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The modeling of cosmological observables is based on the statistics of the matter density, velocity and
gravitational fields in the Universe as a function of time. Typically, calculations are restricted to “equal
time” correlations, where any given fields are evaluated at the same redshift. For some applications, it is
necessary to make accurate predictions of “unequal time correlators,” where the fields considered are
evaluated at different redshifts. In this work, we show that the Zel’dovich approximation provides an
accurate (< 10%) analytical prescription to model unequal time correlators, which we validate against
numerical N-body simulations. The Zel’dovich approximation introduces a scale-dependent exponential
suppression of unequal time correlators, which depends on cosmology and the redshifts of the
fields considered. Comparing the Zel’dovich case to previous approximations, we show that it can
yield accurate predictions for wave numbers that extend well into the nonlinear regime. However,
we also show that correlations over such scales are typically suppressed by the geometry of the light cone,
and thus should normally be negligible for cosmology with galaxy surveys. We discuss potential
exceptions, such as intrinsic galaxy alignments, where unequal time correlators could play a role in the
modeling of the observables.
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I. INTRODUCTION

The extraction of information from cosmological large-
scale structure relies on accurate modeling of the distribu-
tion of matter. As the next decade brings telescopes such as
the Large Synoptic Survey Telescope1 [1], Euclid2 [2] and
WFIRST-AFTA3 [3] to first light, the statistical uncertainties
in measurements of large-scale structure observables, such
as the clustering of galaxies or weak gravitational lensing,
will decrease drastically compared to existing surveys. This
will be partly driven by the increased depth of these
surveys, partly by extended area coverage. In this context,
it becomes necessary to refine our models for these
observables in order to meet survey accuracy goals.
A key input in the modeling of the large-scale structure is

the power spectrum of the observed fields, i.e., the
correlation of their Fourier space components. This statistic
is most often computed for fields that are evaluated at equal
time, or equal redshift. However, realistic measurements

involve integration along the line-of-sight, and so
require prediction of correlations between cosmological
fields at different redshifts, or “unequal time correlators.”
These predictions are typically made through different
approximations.
The “geometric approximation” is a common approach

to modeling full-sky observables of galaxy lensing and
clustering [4,5]; intrinsic galaxy alignments [6,7]; and, in
general, any two-point correlation functions of density field
tracers [8]. Consider the Fourier transform of the matter
over-density field, δðk; zÞ, at wave number k and redshift z.
We would like to compute the cross-spectrum between the
density field at two different redshifts, z and z0. In the
geometric approximation, this is simply given by a geo-
metric mean of the autospectra at those redshifts, i.e.,

PGðk; z; z0Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk; zÞPðk; z0Þ

p
: ð1Þ

Moreover, it is often assumed that the evolution of P with
redshift can be obtained by rescaling the matter power
spectrum today by the growth function of matter perturba-
tions, DðzÞ, for a given cosmology and redshift, reducing
Eq. (1) to
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PGLðk; z; z0Þ ≃DðzÞDðz0ÞPLðkÞ; ð2Þ

where PLðkÞ is the linear matter power spectrum at z ¼ 0.
Few works have investigated the accuracy of this

approximation to model unequal time correlators. The
authors of [9] have proposed to use Eulerian (standard)
perturbation theory (SPT) [10–13] to obtain a more
accurate prediction of Pðk; z; z0Þ, compared to the linear
case. However, SPT is known to be accurate only below
k ≃ 0.2–0.3 hMpc−1 for equal time correlators [14,15].
The Zel’dovich approximation [16] is the linear order

Lagrangian perturbation theory (LPT), and it is known to be
exact up to shell crossing in one dimension. Numerous
works have described the application of the Zel’dovich
approximation to two-point redshift-space clustering, most
of them focusing on reconstruction and modeling baryon
acoustic oscillations [17–19]. Extensions to N-point func-
tions have also been performed [20]. LPT (either the
Zel’dovich approximation or the second-order 2LPT) is
also used to set up initial conditions of such simulations
[21–23] and even to correct for general relativistic effects in
N-body Newtonian simulations [24]. For further applica-
tions, see [25] and references therein.
In this work, we show that the Zel’dovich approximation

can provide an accurate approximation to unequal time
correlators across a wide range of scales and redshifts,
improving substantially over SPT. The reason for this is the
ability of the Zel’dovich approximation to capture advec-
tion by large-scale flows in the Universe [26,27]. In
Ref. [28] it was recently suggested the use of LPT for
correcting for the effect of bulk flows on the comparison
between simulations and perturbative predictions from
initial conditions at the field level (“shifted operators”).
We demonstrate the accuracy of such an approximation in
this work. For unequal time correlators, we find that the
relative displacement of matter between redshifts introdu-
ces an exponential suppression of the small scale modes,
which allows us to extend the regime of validity of the
predictions into the fully nonlinear regime. Nevertheless,
we will also show that the characteristic wavelength at
which the exponential suppression becomes significant is
orders of magnitude smaller than the equivalent suppres-
sion wavelength from projection along the line of sight.
This establishes that, for many observable quantities, the
existing geometric linear ansatz (2) is likely sufficient.
In Sec. II, we introduce our formalism and develop an

