
discovery phase were also included to assess DNA methylation replication across the
two technology platforms.

This study was approved by the Human Research Committees at the Harvard
School of Public Health, Oregon State University, and DCH Trust.

Maternal drinking water arsenic

Arsenic was measured in tube-wells identified by participants as their main
source of drinking water at the time of enrollment, as previously described (Kile et al.,
2014). Briefly, water samples were collected, preserved with nitric acid to a pH <
2, and stored at room temperature prior to analysis by inductively coupled plasma-
mass spectrometry (ICP-MS) using US EPA method 200.8 (Environmental Laboratory
Services, North Syracuse, NY) (Creed et al., 1994). The average percent recovery for
As from plasmaCal multi-element QC standard #1 solution (SCP Science) was 102
7%. The limit of detection (LOD) for As was 1 ug/L. Thirty samples were below the
LOD and were assigned LOD/2.
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Maternal toenail arsenic and quality control

Toenail As concentrations represent exposure during several months to year
prior to collection (Kile et al., 2005). Maternal toenail clippings were collected at
enrollment and < 1 month after delivery. To remove contamination, toenail clippings
were sonicated in 1% Triton X-100 solution (Sigma-Aldrich, Inc., St. Louis, MO) and
rinsed in Milli-Q water (Millipore Corporation, Billerica, MA). Samples were digested
using Trace Select Ultra Pure nitric acid (HNO3; Sigma-Aldrich, Inc.) and diluted
with Milli-Q water. Total As was measured using an inductively coupled plasma mass
spectrometer (Perkin-Elmer Model DRC-II 6100, Norwalk, CT'). Toenail references are
not available and therefore measured As concentrations were corrected for method
error using blank correction and normalization based on As concentrations of batch-
specific human hair references (CRM Hair; Shanghai Institute of Nuclear Research,
Academia Sinica, China). Samples with a mass < 5 mg (N = 6) or relative standard
deviation >25% (N = 5) were excluded from analyses. Additionally, only one remaining
toenail sample was below the respective batch LOD ranging 0.004-0.85 yg As/g and

subsequently excluded from the analyses.

Cord blood DNA methylation and quality control

Hlumina Infinium HumanMethylation50 BeadChip: A sample of umbilical
cord blood was collected after delivery into an EDTA-coated vacutainer tube (B.D.
Scientific). DNA was extracted from whole blood using the Purgene DNA isolation so-
lutions (Qiagen/Gentra Systems), following manufacturers instructions. DNA samples
were analyzed for DNA methylation at the University of Minnesota Biomedical Ge-
nomic Center using the Illumina Infinium HumanMethylation450 BeadChip (Illumina,
San Diego, CA), which simultaneously profiles the methylation status for > 485,000

CpG loci at a single nucleotide resolution covering 99% of the RefSeq genes.
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Samples were analyzed in one plate and randomly allocated to 16 chips. DNA
methylation image files were normalized using the functional normalization method
with two principal components to account for technical variation between samples using
the minfi package of R (Aryee et al., 2014; Fortin et al., 2014). Methylation measure-
ments at CpG loci on X and Y chromosomes were excluded from the analysis to avoid
gender-specific methylation bias. Previously identified non-specific and cross-reactive
probes within the array along with polymorphic CpG loci (> 5% of the minor allele
frequency) were excluded from the analysis (Chen et al., 2013). Additionally, detec-
tion P-values were computed for all CpGs and probes with non-significant detection
(P > 0.01) in greater than 10% of the samples were also excluded from the analy-
sis. Lastly, a beta-mixture quantile intra sample normalization procedure (BMIQ) was
further applied to reduce the potential bias that can arise from type-2 probes, as previ-
ously described (Teschendorff et al., 2013). The total number of autosomal loci left for
analysis after quality control procedures was 383,940. Methylation values were logit-
transformed to M-values to evaluate the sex adjusted linear association between CpG
methylation and prenatal maternal water As exposure.

Bisulfite pyrosequencing: In the discovery phase, the top 10 CpG sites were
highly correlated. Therefore, we opted to only conduct gene specific DNA methyla-
tion for the genes microRNA 124-3 (miR124-3), G Protein Subunit Alpha L (GNAL),
and Mutated In Colorectal Cancers (MCC) (N = 569). Custom pyrosequencing was
performed by EpigenDx (Hopkington, MA). Briefly, 500 ng of whole cord blood DNA
was bisulfite treated using the EZ DNA Methylation kit (Zymo Research, Inc., CA).
Bisulfite-treated DNA was purified following manufacturers protocols and eluted to a
final volume of 46 uL. Custom PCR assays were performed using 1 yL of bisulfite-
treated DNA and 0.2 yM of each primer. One primer was biotin-labeled and HPLC

purified in order to purify the final PCR product using sepharose beads. PCR product
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was bound to Streptavidin Sepharose HP (GE Healthcare Life Sciences) after which
the immobilized PCR products were purified, washed, denatured with a 0.2 uM NaOH
solution, and rewashed using the Pyrosequencing Vacuum Prep Tool (Pyrosequencing,
Qiagen) following manufacturers protocol. Next, 0.5 uM of sequencing primer was an-
nealed to the purified single stranded PCR products, and 10 uL of the PCR products
were sequenced by Pyrosequencing on the PSQ96 HS System (Pyrosequencing, Qiagen)
following the manufacturers instructions.

The methylation status of each CpG site was determined individually as an
artificial C/T SNP using QCpG software (Pyrosequencing, Qiagen). The methylation
level at each CpG site was calculated as the percentage of the methylated alleles divided
by the sum of all methylated and unmethylated alleles. The mean methylation level was
calculated using methylation levels of all measured CpG sites within the targeted region
of each gene. Each experiment included non-CpG cytosines as internal controls to detect
incomplete bisulfite conversion of the input DNA. In addition, a series of unmethylated
and DNA methylation are included as controls in each PCR. The average quantity
of DNA methylation and standard deviation (SD) measured at these 3 controls (e.g.,
low methylation (0%), medium methylation (50%), and high methylation (100%)) were
estimated for each site. For miR12/-3, the average and standard deviation (SD) of
DNA methylation for the low control was 0.0 4+ 0.0, medium control was 48.1 4+ 22.8,
and high control was 89.4 + 10.0. For GNAL, the average and SD of DNA methylation
for the low control was 0.07 + 1.4, medium control was 53.2 + 5.7, and the high control
was 93.2 + 4.7. For MCC, the average and SD of DNA methylation for the low control
was 0.1 + 0.7, the medium control was 64.4 + 11.5, and the high control was 88.1 +
7.2. Furthermore, PCR bias testing was performed by mixing unmethylated control
DNA with in vitro methylated DNA at different ratios (0%, 5%, 10%, 25%, 50%, 75%,

and 100%), followed by bisulfite modification, PCR, and pyrosequencing analysis. The
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linearity of the assays were assessed using a 7 sample serial dilution (R? = 0.91 for

miRNA124-3, 0.95 for GNAL, and 0.96 for MCC).

Statistical analysis: discovery approach

Epigenome-wide association (Step 1): A three stage filtering method was
implemented to identify candidate loci that could mediate the association between
prenatal As exposure and birth outcomes. The first step was to conduct an Epigenome-
Wide Association Study (EWAS) in cord blood (Step 1, Figure 6.1). The EWAS
in cord blood has been previously published for this sample, but we re-analyzed the
data to implement the latest technical processing steps for 450K data described in the
quality control section (Kile et al., 2014). After quality control, the sex adjusted linear
association between maternal drinking water As and individual CpG methylation levels
were evaluated using the limma function (linear models for microarray analysis) from
the minfi package of R. A selection criteria was set a priori for both significance (P <
1x107%) and effect size (|Bregression| > 0.10) to identify differentially methylated CpGs
associated with As exposure in utero on the M-value scale. We did not adjust for cell
type composition because it would not be feasible to adjust for nucleated cell type
composition in the rest of the archived samples that were subsequently pyrosequenced
in the validation phase due to the absence of epigenome-wide information.

Phenotype association (Step 2): All loci selected from the EWAS using the
a priori criteria were then evaluated for their sex adjusted association with both birth
gestational age and birth weight using multivariate linear regression models on a CpG-
by-CpG basis (Step 2, Figure 6.1). Two selection criteria were used to test for asso-
ciation between individual CpG methylation levels and birth outcomes. Specifically,
CpGs were considered to be significantly associated with birth gestational age and

birth weight if: i) they reached an uncorrected level of significance of P < 0.05 and ii)
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if multiple loci were associated only the top-ten loci ranked on lowest P-value would
be selected for subsequent validation using pyrosequencing.

Mediation analysis (Step 3): Finally, CpGs identified to be differentially
methylated relative to prenatal As exposure in Step 1 and found to be significantly
associated with either birth gestational age or birth weight in Step 2 were evaluated for
their potential to mediate the effect of exposure on these birth outcomes using structural
equation models (SEMs) (Step 3, Figure 6.1). First, we checked conditions previously
postulated for a variable to be considered a potential mediator (Baron and Kenny,
1986). Specifically, mediation requires a significant association between the exposure
and the outcome, a significant association between the mediator and the exposure,
and a significant association of the mediator to the outcome while controlling for the
exposure.

We proposed a conceptual model for mediation based on the a priori assump-
tion that a mediated effect through CpG DNA methylation is biologically plausible
(Figure 6.2). First, we tested the independent effects of exposure on birth outcomes,
exposure on CpG methylation and CpG methylation on birth outcomes while adjusting
for the exposure. We then conceptualized a model in which the direct effects between
prenatal As exposure, CpG methylation and birth outcomes (a, b, ¢) was evaluated
while also testing the indirect effect of exposure on birth outcomes mediated through
CpG methylation levels (a, b) while adjusting for infant sex (Figure 6.2). Two SEMs
were used to evaluate the direct effect of logs-transformed maternal drinking water As
on both birth gestational age and birth weight. Bias corrected standard errors and
95% bootstrap Confidence Intervals (ClIs) were calculated from 10,000 replicates as the
sample size available was relatively small in the discovery phase.

Histograms and scatter plots along with regression lines and locally weighted

smoothing lines were plotted for bivariate association between exposure, methylation,
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and birth outcomes. All pairwise Pearson correlation coefficients were evaluated among
the top candidate CpGs considered for mediation analyses. Due to high correlation
among all top-ten CpGs found to be associated with birth gestational age, a post-
hoc Principal Component Analysis (PCA) was implemented to deconvolute the major
source of variability into a single factor. The scores from the first principal component
that accounted for the maximum amount of variability of the methylation levels of all
top-ten CpGs were then evaluated as a mediator of the exposure and gestational age

relationship into the conceptualized SEM model.

Statistical analysis: validation approach

Within each gene, the relationships between CpGs were assessed using Pear-
son correlations with the Benjamini-Hochberg false discovery rate (FDR) adjustment
(Benjamini and Hochberg, 1995). SEMs were built to assess mediation between As
exposure and gestational age using three steps. First, CpGs were used as indicator
variables to construct a latent variable for each gene. A SNP located within MCC
was found to be significantly associated with DNA methylation of nearby CpGs, and
therefore dummy variables for the variant genotypes were included as predictors of the
latent variable. Second, mediation of the association between logs-transformed mater-
nal drinking water As concentration and birth gestational age by each latent variable
(i.e., DNA methylation of each gene) was assessed. Third, a single SEM was constructed
with genes that significantly mediated the association between exposure and gestational
age in individual models, and adjusted for the potential confounders of sex, maternal
weight gain between enrollment and delivery, maternal education (> primary vs. <
primary education), and birth type (cesarean section vs. vaginal birth). Due to skew
in DNA methylation variables, robust estimates of model fit were used (Brosseau-Liard

et al., 2012). At each step, model indices greater than 35 were used to identify residual
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As exposure through CpG methylation changes
Exposure = CpG methylation A (450K) = Birth outcomes

Among target loci in step 3, validate mediation of prenatal As
exposure through CpG methylation changes
Exposure 2 CpG methylation A (bisulfite pyrosequencing)
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Figure 6.1: Experimental approach for the discovery and validation of DNA methy-
lation disruption induced by prenatal As exposure and subsequent mediation of birth
outcomes.

log,(iAs water)

CpG Loci
Methylation Infant Sex

Birth outcomes

A 4

Figure 6.2: Conceptual SEM for the direct and indirect effect of exposure (maternal
drinking water As < 16 weeks of gestation) and infant birth outcomes, birth gestational
age, and birth weight in the discovery phase. Abbreviation: SEM, structural equation

model.
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correlations that would improve model fit. All analyses were carried out using the R
statistical package, version 3.4.0 or Stata, version 12.1. SEMs in R were conducted

using the lavaan package (Oberski, 2014).

6.4 Results

Discovery phase

A total of 44 infants (29 male and 15 female) had cord blood DNA methyla-
tion measurements along with maternal drinking water As concentrations available for
analysis. The mean maternal drinking water As concentration at < 16 weeks of gesta-
tion was 63.7 ug/L (range: < 1 - 510 yg/L). The mean gestational age at delivery was
37.6 weeks (range: 33 - 41 weeks) and the average birth weight was 2,923 grams (range:

2,080 - 4,050 grams). Selected sample characteristics are summarized in Table 6.1.

Table 6.1: Selected sample characteristics of the study population.

Discovery set (N = 44) Validation set (N = 569)
Sample characteristics Mean + SD Range Mean + SD Range P2
Water As, recruitment (ug/L) 63.7 £ 116.5 <1 —510 56.0 £99.8° <1 —-629 0.898

Maternal toenail As, delivery 70+102 03-466 20438  004—348 0.008

(ng/ug) '
Gestational age, recruitment 1294925 6 — 16 14425 1-16
(weeks)
Gestational age, delivery (weeks) 37.6 £ 2.1 33 —41 37.7 £ 2.24 22-42  0.753
Birth weight (g) 9,923 + 372 2,080 — 4,050 2,824 + 444" 1,400 — 4,600 0.141
Gender N (%) N (%)P
Male 29 (65.9) 201 (51.2) 0.060
Female 15 (34.1) 277 (48.8)

a. Wilcoxon rank sum test for continuous variables and Chi-squared test for categorical variables.
b. N =568. ¢. N =533. d. N = 566.

