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Abstract 1 

The C9orf72 GGGGCC repeat expansion has been associated with several diseases, including 2 

amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD). It has also been associated with 3 

increased white matter changes in FTD as well as risk of cognitive impairment in ALS. Dementia is 4 

common both before and after intracerebral haemorrhage (ICH). Since the mechanisms of cognitive 5 

impairment in patients with ICH are uncertain, we investigated whether C9orf72 could influence 6 

dementia risk in this patient group. Therefore, we genotyped 1010 clinically characterised ICH cases 7 

and 2147 population controls in comparison with prior data of dementia and ALS cases. We did not 8 

find any association between C9orf72 repeat expansion or repeat size with ICH compared to controls 9 

or with dementia when assessing ICH patients only. The frequency of C9orf72 expansions in our series 10 

of individuals born in 1946 (2/2147) and other UK controls was age-dependent decreasing with 11 

increasing age, highlighting the high age-dependant penetrance of this expansion.  12 

Introduction 13 

The chromosome 9 open reading frame 72 (C9orf72) GGGGCC repeat expansion has been associated 14 

with several diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia 15 

(FTD)(DeJesus-Hernandez et al., 2011; Renton et al., 2011). The number of repeats to discriminate 16 

between normal repeat and pathogenic expansion is unknown although the cut-off has been suggested 17 

at 30(Van Mossevelde et al., 2017). In patients with a pathogenic repeat expansion, the number of 18 

hexanucleotide copies can be in the thousands(DeJesus-Hernandez et al., 2011; Renton et al., 2011). 19 

C9orf72 repeat expansions have previously been associated with white matter hyperintensities in FTD 20 

as well as cognitive impairment in ALS patients(Chio et al., 2016; Mahoney et al., 2015). Brain tissue 21 

of FTD patients have demonstrated amyloid beta plaques in some cases (2/51)(Simon-Sanchez et al., 22 

2012). C9orf72 repeat expansion may therefore influence pre-ICH dementia or an increased rate of 23 

dementia after the ICH event through similar mechanisms by acting on cerebrovascular factors such as 24 

small vessel diseases and cerebral amyloid angiopathy(Cordonnier et al., 2010; Moulin et al., 2016; 25 

Pendlebury and Rothwell, 2009; Xiong et al., 2016). We hypothesized that increasing numbers of 26 

GGGGCC repeats in absence of a pathogenic repeat expansion may be associated with or influence 27 
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pre-ICH dementia in ICH patients through a mechanism that influences small vessel disease (SVD) 1 

and cerebral amyloid angiopathy (CAA). To address this hypothesis, we genotyped 1010 clinically 2 

characterised ICH cases and 2147 controls and compared them with prior data of dementia and ALS 3 

cases. 4 

Methods: Study cohort: The CROMIS-2 study was approved by the National Research Ethics Service 5 

(reference: 10/H0716/64). We included patients with available DNA who had been recruited to the 6 

CROMIS-2 (NCT02513316) ICH study(Charidimou et al., 2015). Population controls were from the 7 

Medical Research Council National Survey of Health and Development (NSHD), a socially stratified 8 

cohort of 5362 singleton births that occurred during 1 week in March 1946 in England, Scotland, and 9 

Wales(Kuh et al., 2016; Rousseau et al., 2006).  10 

Genotyping: C9orf72 screening was performed as previously described using sizing and repeat primed 11 

polymerase chain reaction (PCR)(DeJesus-Hernandez et al., 2011; Renton et al., 2011). In cases of 12 

suggested expansion, we performed Southern blot(DeJesus-Hernandez et al., 2011). We evaluated the 13 

number of repeats as continuous (dominant and additive) and binary variable (dichotomized into <20 14 

and ≥20 repeats)(Rutherford et al., 2012; Van Mossevelde et al., 2017). To evaluate for dominant 15 

effect we used the number of repeats of the longer of the 2 normal alleles and for additive effect the 16 

summed repeat number of both alleles(Rutherford et al., 2012).  17 

Outcome measures and procedures: Outcome variables in patients with ICH were history of 18 

dementia, SVD burden and CAA. We analysed SVD by assessing the overall burden of SVD on CT 19 

and possible and probable CAA using the modified Boston criteria(Arba et al., 2017; Linn et al., 20 