Using our a priori selection criteria for significance of P < 1.0x10°¢ and effect
size of |Bregression| > 0.10, a total of 380 loci were selected to evaluate their association
with birth weight and gestational age (Figure 6.3). Among the selected 380 CpG

loci identified to be differentially methylated relative to prenatal As exposure, none
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Figure 6.3: Selected differentially methylated CpG loci found in cord blood relative to
prenatal As exposure using |Sregression] < 0.10 and nominal P < 1.0x107% criteria for
association (Step 1 of discovery phase).

overlapped with the top 600 Houseman-probes used in differentiating white blood cell
composition of whole blood samples when compared to the adult reference methylome
or among the 700 CpGs used in the new cord blood reference set (Reinius et al., 2012;
Bakulski et al., 2016). In sensitivity analyses, we adjusted this initial EWAS for cell
type composition and, while the results were attenuated in magnitude and significance,
they remained consistent (Appendix Table 6.7). We also evaluated associations with
logs (postpartum maternal toenail As concentration), which are considered a very good
biomarker of internal dose. The regression coefficients for the top CpGs generated from
the models that used toenail As as the exposure metric were similar to models using
maternal drinking water As as the measure of exposure, although significance was lower

(Appendix Table 6.7).
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CpG methylation and birth gestational age: Multivariate linear regression
models adjusted for sex revealed that methylation levels of 139 CpGs (35.1%) from
the 380 candidate loci were significantly associated with birth gestational age (P <
0.05) (Figure 6.4(a)). Among these loci, the top 10 CpGs ranked on lowest P-value
were selected to be evaluated as mediators of the exposure and birth outcome rela-
tionship. Six of the top-ten loci were located in CpG islands and the other four in
shore regions of CpG islands among unique genes and chromosomes (Table 6.2). Nine
of the top-ten CpGs had higher methylation relative to prenatal As exposure and only
one was observed to have lower methylation (Figure 6.5). The nine CpGs observed to
be positively associated with logs-transformed As exposure (higher methylation) were
inversely associated with gestational age at birth, while the single CpG loci with lower

methylation was positively associated with birth gestational age (Figure 6.6).
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Figure 6.4: (Step 2 of discovery phase) Volcano plots for the association between the
top 380 CpG loci in cord blood found to be significantly associated with As exposure
in utero and infant health outcomes (a) gestational age and (b) birth weight.
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Table 6.2: Top-ten CpG loci that were significantly associated with birth gestational
age in the EWAS for the discovery phase.

CpG P-value 3 Coeff. Relation to Chromosome Gene Gene Group
CpG Island
cg01163597 2.9x10~* —62.3 North shore 6 SLC22A23 Body
cgl6081457 3.1x10™*  —9.0  South shore 12
cg06522054 3.8x107* —68.1 Island 18 GNAL;GNAL 1stExon;Body
cg20382695 5.5x107* —52.8 Island 10 ATRNLI1 Body
cg24937280 1.1x107% —56.7 Island 5 MCC Body
cg01910639 1.3x10~*  14.7  North shore 1 S100A6 Body
cgl8115406 1.4x1073 —35.9 Island 9 LMX1B TSS200
cg04874129 1.5x107% —31.1 Island 16 SLC6A2 1stExon
cg20277905 1.7x1073 —39.9 Island 20 miR124-3 TSS200
cg00398764 1.7x10~% —28.0 North shore 15
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Figure 6.5: Unadjusted associations between prenatal As exposure and CpG methyla-
tion among the top-ten CpGs associated with gestational age. Red: linear regression
line; blue: locally weighted scatter plot smoothing.

Nine of the top-ten CpG loci were observed to have higher methylation rel-
ative to prenatal As exposure and were positively correlated (7pegrson range: 0.61 -
0.90), while the single loci with lower methylation was negatively correlated with the
other nine (7pegrson, range: -0.85 - -0.68) (Figure 6.7). PCA of the top-ten loci selected

demonstrated that 80% of the variance was accounted in the first and main principal
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Figure 6.6: Unadjusted associations between gestational age and CpG methylation
among the top-ten CpGs. Red: linear regression line; blue: locally weighted scatter
plot smoothing.

component (Figure 6.8(a)) and that the cumulative variance explained by four principal
components was 93% (Figure 8(b)). The relative loadings of the top-ten CpG loci on
the first principal component (PC1) are presented in Appendix Table 6.8. Thus, we
chose to use the first principal component due to the high level of correlation among
CpGs.

Before implementing the SEM we evaluated assumptions for mediation anal-
ysis. Namely, in this subsample, logs-transformed As was significantly associated with
birth gestational age (8 = -0.25, 95% CI: -0.47, -0.05; P = 0.017) and with the scores
for PC1 capturing the maximum amount of variation (80%) for the DNA methylation
levels of the top-ten loci (B = 0.70, 95% CI: 0.49, 0.88; P < 0.001). In turn, the scores
for the first principal component were significantly associated with birth gestational
age while also including log,-transformed As exposure in the model (8 = -0.47, 95%
CI: -0.77, -0.17; P = 0.003), meeting the postulated conditions for mediation.

In the sex adjusted conceptual SEM logs-tranformed maternal drinking water
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Figure 6.7: Correlation among the top-ten CpGs associated with As exposure in utero
and gestational age at birth.

As was positively associated with PC1 scores of methylation levels for the top-ten CpGs
(B =0.69, 95% CI: 0.50, 0.87; P < 0.001). The principal component scores of PC1 were
negatively associated with birth gestational age (3 = -0.42, 95% CI: -0.59, -0.25; P <
0.001) (Figure 6.9). The effect of prenatal As exposure on birth gestational age was
completely mediated through PC1. Specifically, each doubling in prenatal maternal
drinking water As decreased birth gestational age by 0.29 weeks or approximately two
days and this was fully mediated through the PC1 scores for the methylation levels of
the selected top-ten CpGs (B = -0.29, 95% CI: -0.42, -0.15; P < 0.001). The direct
effect of maternal drinking water As on birth gestational age was non-significant after
accounting for the mediation pathway and therefore not included in the final mediation

model (B = 0.06, 95% CI: -0.18, 0.30; P = 0.62). The direct and indirect results for
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Figure 6.8: Proportion of variance explained by the first four PCs. (a) Proportion of
variance explained by each PC. (b) Cumulative proportion of variance explained by all
4 PCs. Abbreviation: PC, pricipal component.

the conceptual model are summarized in Table 6.3. This final SEM conformed to all

model fit indices for good fit, summarized in Table 6.4.

Top Principal
0.69 Comlslgnent 042 Infant Sex
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Figure 6.9: SEM conceptualized for the mediated association of the main principal
component (PC1) that explained 80% of the variance for the top-10 CpG loci and birth
gestational age in the discovery phase. Abbreviation: SEM, Structural equation model,
PC, pricipal component.

CpG methylation and birth weight: From the 380 candidate CpGs, only one

locus (cg24484905), located in an open sea region of the DABI gene and observed
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Table 6.3: Structural equation model for the mediated effect of As exposure on birth
gestational age through variation of the top-ten CpGs captured in the main principal
component (PC1) in the discovery phase.

Pathway Effect B Coeff. (95% CIs) P
logs(Water As) — PC1 Direct 0.69 (0.50, 0.87)  <0.001
PC1 — Gestational age Direct —0.42 (—0.59, —0.25) <0.001
Infant sex — Gestational age Direct ~ —0.05 (—1.17,1.07)  0.93
logo(Water As) — Gestational age Direct 0.06 (—0.18,0.30) 0.62

loga(Water As) — PC1 — Gestational age Indirect —0.29 (—0.42,—0.15) <0.001

Table 6.4: Fit indices for the final the structural equation model that describes the
indirect effect of prenatal As exposure on birth gestational age that is mediated through
the main principal component (PC1) of CpG methylation levels (top-ten CpGs) in the
discovery phase (N = 44).

Criterion for

Index Good TFit Model Fit
¥? P-value >0.05 0.81
Root Mean Square Error of Approximation (RMSEA) <0.05 <0.001
Comparative Fit Index (CFI) >0.95 1
Tucker-Lewisnon-normed Fit Index >0.90 1
Standardized Root Mean Squared Residual >0.05 0.02
Coefficient of Determination NA 0.54

to have higher methylation relative to prenatal As exposure, was also associated with
birth weight (P = 0.035, FDR = 0.99) (Figure 6.4(b)). No direct significant association
was observed between maternal drinking water As and birth weight (3 = 0.977, 95%
CI: -27.40, 46.93; P = 0.59), and the direct effect of methylation levels of the DAB1
locus (cg24484905) on birth weight was significant after controlling for As exposure ([
= 2,717, 95% CI: -5,186, -248; P = 0.032). However, no significant mediation for the
effect of prenatal As exposure on birth weight was observed through methylation levels

of this single locus (8 = 0.02, 95% CI: -0.01, 0.05; P = 0.15).
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Validation stage

Bisulfite pyrosequencing was performed for target CpGs located in miR124-
3, GNAL, and MCC on cord blood DNA from 569 infants. Among the 25 samples
with Infinium 450K array and pyrosequencing data, there were strong correlations for
DNA methylation measured at cg20277905 (miR124-8; Tpearson = 0.728, P < 0.001) and
cg24937280 (MCC'; Tpearson = 0.760; P < 0.001); however, correlation between platforms
for cg06522054 was not significant (MCC'; Tpegrson = 0.138; P = 0.500). Approximately
half the infants were male (51.2% male, 48.8% female) (Table 6.1). The mean maternal
drinking water As concentration at < 16 weeks gestational age was 56.0 pyg/L (range: <
1-629 pg/L) and the mean maternal toenail As concentration < 1 month postpartum
was 2.9 ng/ug (range: 0.04 - 34.8 ug). The mean gestational age was 37.7 weeks (range:
22 - 42 weeks) and the mean birth weight was 2,824 grams (range: 1,400 - 4,600 grams).
There were no significant differences in drinking water As concentration, birthweight,
gestational age, or sex between participants included in the discovery and validation
sets. Median postpartum maternal toenail As concentration was significantly higher
among participants in the discovery set than the validation set (Wilcoxon rank sum P
= 0.008).

In each gene, CpG loci were located within 69 - 81 base pairs and had mean
methylation ranging 0.26% - 5.76% (Appendix Table 6.9). Within genes, all CpGs
were significantly and positively correlated (FDR < 0.05) with the exception of nine
CpG pairs located on miR124-3 (Appendix Tables 6.10 - 6.12). For each gene, SEMs
were used to evaluate mediation between logs-transformed maternal drinking water
As and gestational age by DNA methylation (Appendix Tables 6.13 - 6.15; Appendix
Figures 6.11 - 6.13). The latent variables representing DNA methylation of miR124-
3 and MCC were found to significantly mediate the association between prenatal As

exposure and gestational age (miR124-3 indirect effect: § =-0.02; 95% CI: -0.04, 0.00;
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P = 0.030; MCC indirect effect: = -0.03; 95% CI: -0.05, -0.01; P = 0.004); however,
GNAL was not a significant mediator (GNAL indirect effect: = -0.01; 95% CI: -0.02,
0.00; P = 0.174).

Mediation between logs-transformed maternal drinking water As and gesta-
tional age by DNA methylation of miR124-3 and MCC were assessed in a single SEM.
In an unadjusted model, logs-transformed maternal drinking water As concentration
was significantly associated with DNA methylation of miR124-3 and MCC. Further-
more, DNA methylation of miR124-3, but not MCC, was significantly associated with
gestational age (P < 0.05) (Appendix Table 6.16; Appendix Figure 6.14). Mediation
of the association between prenatal drinking water As exposure and gestational age
by miR124-3 DNA methylation achieved borderline significance (indirect effect: 3 =
-0.02; 95% CI: -0.03, 0.00; P = 0.051), whereas mediation by MCC was not significant
(indirect effect: B = -0.01; 95% CI: -0.03, 0.01; P = 0.224).

Results from a SEM adjusted for infant sex, maternal weight gain, maternal
education, and birth type were consistent. There were significant direct effects of
logo-transformed maternal drinking water As concentration on DNA methylation of
miR124-8 and MCC, and of miR12/-3 DNA methylation on gestational age (P <
0.05) (Figure 6.10 and Table 6.5). Mediation by DNA methylation of miR12/-3 was
borderline significant (indirect effect:  =-0.02; 95% CI: -0.03, 0.00; P = 0.061). DNA
methylation of MCC did not act as a mediator (indirect effect: p = -0.01; 95% CI:
-0.03, 0.01; P = 0.276).

Sensitivity analyses were performed using maternal toenail As concentration
collected at enrollment and < 1 month postpartum as measures of exposure. Maternal
drinking water As concentrations were significantly correlated with maternal toenail As
concentrations collected at enrollment (7speqrman = 0.53, P < 0.001) and postpartum

(Tspearman. = 0.58, P < 0.001). Results from an adjusted SEM assessing mediation
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Figure 6.10: SEM for the mediated effect of As exposure on birth gestational age
through DNA methylation of CpGs in miR124-3 and MCC in the validation phase.
Abbreviations; NS, non-significant; SEM, structural equation model.

between logy-transformed postpartum maternal toenail As and gestational age by DNA
methylation of miR124-3 and MCC were consistent (Appendix Figure 6.15; Appendix
Table 6.17). DNA methylation of miR124-3, but not MCC, mediated with association
between As exposure and gestational age (miR124-3 indirect effect: = -0.04; 95%
CI: -0.08, -0.01; P = 0.023; MCC indirect effect: B = -0.02; 95% CI: -0.04, 0.01;

P = 0.215). Likewise, in an adjusted SEM with logs-transformed maternal toenail
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Table 6.6: Fit indices for the final the structural equation model that describe the
indirect effect of prenatal arsenic exposure on birth gestational age that is mediated
through variation of DNAm of CpGs in miR12/-3 and MCC' in the validation phase
(n = 569).

Criterion for

Index Good Fit Model Fit
¥* P-value >0.05 <0.001
Root Mean Square Error of Approximation (RMSEA) <0.05 0.038
Comparative Fit Index (CFI) >0.95 0.893
Tucker-Lewisnon-normed Fit Index >0.90 0.884
Standardized Root Mean Squared Residual >0.05 0.049

As concentration collected at enrollment, DNA methylation of miR124-3 significantly
mediated the association between prenatal As exposure and gestational age (miR124-3
indirect effect: B = -0.05; 95% CI: -0.09, -0.01; P = 0.021; MCC indirect effect: § =
-0.02; 95% CI: -0.05, 0.01; P = 0.210) (Appendix Figure 6.16; Appendix Table 6.18).

6.5 Discussion

We introduced an experimental approach for the discovery, evaluation, and
validation of candidate CpG loci as mediators of the association between prenatal ex-
posures and birth outcomes. Using this approach, we show that prenatal As exposure
decreased birth gestational age and the association was mediated through DNA methy-
lation levels of selected CpG loci, namely miR124-3 and MCC. However, no signifi-
cant mediation or direct association was observed between prenatal As exposure, DNA
methylation levels at CpG loci, and birth weight.

One previous study reported an epigenome-wide association of prenatal As
exposure with birth outcomes (Rojas et al., 2015). Namely, the authors observed seven
unique loci significantly associated with prenatal As exposure that also correlated with
birth gestational age, head circumference, or placental weight. None of the CpGs found

by this group were within the top-ten differentially methylated loci found in our study
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that were identified in the discovery phase. This could be potentially attributed to
differences in the timing of the exposure assessment as well as the type of exposure
assessment. For instance, Rojas et al. used urinary As measurements at the time of
delivery, whereas we used drinking water As collected at the time of enrollment and
maternal nails collected < 1 month postpartum. Furthermore, we observed that most
loci were associated with gestational age and none with birth weight. This is consistent
with our previously reported finding in which we show that the effect of As on birth
weight is mediated through birth gestational age and to a lesser extent with maternal
weight gain during pregnancy within this birth cohort (Kile et al., 2015). Another study
of As exposure in utero using a candidate gene approach found that the expression of
AQPY, which encodes a cell membrane channel, has the ability to mediate the effect of
As on birth weight. Even though it is unknown if the AQP9 has an epigenomic control
mechanism, this observation raises the possibility that prenatal exposure can influence
size at birth (Fei et al., 2013).

In our discovery phase, two CpGs (cg01163597; cg04874129) located in two
genes of the solute carrier (SLC) superfamily were observed to mediate the association
between prenatal As exposure and gestational age at birth (SLC22A423; SLCGA2).
The SLC6A2 is an neurotransmitter transporter across the cell membrane and has
been shown to be upregulated by exposure to As in animal models (Liu et al., 2008).
Furthermore, higher methylation of this gene has been associated with esophageal car-
cinogenesis and non-small cell lung cancer (Xu et al., 2013; Carvalho et al., 2012). The
SLC22A28 gene is a novel solute carrier protein transporter and its function has not
been well characterized but abundant expression in the brain and liver has been ob-
served (Bennett et al., 2011). It has been proposed that even though these transporters
exist for endogenous substances, drugs, non-essential metals, and environmental toxins

could potentially permeate. However, the physiological purpose in more than half of
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these transporters remains to be characterized (He et al., 2009).

The only CpG observed to have higher methylation relative to prenatal As
exposure and positively associated with gestational age was located in a north shore
region of a CpG island in the body of the S100A6 gene, involved in a Ca+2-dependent
insulin release. Downregulation of this specific gene has been associated with intrauter-
ine growth restrictions (Sitras et al., 2009). In addition, high expression levels of this
protein has been observed in the human heart and, in experimental models, increased
cardiac expression has been shown to be anti-hypertrophic (Tsoporis et al., 2005).

In our validation phase, candidate loci in the miR124-3 gene were observed
to have lower DNA methylation by prenatal As exposure and to mediate the associa-
tion with gestational age. This specific microRNA has been correlated with tumor size
and disease recurrence of non-small cell lung cancer and renal cell carcinoma (Kitano
et al., 2011; Gebauer et al., 2013) and has been also shown to affect neuron growth
and differentiation in vitro (Yu et al., 2008). The effect of prenatal exposure to As in
drinking water on miR124-3 expression has been studied in a mouse model. Tyler and
Allan (2014) demonstrated that exposure to 50 pg/L As decreased miR124-3 expression
in male embryonic brain tissue (Tyler and Allan, 2014). Although miR124-3 is pre-
dominantly expressed in the nervous system, miR124-3 expression has been observed
to regulate hematopoiesis in human cord blood cells (Liu et al., 2015). In addition,
miR124-3 may be involved in mammalian growth; fertilized mouse eggs injected with
mir124-3 microRNA resulted in increased weight at birth and in adults (Grandjean
et al., 2009). There is no current evidence to suggest that miR124-3 is imprinted.
However, future work should address if miR124-3 is a metastable epiallele potentially
playing a role in the development of adult disease (Dolinoy et al., 2007).

Gestational age as an outcome is a biologically significant parameter. The

clinical phenotype for early gestational age is prematurity, defined as < 37 weeks of
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gestation, and preterm infants have higher rates of mortality and increased neonatal
morbidity. However, recent findings also suggest a risk gradient for gestational age be-
yond 37 weeks compared to full term infants (Boyle et al., 2012). Reduced gestational
age at birth is associated with many adverse long-term health outcomes hypothesized to
be mediated by DNA methylation (Platt, 2014; Schroeder et al., 2011). Our mediation
approach showed that selected CpGs had the potential to mediate the effects of pre-
natal exposure on gestational age. Recently few studies have started to use mediation
approaches to understand the effect of environmental exposures on relevant phenotypes.
For example, the effect of smoking on birth weight has been shown to be mediated by
DNA methylation as well as the association between air pollution and blood pressure
(Kiipers et al., 2015; Bellavia et al., 2013). We further proposed that gestational age
is an intermediate phenotype of disease risk later in life, potentially mediated by DNA
methylation of metastable epialleles. Future prospective studies should evaluate if these
epigenetic perturbations are persistent or malleable as children grow and also test if
certain birth outcomes are an intermediate phenotype to for a clinical disease stage.
Malleability or persistence of epigenomic modifications could yield important informa-
tion on the contribution of prenatal environmental exposures to disease risk (Cardenas
et al., 2017a,b).

Although no direct or mediated associations were observed between prenatal
As exposure and birth weight, the CpG in the DABI gene was associated with both
prenatal As exposure and birth weight. DAB1 expression has been shown to play an
important role in brain ontogenesis and shown to be highly methylated in placentas of
different species (Schroeder et al., 2015).

The present study has many strengths. First, the prospective measurements
of the exposure, DNA methylation, and subsequent birth outcome present the possi-

bility of testing for mediation that is chronologically possible. We also used objective
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personal exposure measures during early pregnancy in which many of the fetal pro-
gramming events take place. However, separate exposure measures were available in
the discovery and validation phases. The discovery phase relied on a single personal
water sample, which might be reasonable for the population studied. Additionally,
we were able to conduct sensitivity analyses in the validation phase using postpartum
maternal toenail As concentration, reflecting exposures that occurred during the ges-
tational period, and using maternal toenail As concentration at enrollment, both of
which produced similar results as personal water samples. Other studies in Bangladesh
have shown that drinking water As exposures are relative constant and correlate with
biomarkers of internal dose (Kile et al., 2005, 2009). Additionally, we utilized a second
technology (pyrosequencing) to validate loci-specific DNA methylation discovered on
the lumina Infinium HumanMethylation450 BeadChip. This provided considerable
cost-savings, as well as validation across different assays used to quantify DNA methy-
lation in a larger set of participants. However, it should be noted that each technology
has a different sensitivity for measuring DNA methylation. Women also received pre-
natal vitamins as part of this study and reported high compliance with taking the
vitamins. Thus, micronutrient deficiencies related to vitamin B or folate are less likely
to be confounders in this analysis.

There are also some important limitations to be considered. Namely, func-
tional gene expression was not evaluated and the observed epigenetic disruption might
not lead to physiological changes in expression. Although the unadjusted EWAS was
used for the identification of differentially methylated loci, the potential of confounding
by shifts in white blood cell composition was minimized by ensuring that the probes
selected did not differentiate cell types when using the Houseman method and avail-
able reference panels. Therefore, results should be interpreted in light of this and could

indeed reflect cell type distribution. In addition, in the discovery phase, our relatively
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small sample size is an important limitation as it does not allow us to adjust for other
potential confounders. However, use of a larger set of the birth cohort in the validation
phase allowed for adjustment of multiple confounders. It should also be noted that
maternal toenail As concentrations, which can serve as a more accurate measure of
exposure than drinking water As concentrations, were not available when the discovery
phase was completed. However, we performed sensitivity analyses in the validation
phase using As concentrations from maternal toenail samples collected at enrollment
and postpartum. Overall, the results of these analyses were consistent. The signif-
icance of mediation of the association between prenatal As exposure and gestational
age by DNA methylation of miR12/-3 increased with use of toenail As as the measure

of exposure.

6.6 Conclusion

In summary, in a two-stage experimental approach using discovery and vali-
dation phases we show that prenatal As exposure is inversely associated with birth GA
and the association mediated by DNAm of miR12/-3 and MCC. However, no direct or
mediated association was observed for birth weight. Our results support the hypothe-
sis that arsenic exposure in utero can disrupt fetal programming leading to phenotypic
consequences that may play a role in the developmental origins of health and disease.
Furthermore, this experimental framework for the discovery and validation of candidate
CpG loci as mediators of exposures and health outcomes could be extended to other

exposures and health outcomes.
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Table 6.8: Relative contribution of each CpG to the main principal component (PC1)
used in the discovery phase for mediation analyses.

CpG Gene Relative loading on PC1
cg01163597 SLC22A23 0.1
cgl16081457 0.08
cg06522054 GNAL;GNAL;GNAL 0.1
cg20382695 ATRNL1 0.1
cg24937280 MCC 0.1
cg01910639 S100A6 0.1
cg18115406 LMX1B 0.11
cg04874129 SLC6A2 0.1
cg20277905 miR124-3 0.1
cg00398764 0.11
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Table 6.9: CpG sites analyzed by bisulfite pyrosequencing.

Gene

CpG

Genome coordinates Mean methylation % (SD)

miR124-3 CpG 22 (cg20277905)

GNAL

MCC

CpG 21
CpG 20
CpG 19
CpG 18
CpG 17
CpG 16
CpG 15
CpG 14
CpG 13
CpG 12
CpG 11
CpG 10
CpG 9
CpG 1000
CpG 1001
CpG 1002
CpG 1003
CpG 1004
CpG 1005
CpG 1006
CpG 1007

CpG 1008 (cg06522054)

CpG 48

CpG 47 (cg24937280)

CpG 46
CpG 45
CpG 44
CpG 43
CpG 42
CpG 41
CpG 40
CpG 39
CpG 38
CpG 37
CpG 36

Chr20:63178364
Chr20:63178372
Chr20:63178377
Chr20:63178383
Chr20:63178392
Chr20:63178397
Chr20:63178399
Chr20:63178402
Chr20:63178408
Chr20:63178416
Chr20:63178420
Chr20:63178422
Chr20:63178429
Chr20:63178433
Chr18:11752462
Chr18:11752465
Chrl18:11752478
Chr18:11752481
Chr18:11752494
Chr18:11752497
Chr18:11752499
Chrl18:11752517
Chr18:11752539
Chr5:113488053
Chr5:113488060
Chrb:113488078
Chrb:113488085
Chr5:113488091
Chr5:113488096
Chrb:113488102
Chrb:113488104
Chrb:113488110
Chrb:113488116
Chrb:113488118
Chrb:113488132
Chrb:113488134

2.24 (2.68)
3.80 (3.95)
1.31 (2.06)
3.93 (4.07)
2.67 (2.96)
0.69 (1.92)
1.99 (2.14)
5.76 (2.68)
0.63 (1.56)
1.24 (3.23)
3.41 (2.97)
1.06 (1.93)
1.67 (4.11)
2.88 (3.78)
1.05 (1.38)
4.25 (2.24)
2.14 (2.12)
2.25 (2.13)
2.37 (1.64)
1.84 (1.41)
1.27 (
1.63 (1.8
3.19 (
2.20 (
1.73 (
0.26 (
1.21 (
0.35 (
0.67 (
2.63 (
2.72 (
2.51 (
2.55 (
0.69 (
0.75 (
0.92 (

1.60

)
0)
2.31)
2.67)
2.26)
1.06)
1.76)
1.08)
1.28)
2.16)
2.08)
2.14)
2.17)
1.87)
1.13)
1.30)
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Table 6.13: Parameter estimates from the structural equation model for the mediated
effect of maternal drinking water As concentration on birth gestational age through
variation of DNA methylation of miR124-3 in the validation phase.

Pathway Effect B Coeft. P
(95% Cls)
logs(Water As) — miR12/-8 Direct  0.05 (0.01, 0.10)  0.03
loga(Water As) — Gestational age Direct -0.14 (-0.20, -0.09) <0.001
miR12/-3 — Gestational age Direct -0.41 (-0.60, -0.22) <0.001

logo(Water As) — miR12/-3 — Gestational age Indirect -0.02 (-0.04, 0.00) 0.03
SEM fit measures (robust): y* = 140.908, P = 0.006; CFI = 0.943; RMSEA = 0.032.
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Figure 6.11: Structural equation model for the mediated association of maternal drink-
ing water As concentration and birth gestational age by DNA methylation of miR124-3
in the validation phase.
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Table 6.14: Parameter estimates from the structural equation model for the mediated
effect of maternal drinking water As concentration on birth gestational age through
variation of DNA methylation of GNAL in the validation phase.