2010). Statistics: Continuous variables are presented as means and SD if normally distributed, median 21 

and IQR if not normally distributed. Categorical variables are presented as number and percentage. In 22 

a second step we adjusted the regression model for age and sex. For possible and probable CAA, we 23 

adjusted for sex only. We performed all statistical analysis in STATA 15 (StataCorp. 2017. Stata 24 

Statistical Software: Release 15. College Station, TX: StataCorp). 25 

Results 26 
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We analysed C9orf72 in 3157 individuals: 1010 cases and 2147 controls (Supplementary Figure 1). 1 

The frequency of ICH patients heterozygous for C9orf72 alleles was higher compared to controls 2 

(Supplementary Table 1 and Figure 2). See Supplementary Table 2 for an overview of allele counts. 3 

When considering allele count, we did not observe a significant difference between cases and controls 4 

(OR 1.03, 95%CI 0.99-1.07, p=0.17 for allele 1 and OR 0.99, 95%CI 0.97-1.02, p=0.53 for allele 2). 5 

However, when considering GGGGCC repeats as a binary variable (dichotomized into <20 or ≥20 6 

repeats), controls more frequently had ≥20 repeats (p=0.01, supplementary Table 1). In fact, only 4 7 

ICH patients had a repeat ≥20 (0.4%) compared to 34 controls (1.6%), none of these 4 ICH patients 8 

had a history of dementia. Two individuals had a pathogenic expansion (with >80 repeats), both of 9 

whom were from our control cohort (0.09% of NSHD population controls, supplementary Table 3 and 10 

Figure 3). No pathogenic expansion was found in the ICH cohort. In the ICH cohort a history of pre-11 

ICH dementia was associated with age but not with repeats (supplementary Table 4) measured by 12 

dominant and additive repeat variable and homozygosity. We did not observe association between the 13 

dominant repeat variant and SVD burden (OR 0.99 per point increase, 95%CI 0.95-1.02, p=0.42) nor 14 

possible or probable CAA. None of the patients with ≥20 repeats had cognitive deficits, history of 15 

dementia or imaging markers.  16 

Discussion 17 

This is the first study to evaluate the influence of C9orf72 alleles in an ICH cohort where we do not 18 

report pathogenic C9orf72 repeat expansions. Controls had a higher frequency of higher repeats 19 

compared to ICH patients. We could not demonstrate an effect of number of repeats on history of 20 

dementia, SVD burden, nor CAA. We observed differences between ICH patients and controls in 21 

homozygous frequency, ICH patients more frequently heterozygous. Two controls had a pathogenic 22 

expansion (0.09%). Our findings suggest the expansion in population controls is lower than previously 23 

suggested. The absence of C9orf72 repeat expansions in the ICH cohort is likely expected due to 24 

individuals with pathogenic expansions most likely having died by the time an individual suffers from 25 

an ICH (age of ALS onset ranges around 58 year of age for carrier of the C9orf72 repeat 26 

expansion)(Chio et al., 2015; Murphy et al., 2017; Westeneng et al., 2018; Wijesekera and Leigh, 27 
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2009). The C9orf72 expansion cut-off has been suggested at 30. Although cases and controls were 1 

different with regards to homozygous frequency and number of repeats, the percentage of individuals 2 

with ≥20 repeats was lower in both cohorts: 0.4% in ICH patients and 1.6% in population controls 3 

compared to previous results. The control data also highlights the lower frequency of C9orf72 4 

expansions in our NSHD controls(Kuh et al., 2016; Rousseau et al., 2006). Blood samples for the 5 

NSHD controls were taken when they were 53.5 years of age, therefore early death due to pathogenic 6 

expansion is unlikely causing the lower percentage of expansions (Supplemental Table 3 and Figure 7 

3). ICH individuals with ≥20 repeats did not have an increased rate of history of pre-ICH dementia. In 8 

conclusion, C9orf72 repeat are not associated with history of pre-ICH dementia, SVD markers or CAA 9 

in the ICH population. The prevalence of C9orf72 GGGGCC repeat expansion in the normal 10 

population is lower than previously reported(Rutherford et al., 2012).  11 

 12 
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