Pathway Effect B Coeff. P

(95% Cls)
logs(Water As) — GNAL Direct  0.03 (0.01, 0.05)  0.02
logs(Water As) — Gestational age Direct -0.16 (-0.21, -0.10) <0.001
GNAL — Gestational age Direct -0.28 (-0.60, 0.02) 0.07
loga(Water As) — GNAL — Gestational age Indirect -0.01 (-0.02, 0.00) 0.17
SEM fit measures (robust): y* = 80.483, P <0.001; CFI = 0.953; RMSEA = 0.069.
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Figure 6.12: Structural equation model for the mediated association of maternal drink-
ing water As concentration and birth gestational age by DNA methylation of GNAL in
the validation phase. Abbreviation: NS, non-significant.
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Table 6.15: Parameter estimates from the structural equation model for the mediated
effect of maternal drinking water As concentration on birth gestational age through
variation of DNA methylation of MCC' in the validation phase.

Pathway Effect B Coeff. P

(95% Cls)
logs(Water As) — MCC Direct  0.06 (0.03, 0.09) 0.001
SNP 151057827 — MCC (reference: A/A)

G/G Direct  0.52 (0.07, 0.97)  0.03
A/G Direct 0.13 (-0.05, 0.31)  0.17
logs(Water As) — Gestational age Direct -0.14 (-0.20, -0.08) <0.001
MCC — Gestational age Direct -0.47 (-0.70, -0.24) <0.001
logs(Water As) — MCC — Gestational age Indirect -0.03 (-0.05, -0.01) 0.1004

SEM fit measures (robust): y* = 207.179, P <0.001; CFI = 0.943; RMSEA = 0.048.
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Figure 6.13: Structural equation model for the mediated association of maternal drink-
ing water As concentration and birth gestational age by DNA methylation of MCC in
the validation phase. Abbreviation: NS, non-significant.
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Figure 6.14: Unadjusted structural equation model for the mediated effect of maternal
drinking water As concentration on birth gestational age through variation of DNA
methylation of CpGs in miR124-3 and MCC in the validation phase. Abbreviation:
NS, non-significant.
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Figure 6.15: Adjusted structural equation model for the mediated effect of postpartum
maternal toenail As concentration on birth gestational age through variation of DNA
methylation of CpGs in miR124-3 and MCC' in the validation phase. Abbreviation:
NS, non-significant.
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Figure 6.16: Adjusted structural equation model for the mediated effect of maternal
toenail As concentration at enrollment on birth gestational age through variation of
DNA methylation of CpGs in miR124-3 and MCC' in the validation phase. Abbrevia-
tion: NS, non-significant.
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7.1 Abstract

Background: Epigenetic programming plays a critical role in fetal develop-
ment. DNA methyltransferase 3 alpha (DNMT3A), an enzyme responsible for de novo
DNA methylation, is a prime candidate gene as a mediator between prenatal exposures
and birth outcomes. In utero arsenic (As) exposure has been associated with reduced
birth weight and gestational age. We evaluated the relationships between in utero As
exposure, birth outcomes, and DNMT3A DNA methylation.

Methods: In a prospective Bangladeshi birth cohort, cord blood DNA methy-
lation of three DNMTS3A CpGs was measured using bisulfite pyrosequencing. Maternal
toenail As concentrations at birth were measured to estimate in utero exposure. Among
vaginal births (N = 413), structural equation models (SEMs) were used to evaluate re-
lationships between DNMT3A methylation, logy(maternal toenail As concentration),
birth weight, and gestational age.

Results: In an SEM including birth weight and gestational age, and adjusted
for infant sex, maternal weight gain, and maternal education, maternal toenail As
levels were associated with DNMT3A DNA methylation and gestational age (P <
0.05). DNMTS3A methylation was associated with gestational age and birth weight
(P < 0.05). There was a significant indirect effect of As on gestational age through
DNMT3A (P = 0.024) and a borderline significant indirect effect on birth weight (P
= 0.082). However, there were significant indirect effects of maternal toenail As levels
on birth weight through pathways including gestational age (P = 0.038), DNMT3A
methylation and gestational age (P = 0.037), and maternal weight gain and gestational
age (P = 0.012). The total effect of a doubling in maternal toenail As concentration is
a decrease in gestational age of 2.1 days and a decrease in birth weight of 28.9 grams
(P = 0.001).

Conclusions: DNMT3A plays a critical role in fetal epigenetic programming.
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In utero As exposure was associated with more methylation of CpG sites in DNMT3A
which appeared to mediate the association between prenatal As exposure and birth

outcomes. Additional studies are needed to verify this finding.
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7.2 Introduction

Chronic exposure to arsenic (As) persists in many regions of the world. In
Bangladesh, approximately 40 million individuals rely on household drinking water
with As concentrations exceeding the World Health Organization (WHO) guideline of
10 pg/L, half of which are also above the Bangladesh standard 50 ug/L (Bangladesh
Bureau of Statistics and United Nation Children’s Fund, 2015). Inorganic As and
As metabolites readily pass the placenta, resulting in a high correlation between As
concentrations measured in maternal and cord blood (Concha et al., 1998; Hall et al.,
2007). Arsenic is an established human toxicant and group 1 carcinogen (World Health
Organization, 2011) and maternal As exposure during fetal development has been linked
to increased risk of adverse health outcomes later in life including cancers of the lung,
bladder, liver, and larynx, cardiovascular disease, and reduced lung function (Farzan
et al., 2013; Vahter, 2009). In utero and early life exposure has been associated with
increased childhood morbidity (Farzan et al., 2013; Rahman et al., 2017).

The teratogenic effects of As have been well established in rodent models
(Nagymajtényi et al., 1985; Ferm and Hanlon, 1985; Hill et al., 2008; Kozul-Horvath
et al., 2012; Hood, 1972; Hood and Bishop, 1972; Morrissey and Mottet, 1983; Moore
et al., 2019). However, findings from epidemiological studies of the association between
in utero As exposure and birth outcomes in humans have been inconsistent, possibly
due to differences in study design, level of exposure, exposure assessment, and sample
size. Considering the cumulative evidence, a recent review by Milton et al. found an
insufficient number of studies addressing neonatal death and preterm birth but con-
sistent and convincing evidence of the positive association As exposure and risk of
spontaneous abortion, stillbirth, and low birth weight (Milton et al., 2017). Addition-
ally, a meta-analysis conducted by Zhong et al. found a negative association between

in utero As exposure and birth weight (summary regression coefficient from 12 studies
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= -25.0 g; 95% CI: -41.0, -9.0) (Zhong et al., 2019). Although numerous epidemio-
logical studies have addressed the association between in utero As exposure and birth
weight, decreased birth weight is the result of shortened gestation and/or intrauter-
ine grown restriction, factors with varying effects on health outcomes (Wardlaw et al.,
2004). Shortened gestation is associated with increased risk of infant mortality, morbid-
ity, and disability, whereas restricted intrauterine growth is associated with decreased
growth in childhood and increased morbidity in later in life. Therefore, mediation
analyses including birth weight and gestational age are important to understanding the
health effects of in utero As exposure. Using structural equation models (SEMs), in
a birth cohort in Bangladesh, it was found that the negative association between in
utero As exposure and birth weight is fully mediated by decreased gestational age (3
= -17.37, 95% CI: -22.77, -11.98) and maternal weight gain (8 = -1.80, 95% CI: -3.72,
0.13) (Kile et al., 2015).

Changes in the epigenome, including DNA methylation, may be one mech-
anism underlying the associations between As exposure and health outcomes (Bai-
ley et al., 2016; Bjorklund et al., 2018). As explained by the developmental origins
of health and disease hypothesis, environmental exposures during embryogenesis, a
time of cellular differentiation and epigenetic reprogramming, may result in epigenetic
dysregulation and increased disease risk (Heindel and Vandenberg, 2015). The DNA
methyltransferases 3 alpha (DNMT3A) and 3 beta (DNMT3B) are responsible for de
novo methylation in embryonic cells (Okano et al., 1999). DNMT3A and DNMT3B
have differential spatial and temporal expression during early embryogenesis (Uysal
et al., 2017). DNMT3A may have a more significant role in maintaining global DNA
methylation, particularly at distal promotors and non-CpG sites (Gu et al., 2018), and
in imprinting (Kaneda et al., 2004). Due to the critical role of DNMT3A in establishing

de novo DNA methylation, we hypothesized that DNA methylation of this gene could
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mediate the association between As exposure occurring in the critical prenatal develop-
ment phase and adverse birth outcomes, specifically birth weight and gestational age.
We also hypothesized the gestational age would act as a mediator between in utero
As exposure, epigenetic changes, and birth weight. We explored this hypothesis using

SEMs with our a priori hypothesis depicted in (Figure 7.1).

Gestational age

Maternal toenail As concentration) DNMT3A DNA methylation

Birth weight

Figure 7.1: Conceptual structural equation model for the mediated association of in
utero arsenic exposure and birth outcomes by DNA methylation of DNMTSA

7.3 Methods

Study Population

Participants were recruited as part or prospective birth cohort of women
exposed to As through drinking water in Bangladesh in the Sirajdikhan and Pabna
Sadar upazilas. This cohort has been described in detail previously (Kile et al., 2014).
Women were recruited at < 16 weeks gestational age by Dhaka Community Hospital
(DCH) Trust (N = 1,458). Eligibility criteria were having a single pregnancy, using a
tube well as the main source of drinking water, and planning to remain in the current
residence for the duration of the pregnancy. Women received free prenatal care provided

by DCH, as well as prenatal vitamins, which were given to participants during monthly
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home visits. Women gave birth with DCH-trained medical personnel at a local clinic or
at their home; cord blood was collected at birth. A sub-sample of 569 newborns from
the cohort were selected for measurement of DNA methylation in whole cord blood
using pyrosequencing. This sub-sample was randomly selected across a range of arsenic
exposure that was measured in the households drinking water. We also restricted
analyses to only vaginal births to minimize potential confounding which limited the

final sample size to 413 newborns.

Ethics

The study protocol was approved by the Human Research Committees at the
Harvard School of Public Health, Oregon State University, and DCH Trust. Prior to

enrollment in the study, informed consent was obtained from all participants.

Laboratory measures

Maternal toenail As and quality control: Arsenic concentrations in maternal
toenail samples were measured as a biomarker of exposure during pregnancy. Arsenic
has an affinity for sulfhydryl groups and accumulates in scleroproteins, and therefore
toenail As concentration represents levels of ingested As during nail growth (Karagas
et al., 1996). Toenail clippings were collected from mothers at the time of enrollment
and within one month of delivery. The methods used to measure arsenic exposure have
been previously published (Rodrigues et al., 2015). Briefly, samples were sonicated in
1% Triton X-100 solution (Sigma-Aldrich, Inc., St. Louis, MO) and rinsed in Milli-Q
water (Millipore Corporation, Billerica, MA) to remove external contamination. Then
nails were digested in Trace Select Ultra Pure nitric acid (HNOj3; Sigma-Aldrich, Inc.),
and diluted with Milli-QQ water. Inductively coupled plasma mass spectrometry was

used to measure total arsenic concentration (Perkin-Elmer Model DRC-II 6100, Nor-
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walk, CT). Arsenic concentrations of human hair references were used to correct for
method error using black correction and normalization (CRM Hair; Shanghai Institute
of Nuclear Research, Academia Sinica, China); human hair was selected as the refer-
ence due to lack of available toenail references. Eighteen postpartum toenail samples
were missing. Samples were dropped from analyses if they had a mass < 5 mg (N =
1) or relative standard deviation > 25% (N = 3). One sample below the batch limit of
detection (range: 0.004 - 0.85 ug As/g) was also excluded.

Maternal drinking water As and quality control: At the time of enrollment,
participants were asked to identify their main source of drinking water (Kile et al., 2014).
Water samples were collected, preserved with nitric acid to a pH < 2, and stored at room
temperature. Arsenic concentrations in water samples were measured using inductively
coupled mass spectrometry (ICP-MS) with the US EPA method 200.8 (Environmental
Laboratory Services, North Syracuse, NY) (Creed et al., 1994). Samples had an average
percent recovery from plasmaCal multi-element QC standard #1 solution (SCP Science)
of 102 £ 7%. Thirty samples below the LOD of 1 ug/L were replaced with LOD/2.

Bisulfite pyrosequencing: DNA methylation was quantified for cg26544247
(GRCh37/hg19, chr2:25,473,782) located on the north shore of a CpG island within
the gene body of DNMT3A. Coverage also included two downstream CpG sites (chr2:
25,473,813 and chr2:25,473,843). Bisulfite pyrosequencing was performed at EpigenDx
(Hopkinton, MA) using 20 ng/ul whole cord blood DNA. Bisulfite conversion was used
to convert unmethylated cytosines to uracil. Following PCR amplification and direct
pyrosequencing, the average percent DNA methylation was calculated. Control samples
with low methylation, medium methylation, and high methylation were included on
each plate.

Other variables: Sociodemographic data were collected by trained interview-

ers during clinical visits. Infant birth weight was measured using a pediatric scale
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calibrated before each use. Gestational age in weeks was determined by ultrasound

measurements taken at enrollment.

Statistical analysis

Descriptive statistics were calculated for all variables of interest and covari-
ates (mean and SD for continuous variables, frequency for categorical variables). Ma-
ternal toenail As concentrations were right skewed and therefore logy transformed.
We assessed relationships between loci with quantified DNA methylation (cg26544247,
chr2:25473813, and chr2:25473843) using Pearson correlations. Mediation was evalu-
ated using structural equation models (SEMs) that included DNA methylation of all
measured loci. SEMs are a multivariate statistical technique that allow for confirma-
tory analysis of a given hypothesis (Gunzler et al., 2013). By simultaneously estimating
multiple and related regression-like models, SEMs allow for a given variable to act as
both an independent and dependent variable (the term exogenous is used to refer to
variables that act only as independent variables, and the term endogenous is used to
refer to variables that as depended variables in at least one modeled relationship).
SEMs use underlying latent (or unmeasured) variables defined by observed variables
representing same construct, therefore addressing multicollinearity. DNA methylation
of ¢g26544247, chr2:25473813, and chr2:25473843 was used as indicator variables to
construct a latent variable representing DNA methylation of DNMT3A.

Mediation of the association between logs(postpartum maternal toenail As
concentrations) and the outcomes of interest (birthweight and gestational age) by the
latent variable was assessed in a single SEM model that was adjusted for the potential
confounders of infant sex, maternal weight gain between enrollment and delivery, and
maternal education (> primary vs. < primary education). Birth weight was modeled

in kg to ensure variances were similarly scaled. The full information maximum likeli-
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hood approach (FIML) was used to estimate model parameters, and robust estimates
of model fit were used due to skewness in DNAm variables (Brosseau-Liard et al., 2012;
Brosseau-Liard and Savalei, 2014). For models including categorical covariates (i.e.,
infant sex and maternal education), standard errors were calculated from 10,000 boot-
strap samples. In each SEM, model indices were examined to determine if including
residual correlations would improve model fit.

Our primary measure of exposure was postpartum maternal toenail As con-
centrations. We conducted sensitivity analyses using logs(maternal toenail As con-
centrations at enrollment) and logy(maternal water As concentrations) as the mea-
sures of exposure. In addition, we used linear models to test the associations between
DNA methylation of the target CpG site (cg26544247), loga(postpartum maternal toe-
nail As concentrations), birth weight, and gestational age. Specifically, we evaluated
associations between the exposure (maternal toenail As concentration) and outcome
(gestational age and birthweight), the mediator (DNA methylation) and the exposure
(maternal toenail As concentration), and the mediator (DNA methylation) and the
outcome (gestational age and birthweight).

All statistical analyses were performed using the R statistical package, version
3.5.0 (R Core Team, 2015). SEMs were conducted using the R lavaan package (Oberski,
2014).

7.4 Results

Participant Characteristics

Measures of DNA methylation was available for 413 infants with vaginal
births. Maternal and infant characteristics are summarized in Table 1. Approximately

half of the infants were male (52.7%). The median £+ IQR maternal drinking water As
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Table 7.1: Participant characteristics (N = 413)

Median + IQR Range

Drinking water As at recruitment (ug/L) 17 £ 735 0.5 - 545.0
Maternal toenail As at enrollment 2.1 £ 3.7 0.1-51.3
Postpartum maternal toenail As (ng/ug)® 1.7 £ 32 0.04 - 34.8
Gestational age at delivery (weeks)P 38+ 3 22 - 42
Preterm birth (< 37 weeks gestation), N (%) 120 (29.0%)
Birth weight (g)° 2,800 £ 600 1,400 - 4,600
Low birth weight (< 2,500 g), N (%) 107 (25.8%)
Infant sex

Male, N (%) 218 (52.7%)

Female, N (%) 196 (47.3%)
Percent methylation

€g26544247 (chr2: 25,473,782)¢ 25 £6.1 0.0 - 25.0

chr2:25,473,813 2.1 +£53 0.0 - 19.7

chr2:25,473 843 0+ 36 0.0 - 25.4

a. N =390; b. N = 411; c. GRCh37/hgl9. Abbreviation: IQR,interquartile range.

concentration at recruitment was 17.0 = 73.5 ug/L (range: 0.5 - 545.0 ug/L), and the
mean maternal toenail As concentration at delivery was 1.7 & 3.2 ng/ug (range: 0.04 -
34.8 ng/ug). The median gestational age was 38 + 3 weeks (range: 22 - 42 weeks), and
the median birth weight was 2,800 £+ 600 g (range: 1,400 - 4,600 g). Consistent with
other birth cohort studies in Bangladesh, there was a high rate of preterm birth (< 37
weeks gestation, 29.0%) (Shah et al., 2014) and low birth weight (< 2,500 g, 25.9%)
(Monawar Hosain et al., 2005).

There were low levels of DNA methylation at each of the CpG sites. The
median + IQR percent methylation for the CpG sites were 2.5 4+ 6.1, 2.1 4+ 5.3, 0.0 £+
3.6 for cg26544247 (chr2:25,473,782), chr2:25,473,813, and chr2:25,473,843, respectively.
DNA methylation of was significantly and positively correlated between the three CpG
sites measured (cg26544247 and chr2:25,473,813: rpegrson = 0.93, P < 0.001, cg26544247
and chr2:25,473.843: 7pearson = 0.92, P < 0.001, chr2:25,473,813 and chr2:25,473,843:
Tpearson = 0.86, P < 0.001) (Figure 7.2). There was a trend toward increasing DNA

methylation with As exposure at each CpG site. Figure 7.3 shows the median and IQR
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of DNA methylation by quartiles of postpartum maternal toenail As concentration.
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Figure 7.2: Correlation matrix of DNA methylation of CpGs measured in DNMTS3A.
Correlations are presented in the top right cells, scatter plots of % DNA methylation
are presented in the bottom left cells, and density plots of % DNA methylation are
presented in the diagonal cells.
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Figure 7.3: Median and IQR of DNMT3A DNA methylation by quartiles of postpartum
maternal toenail As concentration. Q1 < 0.84 ng/ug, Q2 > 0.84 ng/ug and < 1.66
ng/ug, Q3 > 1.66 ng/ug and < 4.00 ng/ug, Q4 > 4.00 ng/ug.

Mediation analysis

We first assessed mediation of the associations between logs (postpartum ma-
ternal toenail As concentrations) and birth outcomes by DNA methylation of DNMT3A
in separate SEMs for birth weight and gestational age. A latent variable represent-
ing DNMT3A methylation was constructed using percent methylation of ¢g26544247,
chr2:25,473,813, and chr2:25,473,843. We observed a significant positive association
between maternal As levels and DNMT3A DNA methylation (B = 0.37, P = 0.004) in
an SEM for the mediated effect of logs (postpartum maternal toenail As concentrations)
on birth weight through DNMT3A DNA methylation. We also observed a significant
positive association between maternal As levels and DNMT3A DNA methylation (B
= 0.37, P = 0.004), and a significant negative association between DNMT3A DNA
methylation and birth weight (B = -20.67 g, P < 0.001) (Appendix Table 7.6 and
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Appendix Figure 7.6). The direct effect of maternal As levels on birth weight was not
significant (B = 1.62 g, P = 0.91); however, the indirect effect of maternal As levels
on birth weight through DNMT3A DNA methylation was statistically significant (B =
-7.62 g, P = 0.015). Similarly, in an SEM for the mediated effect of logs(postpartum
maternal toenail As concentrations) on gestational age through DNMT3A methylation,
there was a significant positive association between maternal As levels and DNMTS3A
DNA methylation (B = 0.39, P = 0.002), and a significant negative association be-
tween DNMT3A DNA methylation and gestational age (B = -0.12 weeks, P < 0.001)
(Appendix Table 7.7 and Appendix Figure 7.7). Both the direct and indirect effects of
maternal As levels on gestational age were statistically significant (direct effect: B =
-0.25 weeks, P = 0.004; indirect effect: B = -0.05 weeks, P = 0.018).

Subsequently, we constructed a single SEM to test for the indirect effects of
logs (postpartum maternal toenail As concentrations) on birth weight and gestational
age through DNMT3A DNA methylation. This model accounted for an indirect effect
of maternal As exposure on birth weight though gestational age, but due to the results
of individual models, we did not include the direct effect of As exposure on birth
weight (Tables 7.2 and 7.3, and Figure 7.4). As observed in the individual models,
there was a significant positive association between logs(postpartum maternal toenail
As concentrations) and DNMT3A methylation (B = 0.39, P = 0.002), and negative
associations between maternal toenail As levels and gestational age (B = -0.25 weeks,
P =0.004), and between DNMT3A DNA methylation and gestational age (B = -0.12
weeks, P < 0.001). There were also significant indirect effects of maternal toenail As
levels on birth weight through DNMTS3A methylation (B = -0.05 weeks, P = 0.017).
The direct effect of DNMT3A DNA methylation on birth weight and the indirect effect
of maternal toenail As levels on birth weight through DNMT3A DNA methylation were
borderline significant (B = -10.12 g, P = 0.074; B = -3.98 g, P = 0.088, respectively).
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Table 7.2: Unadjusted SEM for the mediated effect of postpartum maternal toenail
As levels on gestational through DNMT3A DNA methylation, and the mediated effect
of postpartum maternal toenail As levels on birth weight through gestational age and
DNMTS8A DNA methylation.

Pathway Effect B  (95% CI) P
DNMT3A

logs(Maternal toenail As) — DNMT3A DNAm Direct 0.39 (0.14, 0.65)  0.002
Gestational age

logo(Maternal toenail As) — Gestational age Direct -0.25 (-0.42,-0.08) 0.004
DNMT3A DNAm — Gestational age Direct -0.12 (-0.18,-0.06) < 0.001
L(;gé(l\/laternal toenail As) — DNMT3A DNAm — Gestational Indirect -0.05 (-0.09, -0.01) 0.017
Birth weight

DNMT3A DNAm — Birth weight Direct -10.12 (-21.23,0.99) 0.074
Gestational age — Birth weight Direct 77.37 (62.01, 92.73) < 0.001

log(Maternal toenail As) — DNMT3A DNAm — Birth weight Indirect -3.98 (-8.55, 0.59) 0.088
logs(Maternal toenail As) — gestational age — Birth weight  Indirect -19.52 (-33.50, -5.52) 0.006
logz(Mat.ernal t(?enall As) - DNMT3A DNAm — Gestational Indirect -3.6  (-6.77, -0.44) 0.026
age — Birth weight

Abbreviatio: DNAm, DNA methylation

Table 7.3: Fit indices for the unadjusted SEM for the mediated effect of postpartum
maternal toenail As levels on gestational through DNMT3A DNA methylation, and
the mediated effect of postpartum maternal toenail As levels on birth weight through
gestational age and DNMT3A DNA methylation.

Index Criterion for good fit Model fit!
y* P-value >0.05 0.245
Root Mean Square Error of Approximation (RMSEA) < 0.05 0.025
Comparative Fit Index (CFI) >0.95 0.999
Tucker-Lewisnon-normed Fit Index >0.90 0.998
Standardized Root Mean Squared Residual >0.05 0.012

1. Fit indices calculated from robust estimators.

However, we observed a significant association between gestational age and birth weight
(B =77.37g, P <0.001) and significant indirect effects of maternal toenail As levels on
birth weight through gestational age (B = -19.52 g, P = 0.006) and through DNMT3A
DNA methylation and gestational age (B = -3.60 g, P = 0.026).

Similar results were observed in an SEM adjusted for infant sex, maternal
weight gain, and maternal education (Table 7.4, and Figure 7.5). Fit indices for this

final model indicated good model fit (Table 7.5). Maternal toenail As levels were
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Figure 7.4: Unadjusted SEM for the mediated effect of postpartum maternal toenail
As levels on gestational through DNMTSA DNA methylation, and the mediated effect
of postpartum maternal toenail As levels on birth weight through gestational age and
DNMT3A DNA methylation.

*<0.10; ** < 0.05; *** < 0.01

significantly associated with DNMT3A DNA methylation (B = 0.40, P = 0.002) and
gestational age (B = -0.19 weeks, P = 0.004), and DNMT3A DNA methylation was
significantly associated with gestational age (B = -0.19 weeks, P = 0.027) and birth
weight (B = -11.03 g, P = 0.048). There was a significant indirect effect of maternal
toenail As levels on gestational age through DNMT3A methylation (B = -0.04 weeks,
P = 0.024), however the indirect effect on birth weight remained borderline significant
(B =-4.37 g, P = 0.082). There were significant indirect effects of maternal toenail
As levels on birth weight through gestational age (B = -14.44 g, P = 0.038), through
DNMTS3A DNA methylation and gestational age (B =-3.14 g, P = 0.037), and through
maternal weight gain and gestational age (B = -5.14 g, P = 0.012). Calculated from
the adjusted SEM, the total effect of a doubling in maternal toenail As concentration

is a decrease in gestational age of 2.07 days (P = 0.001) and a decrease in birth weight
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of 28.89 g (P = 0.001).

7.5 Sensitivity analyses

Our primary measure of exposure was postpartum maternal toenail As con-
centrations. Sensitivity analyses were performed using log,(maternal toenail As con-
centrations at enrollment) and logs(maternal drinking water arsenic concentrations) as
the measures of exposure. Postpartum maternal toenail As concentrations were signif-
icantly correlated with maternal toenail As concentrations at enrollment (7spearman =
0.80, P < 0.001) and maternal drinking water As concentrations (7spearman = 0.61, P <
0.001). Results from adjusted SEMs using maternal toenail As levels collected postpar-
tum and at enrollment were consistent: maternal toenail As levels at enrollment were
associated with DNMT3A DNA methylation (B = 0.40, P = 0.003) and gestational
age (B = -0.24 weeks, P = 0.007), DNMT3A DNA methylation was associated with
gestational age (B = -0.10 weeks, P = 0.001) and birth weight (B = -11.01 g, P =
0.053), and there were significant indirect effects of maternal toenail As levels on birth
weight through gestational age (B =-18.25 g, P = 0.01) and through DNMT3A DNA
methylation and gestational age (B = -3.11 g, P = 0.045) (Appendix Table 7.8 and
Figure 7.8). However, in an adjusted SEM using maternal drinking water As levels,
we observed a smaller effect size of the association between As exposure and DNMT3
DNA methylation (B = 0.18, P = 0.004). The association between maternal drinking
water As levels and gestational age, and the indirect effect of maternal drinking water
As levels on birth weight through gestational age were not significant, although the
effect estimates were negative (B = -0.06 weeks, P = 0.12; B = -4.52 g, P = 0.13,
respectively) (Appendix Table 7.9 and Figure 7.9).

We also assessed the associations between in utero As exposure, birth out-

comes, and DNMTS8 DNA methylation using linear models to confirm results obtained
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Table 7.5: Fit indices for the adjusted SEM for the mediated effect of postpartum
maternal toenail As levels on gestational through DNMT3A DNA methylation, and
the mediated effect of postpartum maternal toenail As levels on birth weight through
gestational age and DNMTS3A DNA methylation, controlling for infant sex, maternal
weight gain, and maternal education.

Index Criterion for good fit Model fit;
¥* P-value >0.05 0.166
Root Mean Square Error of Approximation (RMSEA) < 0.05 0.028
Comparative Fit Index (CFI) >0.95 0.997
Tucker-Lewisnon-normed Fit Index >0.90 0.994
Standardized Root Mean Squared Residual >0.05 0.028

Gestational age |<-®

77.04**

| log2(Maternal toenail As) DNMT3A

-11.03*

y
[chr2:25,473,782][chr2:25,473,813] [ chr2:25, 473,843

| Birth weight |

Figure 7.5: Adjusted SEM for the mediated effect of postpartum maternal toenail As
levels on gestational through DNMT3A DNA methylation, and the mediated effect of
postpartum maternal toenail As levels on birth weight through gestational age and
DNMT3A DNA methylation, controlling for infant sex, maternal weight gain, and
maternal education.

*<0.10; ** <0.05; *** < 0.01

through SEMs. Specifically, we evaluated associations between the exposure (postpar-
tum maternal toenail As levels) and outcomes (birth weight and gestational age), the
mediator (represented by the target CpG site DNMTS3, c¢g26544247) and the exposure

(postpartum maternal toenail As levels), and the mediator (DNMT3 DNA methyla-
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tion) and the outcomes (birthweight and gestational age). Results from unadjusted
models and models adjusted for infant sex, maternal weight gain, and maternal educa-
tion are shown in Appendix Table 7.10. Results from crude and adjusted linear models
were consistent with SEMs. In adjusted models, logs(postpartum maternal toenail As
concentrations) were associated with decreased gestational age (B = -0.16 weeks, P =
0.010) and increased methylation of cg26544247 (B = 0.44, P = 0.005), DNA methyla-
tion of cg26544247 was associated with decreased gestational age (B = -0.09 weeks, P
< 0.001) and birth weight (B =-12.6 g, P < 0.001), and gestational age was associated
with birth weight (B = 79.1 g, P < 0.001). Maternal As levels were not significantly

associated with birth weight (B = 1.9 g, P = 0.89).

7.6 Discussion

Using an SEM approach, we assessed the association between in utero As
exposure and birth outcomes, and mediation by DNA methylation of DNMT3A. SEMs
are advantageous for mediation analysis involving variables located on a causal pathway
(i.e., variables that act as a dependent variable in one model and as an independent vari-
able in another model) (Gunzler et al., 2013). Furthermore, SEMs incorporate latent
variables representing multiple, related indicator variables (i.e., measured variables) ad-
dressing limitations posed by multicollinearity in traditional biostatistical approaches
(Maruyama, 1998). Although commonly used in other fields of research, SEMs can be
a valuable tool in environmental epidemiology for understanding complex relationships
(Buncher et al., 1991). In this study, SEMs allowed us to create a latent variable rep-
resenting DNA methylation of three correlated CpG sites located in the gene body of
DNMTS8A and simultaneously evaluate the direct and indirect effects of in utero As
exposure on birth outcomes.

We observed that DNA methylation of DNMT3A mediated the associa-
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tion between in utero As exposure and birth outcomes. We found that increased
logs(postpartum maternal toenail As concentrations) were associated with increased
DNMTS3A methylation and decreased gestational age, and there was a significant nega-
tive indirect effect of As on gestational age through DNMTS3A methylation. In addition,
we observed significant negative indirect effects of maternal toenail As levels on birth
weight through gestational age and though DNMT3A methylation and gestational age.
The indirect effect of maternal As levels on birth weight through DNMTSA methylation
alone was borderline significant. Overall, a doubling in maternal toenail As concen-
tration was associated with a decrease in gestational age of 2.1 days and a decrease in
birth weight of 28.9 g.

Our results are consistent with other studies finding a negative association
between in utero As exposure and gestational age (Xu et al., 2011; Rollin et al., 2017),
although some studies have reported a borderline significant negative association (Laine
et al., 2015) or a null association (Sun et al., 2019; Freire et al., 2019; Bloom et al.,
2016). It should be noted that epidemiological studies have generally analyzed associ-
ations with preterm birth (< 37 weeks gestation), rather than gestational age (Bloom
et al., 2014). However, health effects later in life may be associated with early term,
in addition to preterm, birth (Boyle et al., 2012). Furthermore, this clinical catego-
rization may not be sufficient to detect variation in gestational age, and may be not
be appropriate for populations with high rates of preterm birth such as Bangladesh
(Shah et al., 2014). Although we did not observe a direct effect of in utero As exposure
on birth weight, we did find a significant total effect of As exposure on birth weight
fully mediated through pathways including gestational age; mediation through DNA
methylation of DNMTS3A alone was borderline significant. Multiple epidemiological
studies have investigated the effects of in utero As exposure on birth weight (as re-

viewed by Bloom et al. (2014); Milton et al. (2017); Zhong et al. (2019)). However,
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our results indicate the importance of including gestational age as a birth outcome of
interest, and addressing relationships between birth outcomes. Furthermore, decreased
birth weight may be due to shortened gestational period and/or intrauterine grown
restriction (Wardlaw et al., 2004). Investigating the etiology of observed reductions in
birth weight is important to understanding the health effects of in utero As exposure.

Consistent with our findings, DNA methylation of ¢g26544247, the target
site, has previously been negatively associated with gestational age in a Norwegian birth
cohort (FDR < 0.05) (Bohlin et al., 2016). This study found differential methylation
throughout the epigenome (44,359 probes at FDR < 0.05 for ultrasound-estimated
gestational age and 44,544 probes for last menstrual period-estimate gestational age at
FDR < 0.05). However, 18 additional CpG sites annotated to DNMT3A were identified
as differentially methylated and a gene ontology analysis identified pathways including
DNMTS3A. In addition, in birth cohort in Tennessee, one CpG annotated to DNMTS3A
was identified as associated with gestational age (FDR < 0.05) (Parets et al., 2013).
Methylation at additional CpG sites located in DNMS3A have been associated with the
in utero environment. Specifically, increased methylation in cord blood of cg13344237,
located within 200 base pairs of the transcription start site, has been associated with
lower maternal pre-pregnancy BMI (underweight < 18.5 kg/m? vs. normal 18.5 - 24.9
kg/m?) (FDR < 0.05) (Sharp et al., 2015). Increased methylation in cord blood of
cg1h843262, located in the gene body, was associated with antidepressant use during
pregnancy (P = 8x10™) (Non et al., 2014).

The role of DNMT3A in de novo DNA methylation is well-established (Okano
et al., 1999), and DNMT3A is expressed during embryogenesis (Watanabe et al., 2002).
However, how DNMT3A may affect birth outcomes is not well understood. DNMT3A
is involved in multiple, diverse biological pathways; Gene Ontology (GO) terms anno-

tated to DNMTS3A include roles in DNA methylation, RNA polymerase binding and
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transcription, genetic imprinting, mitotic cell cycle, protein binding, aging, and regu-
lation of cell death. In addition, it is not known how DNA methylation at our target
CpG site, cg26544247, is associated with gene expression. Further research is needed
to understand the biological pathways involved in the observed association between
DNMTS8A methylation and birth outcomes.

Our study is strengthened by the prospective birth cohort design with mul-
tiple measures of As exposure during pregnancy. Toenail As concentrations reflect
exposure during the prior several months to a year (Kile et al., 2005). Maternal toenail
samples were collected within one moth of delivery to provide an estimate of internal
dose during pregnancy and establish temporality. Drinking water samples and mater-
nal toenail samples were also collected at the time of enrollment early in pregnancy.
Overall, results from sensitivity analyses using maternal drinking water As levels and
maternal toenail As levels at enrollment as the measures of exposure were consistent.
In addition, gestational age was determined by ultrasound at the time of enrollment,
which provides a more accurate estimation than reported last menstrual period.

Several limitations of our study should be noted. We did have missing data
on maternal toenail As concentrations (N = 21 for maternal toenail concentrations at
enrollment, N = 23 for postpartum maternal toenail concentrations). Gestational age
and birth weight were lower among mother-infant pairs with missing maternal toenail
As concentrations at enrollment (mean gestational age: with missing data = 34.3 weeks,
without missing data = 37.6 weeks; Kruskal-Wallis P = 0.003; mean birth weight: with
missing data = 2,481 g, without missing data = 2,764 g; Kruskal-Wallis P = 0.012) and
postpartum (mean gestational age: with missing data = 34.5 weeks, without missing
data = 37.6 weeks; Kruskal-Wallis P = 0.005; mean birth weight: with missing data
= 2,510 g, without missing data = 2,763 g; Kruskal-Wallis P = 0.018). However,

we had full data on maternal water As concentrations, and maternal drinking water
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concentrations were significantly correlated and toenail As concentrations at enrollment
(Tspearman = 0.60, P < 0.001) and postpartum (rgyearman = 0.61, P < 0.001). Although
in sensitivity analyses using maternal water As levels we observed reduced significance
of the indirect effect of in wutero As on birth weight through DNMTS methylation
and gestational age, the confidence intervals were wide and tended toward a negative
association (logz(maternal water As) — DNMT3A DNAm — birth weight: B (95%
CI) = -2.01 (-4.59, 0.16), P = 0.095; logs(maternal water As) — gestational age —
birth weight: B (95% CI) = -4.52 (-10.45, 1.28), P = 0.125). Furthermore, SEMs allow
for the inclusion of cases with missing data on some exogenous variables, and therefore
participants with missing data on maternal toenail As concentration could be still be
used to estimate parameters for other pathways in the model.

We did not measure gene expression and therefore cannot determine if changes
in DNA methylation of DNMT3A lead to changes in gene expression. In addition, while
it is expected that changes in DNMT3A expression would be reflected in DNA methy-
lation levels of other genes, we did not have epigenome-wide DNA methylation data on

this subsample of the birth cohort.

7.7 Conclusion

In this study of a prospective birth cohort of mothers exposed to As though
drinking water in Bangladesh, we assessed the relationships between in utero As expo-
sure, gestational age, birth weight, and methylation of DNMT3A, a gene involved in de
novo DNA methylation. We show that in utero As exposure is negatively associated
with gestational age and birth weight. The effect of maternal As exposure on gesta-
tional age partially mediated by DNA methylation of DNMTS3A, and the effect on birth
weight is fully mediated by pathways including gestational age. These results provide

evidence that in utero As exposure affects fetal development through epigenetic dys-
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regulation. Further research is need to understand how DNA methylation of DNMT3A
is associated with gene expression, and in turn if this affects the methylation status

and expression of other genes related to infant health outcomes.
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Table 7.6: SEM for the mediated effect of postpartum maternal toenail As levels on
birth weight through DNMT3A DNA methylation.

Pathway Effect B (95% CI) P
DNMT3A

logs(Maternal toenail As) — DNMT3A DNAm Direct  0.37  (0.12, 0.62) 0.004
Birth weight

logs(Maternal toenail As) — Birth weight Direct  1.62 (-26.54, 29.78)  0.91
DNMT3A DNAm — Birth weight Direct -20.67 (-32.25, -9.10) <0.001
logg(lvlatfernal toenail As) - DNMT3A DNAm — Indirect -7.62 (-13.78, -1.46)  0.015
Birth weight
Fit indices calculated from robust estimators: y* P-value = 0.879; root mean square error

of approximation (RMSEA) = 0.000; comparative fit index (CFI) = 1.000; Tucker-Lewisnon-
normed fit index = 1.036; standardized root mean squared residual = 0.005.

Abbreviation: DNAm. DNA methylation.

|chr2:25,473,782| | chr2:25,473,813 | |chr2:25,473,843 |

| log2(Maternal toenail As)

Birthweight _|+(z,)

NS = not significant; * < 0.10; ** < 0.05; *** < 0.01

Figure 7.6: SEM for the mediated effect of postpartum maternal toenail As levels on
birth weight through DNMT3A DNA methylation. Abbreviation: NS, non-significant.
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Table 7.7: SEM for the mediated effect of postpartum maternal toenail As levels on
gestational age through DNMT3A DNA methylation.

Pathway Effect B (95% CI) P
DNMT3A

loga(Maternal toenail As) — DNMT3A DNAm Direct  0.39 (0.14, 0.65) 0.002
Gestational age

logs(Maternal toenail As) — Gestational age Direct -0.25 (-0.43,-0.08)  0.004
DNMT3A DNAm — Gestational age Direct -0.12 (-0.18, -0.05)  <0.001
logg(M'aternal toenail As) - DNMT3A DNAm — Indirect -0.05 (-0.08, -0.01)  0.018
Gestational age
Fit indices calculated from robust estimators: y* P-value = 0.122; root mean square error

of approximation (RMSEA) = 0.045; comparative fit index (CFI) = 0.998; Tucker-Lewisnon-
normed fit index = 0.995; standardized root mean squared residual = 0.010.

Abbreviation: DNAm, DNA methylation.

Gestational age |<-@

0.39™**

| log2(Maternal toenail As)

[chr2:25,473,782] [chr2:25,473,813] [chr2:25,473,843]

©

*<0.10; ** < 0.05; *** < 0.01

Figure 7.7: SEM for the mediated effect of postpartum maternal toenail As levels on ges-
tational age through DNMT3A DNA methylation. Abbreviation: NS, non-significant.

298



uoreiAyew YN WYN( UOHRIANIqqY

"Z€0°0 = Tenpisal porenbs urouw 001 POZIPILPUR)S QKRG () = XOPUI 1 POULIOU-UOUSIMO-IONONT], F66°()

= (1.ID) Xepur 37 aaryeredwod (6¢0°0 = (VASINY) uorpeurixoidde jo 10110 arenbs ueouwr 3001 (GH()'() = oN[eA-J mx 1S90IpUL 314
TStom I <—

93 [RUOIIR)SOY) — UIRS JSIoM [RUIDIR]N <— (JUSW[[OIUS ‘SY [IRUS0) [RUIDIRIN )E30]
8970  (62°C ‘Te’G) €€~ W2UPUl  J[SToM [IIIE — UreS JYSoM [RUINRN <— (JUSU[[OIUD ‘S [[RU20) [RUIIRIN)Z3O0]

: ‘e At . JYSToM IIg]
00 (04072997 TTg 1oupul < 98 [eUONIRYSIN) — WYN( VELWNT < (oW[[oIus ‘Sy [Ieua0) [etLIojR]y )30]

$90°0 (1000 ‘'8T'8-)  €8°¢- 30011pu[

100  (82'G-'99'€6-) Gg'8T- 199IIpu] TSToM LY <— 95k [RUOTYRISIY) <— (JUDW[OIUD ‘S [[RUS0Y [RUIAIRI)ZF0]
1800 (420 °0L°6-)  ¥¥p- 109upu] WSom I < WYNJ VELNNJ < (VW[OS 'Sy [[eUa0) [eUIIRI)E50]
ceT0 (09°L1 ‘€T°ghI-) 809-  1o1( V[SToM I < TOTRINDD [RULIEIN
eeh’0  (029z ‘19°0T-)  LPL  ¥o1( WYSom [HIY < UreS JYSoM [BUIdely
2000 (ST'eh- ‘90°G61-) T6'8TT-  1291(] V[SToM I «— Xos Jueju]
1000> (PE76 ‘€7'8G)  LL 91 TSTom I <— 98k [euoyR)Sn)
€c0'0 (690 ‘€L'Te-) T0TI- ou( WSom qiug — WyNd VELWNT

1YS1em Yrarg
GO0 (0070 ‘0T°0-) GO'(- 109IIpu] oSFe [RUOIIRISAY) <— UIRS JUYToM [RUIRIN <— (JUSW[[OIUS ‘SY [[RUS0} [RIULIAJR]N )%30]
0’0 (TO'0- ‘80°0-)  #0°0- 30°1Ipuy o8e TeuUOI)R)SOY) <— WYN{ VELWNJ  (ILW[[0IUD ‘S [[RU20) [RUIDIR]N )e30]

S00°0 (L6°0 ‘9T°0) 0G'()  399I1(] o8e TeuoIjR)sOr) — (Arewtid S sa Arewrtid <) UOIYRONPd [RUIOIRIN
100°0>  (9€°0 ‘02°0) Q0 100I1(] 98 [RUOI)R)SO) <— UIRS JYSOM [RUIDIRIN
1000 (70°0- ‘91°0-) '0-  391q age TeuoIRISH) < WYNA VELNNT
20000 (L0°0-‘¢'0-)  ¥T0- eI o8® [RUOIJR)SOY) — (JUDW[[OIUD ‘SY [IRUSO) [RUIDJR]A )E30]
o3e [euoIje)Sar)

9700 (0070 ‘G€°0-) QT'0-  3991I(] ured Som [RUIIRIN — (JUOWI[[OIUD ‘SY [[RUS0) [RUIDIR]N )e30]
ure3 YoM [eUID)RIA

€900 (€00 ‘0P'T-)  89°0- U WYNA VELNNT < X8 jueju]
€000 (L9°0 71°0) 70 19.I1(J WyNJd VELWN < (VILUW[OIUS Sy [[eUa0) [RUIIIN )50
VELIWNd

d (IO %¢96) g Yagd Kemyred

"UOIYRONPO [RULIJRW PUR ‘UIRS JYSIoM [RILIO)RU ‘XoS jurjul I0J pajisnlpe ‘uone[Ayjeowr yN(I
VELWN( Pue 98 [RUOIIRISOS YSNOIY) JYSOM (LI UO JUSW[[OIUS JR Sy [[RUS0) [RULIIRUI JO 100[0 PIJRIPIW o[} puR ‘Uolje|
-Aygowt YN VELWN YSnoIy) [eUOI)e)ISes U0 JUIUWI[[OIUS IR S [[RUS0) [RUII)RUL JO 109Jj0 PajeIpaul o) 10 INHS 8/ 9[qRL

299



&)
Y
Maternal weight gain Infant sex

I\
o,,,z,,,‘,,,,,,‘,,,,, / \\
/ —

/

I log2(Maternal toenail As at enrollment) DNMT3A

[chre:25,473,782] [chr2:25,473,813] [ chr2:25,473,843]

Birth weight

*<0.10; ** < 0.05; *** < 0.01

Figure 7.8: SEM for the mediated effect of maternal toenail As at enrollment on ges-
tational age through DNMT3A DNA methylation. Abbreviation: NS, non-significant.
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Figure 7.9: SEM for the mediated effect of maternal drinkng water Ason gestational
age through DNMTS3A DNA methylation. Abbreviation: NS, non-significant.
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Conclusions and future directions
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8.1 Summary of main findings

The overall objective of this dissertation was to investigate nutritional factors
that influence arsenic (As) methylation and the relationships between chronic As expo-
sure, epigenetic dysregulation, and adverse health outcomes (Figure 8.1). Specifically,
the following aims were addressed: (1) to evaluate overall treatment effects of folic acid
(FA) and creatine supplementation on As methylation capacity, and effect modification
of treatment effects by baseline status of one-carbon metabolism (OCM) nutrients;
(2) examine associations between As exposure and locus-specific DNA methylation in
epigenomic-wide association study (EWAS); and (3) to assess mediation of the associ-
ation between in utero As exposure and birth outcomes (i.e., gestational age and birth
weight) by DNA methylation of target genes identified in an EWAS as well as the can-
didate gene DNA methyltransferase 3 alpha (DNMT3A). This chapter will summarize

the main findings of this dissertation and discuss future research directions.

Hypothesis 2:
As-induced epigenetic

InAg st InAs &  dysregulation ~ Epigenetic Health
> . _— K —_—
As metabolites dysregulation outcomes
Hypothesis 1: Hypothesis 3: Mediation of
Nutritional influences on the association between As
As methylation and health outcomes by
OCM nutrients epigenetics

Figure 8.1: Overview of hypotheses.

8.2 Hypothesis 1

Hypothesis 1 Arsenic is methylated using the methyl donor S-adenosylmethionine

(SAM), which is synthesized by OCM. Folate recruits methyl groups to OCM, and folate
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status is positively associated with As methylation capacity (Bozack et al., 2018b). In
a previous randomized controlled trial (RCT) of As-exposed adults in Bangladesh with
plasma folate < 9 nmol/L, our group found that FA supplementation was associated
with a greater increase in the proportion of urinary dimethyl-arsenical species (% DMAs)
and decreases in the proportions of urinary inorganic As (%InAs) and monomethyl-
arsenical species (%MMAs), and blood As (bAs) and MMAs concentrations compared
to placebo (Gamble et al., 2006, 2007). Hypothesis 1 used data from the Folic Acid
and Creatine Trial (FACT), a randomized clinical trial of FA (400 or 800 pg/day)
and/or creatine supplementation (3 g/day or 3 g creatine and 400 ug FA /day) among
As-exposed adults in Bangladesh recruited independent of folate status. Our group pre-
viously reported significantly greater decrease in bAs with 800 ug/day FA treatment
compared to placebo at week 12 in FACT (Peters et al., 2015a).

Here, we hypothesized that supplementation of FA and creatine would in-
crease As methylation capacity measured by %InAs, %MMAs, %DMAs in urine (Aim
la) and that As methylation capacity would rebound after cessation of FA supplemen-
tation (Aim 1b). We also hypothesized that baseline nutritional status of OCM-related
nutrients, specifically the alternative methyl donor betaine, its precursor choline, fo-
late, and the cofactor vitamin By, would modify FA and creatine treatment effects on
changes in total homocysteine and guanidinoacetate (GAA) concentrations (biomark-
ers of OCM and endogenous creatine synthesis, respectively), total bAs concentrations,
and urinary As metabolite proportions and methylation indices.

Chapter 3 reported overall treatment effects of FA and creatine supple-
mentation on changes in urinary As metabolite proportions. We observed significantly
greater mean within-person decreases %InAs and %MMAs and increase in %DMAs
among all groups receiving FA supplementation at weeks 6 and 12 compared to placebo

(P < 0.05). The decrease in %MMAs, however, was greater in the 800 pg/day FA
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group than the 400 pg/day FA (P < 0.05), suggesting that the observed decrease in
bAs was driven larger increase in As methylation capacity in the 800 ug/day FA group,
leading to an increase in urinary As excretion. When participants were stratified by
median choline and betaine concentrations at baseline (reported in Chapter 4), we
observed a trend towards greater FA treatment effects among participants with levels
below the median of both nutrients compared to participants above the median. The
mean within-person increase in urinary %DMAs with 400 and 800 pg/day compared
to placebo was significantly different between the high and low betaine strata after
correcting for multiple tests (FDR < 0.05). From weeks 12 to week 24, half of the
participants in groups receiving FA were switched to placebo. At week 24, %InAs and
%DMAs were not significantly different than baseline levels among participants who
discontinued FA supplementation, suggesting a rebound in As methylation capacity
with cessation of FA supplementation.

Endogenous creatine biosynthesis is a major consumer of SAM (Brosnan
et al., 2011) and urinary creatinine, a biomarker of dietary creatine and product of cre-
atine biosynthesis, is positively associated with As methylation capacity (Basu et al.,
2011; Gamble et al., 2005b, 2006; Hall et al., 2007, 2009; Kile et al., 2009). In FACT,
greater decreases in GAA with creatine supplementation compared to placebo indicated
downregulation of creatine biosynthesis (Peters et al., 2015b). As described in Chapter
3, we observed a significantly greater mean within-person decreases in %MMAs with
creatine supplementation compared to placebo at weeks 1, 6, and 12; however, mean
within-person changes in %InAs and %DMAs did not differ significantly between the
creatine and placebo groups. We also investigated creatine treatment effects stratified
by median values of OCM-related nutrients (Chapter 4). The mean within-person
decrease in urinary %MMAs at week 12 was significantly greater than placebo among

participants with baseline choline concentrations below the median, but did not dif-
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fer from placebo among participants with choline concentrations above the median.
This treatment effect was different between strata at P < 0.10. Choline can be ob-
tained through diet or synthesized from phosphatidylcholine (PC), which in turn can
by biosynthesized using three molecules of SAM for each PC molecule. In addition to
choline’s role as a precursor to the methyl donor betaine, choline is involved in range
of biological functions (Zeisel, 2009). Considering the biological roles of choline in ad-
dition to acting as a precursor to betaine, we hypothesize that low choline status may
deplete due SAM due to increased PC biosynthesis, therefore resulting in a low-SAM
scenario where creatine treatment effects on %MMAs are more pronounced.

Overall, results from FACT reported in Chapters 3 and 4 provide evi-
dence of the associations between OCM-related nutrients and As methylation capacity.
Specifically, FA and creatine supplementation may increase As methylation capacity
by increasing the availability of SAM, and treatment effects may be greater among

individuals with low betaine and choline status, respectively.

8.3 Hypothesis 2

Adverse health outcomes associated with chronic As exposure, including can-
cer mortality (Roh et al., 2018; Smith et al., 2018) and lung disease (Steinmaus et al.,
2016) persists decades after exposure has been reduced. This suggests that epigenetic
dysregulation, including changes in DNA methylation, may be one biological mecha-
nism linking As exposure and health outcomes (Bailey et al., 2016). In epigenome-wide
association studies (EWAS) using blood DNA, DNA methylation at individual loci has
been associated with As exposure in utero (Broberg et al., 2014; Kaushal et al., 2017;
Kile et al., 2014; Rojas et al., 2015) and in adulthood (Ameer et al., 2017; Argos et al.,
2015; Demanelis et al., 2019).

We conducted an EWAS to investigate the association between urinary As
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levels and DNA methylation measured using the in the Illumina MethylationEPIC
(850K) array in blood samples from the Strong Heart Study (SHS), a population-based
prospective cohort of American Indian adults with low-to-moderate levels of As ex-
posure, with the hypothesis that As exposure is associated with DNA methylation at
individual loci and regions (Aim 2a). Within this EWAS, we also conducted gene
ontology (GO) enrichment analysis to identify biological and molecular functions over-
represented among differentially methylated positions (DMPs) (Aim 2b). Results of
Hypothesis 2 were described in Chapter 5.

We identified 20 DMPs significantly associated with urinary As levels at
FDR < 0.05; five DMPs remained significant after adjusting for multiple tests using
a Bonferroni correction. Overall, there was a trend toward a positive association be-
tween urinary As levels and DNA methylation; As levels were positively associated
with methylation at18 of the 20 FDR-significant CpGs, and As was positively asso-
ciated with methylation at 58% of all probes. The top significant CpG, cg06690548,
was located in solute carrier family 7 member 11 (SLC7A11), part of the amino-acid
transporter cystine:glutamate antiporter system x.”, which is involved in biosynthesis
of the endogenous antioxidant glutathione (GSH) (Conrad and Sato, 2012; Lim and
Donaldson, 2011). Nominally significant results from GO enrichment analysis included
related terms associated with the transport of cysteine, confirming the involvement of
SLCT7AT1A in these pathways related to GSH biosynthesis. Arsenic exposure has pre-
viously been associated with blood GSH concentration in a cross-section study (Hall
et al., 2013). Arsenic may deplete GSH binding to GSH and/or through the induc-
tion of reactive oxygen species; however, our results also suggest that As may affect
GSH biosynthesis through an epigenetic mechanism. Additional FDR-significant CpGs
were located in biologically relevant genes including leucine rich repeat and Ig domain

containing 3 (LINGOS; ¢g22294740 and cg08059112), a transmembrane protein that
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has been identified as a gene hub in metastatic melanoma tumors (Wang et al., 2018);
casein kinase 1 delta (CSNK1D; cg20493718 and ¢g21369801), which may be involved
in cellular processes including control of DNA replication and repair, apoptosis, and
circadian rhythm, and regulation of the tumor suppressor protein p53 (Schittek and
Sinnberg, 2014); and hexokinase 1 (HK1; cgl14595618), a protein coding gene involved
in glucose metabolism. In sensitivity analyses stratified by diabetes status, cg14595618
was not associated with As levels at a nominal P < 0.05. In a separate linear model,
we also found significant effect modification of the association between As levels and
cg14595618 methylation by diabetes status.

We also identified one FDR-significant differentially methylated region (DMR;
chr11:2,322,050-2,323,247) including the open reading frame C1107f21 and tetraspanin
32 (TSPAN32). Genetic alterations in Cllorf21/TSPAN32 have been associated with
Beckwith-Wiedemann syndrome, a condition characterized by abnormal growth and tu-
mors in childhood (Koufos et al., 1989) and with chronic lymphocytic leukemia (Berndt
et al., 2013).

We also assessed significance of DMPs previously identified in EWAS. Al-
though no consistent epigenetic signature of As exposure has been identified, among
145 DMPs identified in studies including adults, 12 achieved nominal significance in
our study.

In summary, Chapter 5 reports results from an EWAS of the association
between chronic As exposure and DNA methylation. To our knowledge, this is the
largest EWAS of As exposure to date, and one of the first using the 850K microarray.
We identified 20 FDR-significant DMPs, including loci annotated to genes biologically

relevant to As exposure.
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8.4 Hypothesis 3

In utero As exposure may have teratogenic effects. Overall, epidemiological
studies have reported a trend toward decreased birth weight associated with higher in
utero As exposures (Bloom et al., 2014; Milton et al., 2017; Zhong et al., 2019); however,
fewer studies have investigated associations with gestational age. Observed reductions
in birth weight may be due to shortened gestational period and/or intrauterine growth
restriction, factors which are associated with different health impacts in infancy and
later in life (Wardlaw et al., 2004). Furthermore, environmental exposures during
embryogenesis, a time of cellular differentiation and epigenetic reprogramming, may
result in epigenetic dysregulation and increased disease risk (Heindel and Vandenberg,
2015), suggesting that there is an epigenetic link between in utero As exposure and
birth outcomes. Therefore, understanding the etiology of these birth outcome has
public health implications.

In a birth cohort in Bangladesh, it has previously been shown that the inverse
association between in utero As exposure and birth weight is fully mediated by decreases
in gestational age and maternal weight gain (Kile et al., 2015). Chapters 6 and 7
report further analyses from this cohort. We hypothesized that the associations between
in utero As exposure and birth outcomes, specifically birth weight and gestational age,
are mediated by changes in DNA methylation measured in cord blood. In an EWAS, we
identified CpGs associated with maternal water As levels and gestational age. Among
top CpGs, three were selected for bisulfite pyrosequencing in a separate subset of cohort
participants to validate mediation of the association between in utero As exposure and
gestational age by DNA methylation (Aim 3a). We also assessed mediation of the
associations between in utero As exposure, birth weight, and gestational age by DNA
methylation of DNA methyltransferase 3 alpha (DNMT3A), which codes for an enzyme

responsible for de novo DNA methylation and a prime candidate gene as a mediator
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between prenatal exposures and birth outcomes (Aim 3b).

In Chapter 6 we introduce an experimental approach for assessing mediation
of the association between in utero exposures and birth outcomes by DNA methyla-
tion including a discovery phase using an epigenome-wide approach and a validation
phase using a target CpG approach. In the discovery phase (N = 44), the associa-
tion between maternal water As levels and gestational age was fully mediated by DNA
methylation of the top 10 CpGs associated with both variables. In a validation phase,
DNA methylation of three top CpGs located in miR124-3, GNAL, and MCC was mea-
sured in cord blood of 569 infants. In structural equation models (SEMs), methylation
levels of each target CpG and neighboring methylated loci were used to construct latent
variables representing DNA methylation of each gene. In individual SEMs, there were
significant indirect effects of maternal water As levels on gestational age through DNA
methylation of miR124-3 and MCC'; the indirect effect through DNA methylation of
GNAL was not significant. We constructed an adjusted SEM including latent variables
representing DNA methylation of miR12/-3 and MCC. Mediation of the association
between in utero As exposure and gestational age by DNA methylation of miR124-3
was borderline significant (P = 0.06); DNA methylation of MCC did not act as a
mediator.

In Chapter 7 we reported results of an analysis of DNA methylation of the
target gene DNMTS3A as a mediator of the association between in utero As exposure
and birth outcomes. In an adjusted SEM including birth weight and gestational age,
maternal toenail As levels were associated with DNMT3A methylation and gestational
age, and DNMT3A methylation was associated with both birth weight and gestational
age. There was a significant indirect effect of As on gestational age through DNMTS3A
methylation, the indirect effect on birth weight was borderline significant (P = 0.082).

However, the indirect effects of maternal toenail As levels on birth weight through all
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pathways including gestational age were statistically significant. A doubling in maternal
toenail As concentration had a total effect of a decrease in gestational age of 2.1 days
and a decrease in birth weight of 28.9 g.

Results from Chapters 6 and 7 provide evidence that in utero As exposure
is associated with adverse birth outcomes and with DNA methylation in cord blood,
and that alterations in DNA methylation act as a mediator between As exposure and
birth outcomes. In summary, we found that in utero As exposure is associated with
shortened gestational age, and this association is mediated by changes in DNA methy-
lation of miR124-3, a gene identified using an EWAS approach, and DNMTS3, a selected
candidate gene. In utero As exposure was not directly associated with birth weight, but
in analyses of DNMTSA methylation, As exposure had an indirect effect on birth weight
through pathways including gestational age. These findings support the developmental
origins of health and disease hypothesis that environmental exposures during embryo-
genesis, a time of epigenetic reprogramming, may result in epigenetic dysregulation and

increased disease risk (Heindel and Vandenberg, 2015).

8.5 Future directions

Chapters 3 and 4 (Hypothesis 1), provided evidence from FACT, an RCT,
to support observational studies reporting positive associations between folate status
and As methylation capacity. We also found that FA supplementation may have more
profound effects on As methylation capacity among individual with low status of OCM-
related nutrients, particularly the alternate methyl donor betaine. Although mitigation
of As exposure is the primary means to prevent As-related health outcomes, our results
suggest that nutritional interventions may reduce the adverse effects of chronic As
exposure, particularly in areas where nutrient deficiencies are common. FA fortification

has been shown to decrease the prevalence of folate deficiency (Barnabé et al., 2015;

313



Odewole et al., 2013) and has been mandated in 87 countries (Zimmerman and Lu,
2015). However, FA fortification has not been implemented in Bangladesh, where the
prevalence of folate deficiency is common (Gamble et al., 2005a). Further research is
needed to assess the feasibility of nutritional interventions to increase As methylation
capacity in countries with high rates of As exposure and nutrient deficiencies such as
Bangladesh.

Further research is needed to understand the association between creatine and
As methylation capacity. Although urinary creatinine has been consistently associated
with As methylation capacity (i.e., lower %InAs and higher %DMASs in urine) in cross-
sectional analyses (Basu et al., 2011; Bozack et al., 2018a; Gamble et al., 2005b, 2006;
Hall et al., 2007, 2009; Kile et al., 2009; Pilsner et al., 2009), we observed limited
treatment effects of creatine supplementation; creatine supplementation was associated
with a decrease in %MMASs in urine at weeks 1, 6, and 12, but was not associated
with changes in %InAs or %DMAs. Stratified analyses indicated that this treatment
effect was driven by changes in %MMAs among participants with low choline status.
There are several possible explanations for these results. Low choline may deplete
SAM by upregulating PEMT; creatine may have greater treatment effects in the case
of low SAM concentrations. Alternatively, creatine may primarily affect OCM in the
liver and treatment effects may be attenuated over time due to long-range allosteric
regulation of hepatic SAM concentrations, a scenario supported by the observed plateau
in creatine treatment effects. Observed cross-sectional associations between urinary
creatinine and As metabolite proportion may be due in part to renal tube reabsorption
of InAs when urine is more concentrated (Ginsburg and Lotspeich, 1963). To fully
understand the relationship between creatine and As methylation capacity, additional
research is needed to determine the effects of creatine supplementation on liver-specific

SAM concentrations as well as the potential for reabsorption of As metabolites from
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tubular fluid.

Our study did not examine long-term effects of increased As methylation
capacity on health outcomes. A higher proportion of %MMAs in urine has been consis-
tently associated with higher risk of adverse health outcomes (Ahsan et al., 2007; Chen
et al., 2013, 2003; Gilbert-Diamond et al., 2013; Hsueh et al., 1997; Huang et al., 2008,
2006; Laine et al., 2015; Lindberg et al., 2008; Lépez-Carrillo et al., 2014; Melak et al.,
2014; Pu et al., 2007; Steinmaus et al., 2006, 2010; Tseng et al., 2005; Wu et al., 2006;
Yu et al., 2000), suggesting that increasing As methylation capacity through nutritional
interventions would decrease the risk of adverse health outcomes. However, epidemio-
logical studies have not yet established how changes in As methylation capacity may
affect risks later in life, particularly for health outcomes with long latency periods.

Chapter 5 (Hypothesis 2) presented results of an EWAS of the association
between urinary As and DNA methylation among adults with low-moderate As expo-
sure. Specifically, we assessed associations between total urinary As levels and DNA
methylation of autosomes. Within this study, further analysis may investigate asso-
ciations between As exposure and DNA methylation of sex chromosomes, as well as
associations between As exposure and differential variability of DNA methylation and
associations between As metabolites and epigenome-wide DNA methylation.

In the overall study population, we observed a significant association between
As exposure and DNA methylation of ¢g14595618, located in HK1, a protein coding
gene involved in glucose metabolism. However, in sensitivity analyses, c¢g14595618
methylation was not significantly associated with As exposure among participants with-
out diabetes, and we found a significant interaction between As levels and diabetes
status on ¢g14595618 methylation. Although we removed probes associated with SNPs
with minor allele frequencies < 0.05, these results may be driven by genetic variation

(e.g., SNP frequency may vary in this study population, or unidentified SNPs may be
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present), resulting in methylation quantitative trait loci. In previous analysis of this
study population, urinary As concentration was not associated with diabetes incidence;
however, %MMAs measured in urine was associated with a lower risk of diabetes (Kuo
et al., 2015). Further research is needed to understand genetic factors and DNA methy-
lation pattern in this genomic region, as well the relationship between As exposure, As
methylation capacity, and glucose metabolism.

Overall, previous EWAS have found that As exposure in utero and in adult-
hood is associated with locus-specific DNA methylation (Argos, 2015). However, top
signals differ among studies, and a specific epigenetic signature of As exposure has not
been established. Variation in EWAS results may be due to a variety of methodological
differences including population studied, age and duration of As exposure, measure and
level of exposure, tissue type, and platform used to quantify DNA methylation. Varia-
tion may also be due in part to differences in analytical methods, including data quality
control and processing and statistical tests performed. Further efforts are needed to
understand degree of overlap between differentially methylated positions (DMPs) iden-
tified by previous EWAS, including comparison of all nominally significant DMPs across
studies. Future EWAS efforts should also seek to apply standard statistical methods
to increase comparability across studies.

Chapters 6 and 7 reported results from mediation analyses of the associa-
tion between in utero As exposure and birth outcomes by DNA methylation measured
in cord blood. We found significant mediation by DNA methylation of CpGs identified
through a discovery phase using an EWAS approach, as well as CpGs located in the
candidate gene DNA methyltransferase 3 alpha (DNMT3A). While these results sup-
port the hypothesis of fetal origins of health and disease later in life, further research is
needed to asses if observed changes in DNA methylation persist and act as mediators

with health outcomes later in life, particularly health outcomes associated with preterm
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birth and low birth weight.

In Chapter 7, we found a significant indirect effect of in utero As exposure
on gestational age through DNA methylation of DNMTS3A; the indirect effect on birth
weight was borderline significant. DNMT3A is involved in establishing de novo DNA
methylation during embryogenesis, a time epigenetic reprogramming. DNA methy-
lation of DNMTS3A is expected to affect expression of this gene, which may in turn
affect DNA methylation and expression of other genes and subsequently health out-
comes. However, further research is needed to understand these potential biological
mechanisms. Specifically, under the assumption that DNA methylation of DNMTS3A is
associated with levels of gene expression, it is not known if this impacts DNA methy-
lation at the global and/or locus-specific levels.

Chapters 5, 6, and 7 examined relationships between As exposure and
epigenetic dysregulation. In Chapters 6 and 7, we were also able to assess mediation
of the association between As exposure and health outcomes. However, these studies
were limited by lack of data on gene expression. Gene expression data can also help
understand the potential of DNA methylation to act as a biological mediator of the

association between As exposure and health outcomes.

8.6 Conclusion

The overall objectives of this dissertation were to (1) understand factors
that may influence susceptibility to As-induced health outcomes, specifically nutritional
influences of As methylation and the potential of nutritional interventions to increase
As methylation capacity, and to understand (2) As-induced epigenetic dysregulation
and (3) its mediating role in the association between As exposure and health outcomes.

In an RCT, we demonstrated that supplementation of FA and creatine, two

nutrients involved in OCM, increase As methylation capacity, and that supplementation
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may have more profound treatment effects among individuals with low levels of other
OCM-related nutrients. Further research is needed to fully understand the relationships
between various OCM nutrients and As methylation. However, our results have im-
portant implications for potential nutritional interventions to reduce As-induced health
outcomes, particularly in countries such as Bangladesh with high prevalence of chronic
As exposure and nutritional deficiencies and without FA fortification.

This dissertation also investigated associations between As exposure and epi-
genetic dysregulation in diverse populations. In the largest EWAS of As exposure
to date, we identified novel differentially methylated loci associated with As exposure
among a cohort of adults in the US with low-moderate levels of exposure. In addition,
using data from a prospective birth cohort in Bangladesh, we found significant medi-
ation of the association between in utero As exposure and birth outcomes by DNA
methylation. Taken together, these results provide evidence that chronic As exposure
is associated with epigenetic dysregulation, and that changes in the epigenome may
mediate the association between As exposure and adverse health effects. However, fur-
ther research is needed to understand the role of additional factors, including genetic
variability and altered gene expression, in the pathway from As exposure to health
outcomes.

The results presented in this dissertation contribute the body of research sup-
porting the hypotheses that individual factors, including nutritional status, influence As
methylation capacity, and that a mode of action of As toxicity may include epigenetic
dysregulation. Although further research is needed to fully understand the biological
mechanisms underlying As toxicity, these finding may help inform public health inter-
ventions designed for specific populations to reduce the adverse health effects of chronic

As exposure.
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