expression for Pðk; z; z0Þ in the Zel’dovich approximation.
We compare this approximation to the modeling of the
same quantity in SPT in Sec. III. We present our main
results in Sec. IV, where we compare our the different
predictions to measured matter power spectra in cosmo-
logicalN-body simulations in Sec. IVA and we analyze the
differences between SPT and the Zel’dovich approximation
in Sec. IV B. We discuss specific applications of unequal
time correlators for cosmology from large-scale surveys in

Sec. V, where we show that their contribution tends to be
highly suppressed in the light cone geometry. Our con-
clusions are presented in Sec. VI.

II. ZEL’DOVICH APPROXIMATION

In the Zel’dovich approximation, the density field of the
Universe at a given time can be obtained by displacing the
initial Lagrangian positions of particles, q, by means of a
displacement function,Ψðq; zÞ, such that the final positions
are: xðq; zÞ ¼ qþΨðq; zÞ. As a consequence of this
transformation, the Fourier components of the overdensity
field take the form

δðk; zÞ ¼
Z

d3qe−ik·q½e−ik·ΨðqÞ − 1�; ð3Þ

where the displacement function Ψ transforms the field
from the initial conditions to redshift z.
In [29], the Zel’dovich approximation was used to derive

the cross-spectrum between two numerical simulations
with inverted initial conditions. Here, we closely follow
their approach to derive an expression for unequal time
correlators of the matter power spectrum. Consider the
density field of the universe at two different redshifts,
z and z0. The cross-spectrum between these two fields,
Pðk; z; z0Þ, is defined as

hδðk; zÞδðk0; z0Þi ¼ ð2πÞ3δDðkþ k0ÞPðk; z; z0Þ; ð4Þ

where angle brackets indicate an ensemble average
and k ¼ jkj. The Dirac delta, δD, is a consequence
of translational invariance. In the Zel’dovich approxima-
tion, this cross-spectrum depends on the relative
displacement of the particles between the two redshifts:
ΔΨðq;q0;z;z0Þ¼Ψðq;zÞ−Ψðq0;z0Þ. Given that hδðk;zÞi¼
0, we can write the cross-power explicitly as

Pðk; z; z0Þ ¼
Z

d3qd3q0e−ik·ðq−q0Þ½he−ik·ΔΨi − 1�: ð5Þ

Assuming that the displacements are small, they can be
modeled from linear theory as proportional to the linear
density field at z ¼ 0, δLðk; z ¼ 0Þ, via

Ψ ¼ i
k
k2

δLðk; z ¼ 0ÞDðzÞ: ð6Þ

An analogous relation holds for Ψ0. In this linear-
displacement limit, Ψ is Gaussian distributed. The
ensemble average he−Gi of a Gaussian field G satisfies
the cumulant relation he−Gi ¼ e−1=2hG2i, which we can
substitute in Eq. (5). Following a similar derivation to that
of Appendix A of Ref. [29], we arrive at the following
expression for the unequal time correlator in the Zel’dovich
approximation,
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PZelðk;z;z0Þ

¼
Z

d3re−ik·r½e−½Dðz0Þ−DðzÞ�2Iðk;0Þ=2þDðz0ÞDðzÞJðk;rÞ−1�

ð7Þ

where we have defined two auxiliary functions:

Iðk; rÞ ¼
Z

d3k0

ð2πÞ3
ðk · k0Þ2

k04
cosðk0 · rÞPLðk0Þ; ð8Þ

and Jðk; rÞ ¼ Iðk; rÞ − Iðk; 0Þ: ð9Þ

Notice that the constant term in the integrand of Eq. (7)
integrates to a k ¼ 0 correction that we will ignore. We can
rewrite the r-dependent part of Eq. (7) as the Zel’dovich
predicted power spectrum PZelðk; z̄Þ at an intermediate
redshift z̄:

Z
d3re−ik·r−Dðz0ÞDðzÞJðk;rÞ ¼PZelðk; z̄; z̄Þ≡PZelðk; z̄Þ ð10Þ

where z̄ is defined to satisfy Dðz0ÞDðzÞ ¼ D2ðz̄Þ, guaran-
teeing that z̄ is intermediate between z and z0. Finally the
term proportional to Iðk; 0Þ in the exponential within
Eq. (7) is independent of r and can be pulled out of the
integral. As a consequence, there is an overall exponential
suppression factor in the expression for PZelðk; z; z0Þ which
is k-dependent:

PZelðk; z; z0Þ ¼ PZelðk; z̄Þe−½Dðz0Þ−DðzÞ�2ðk=kNLÞ2 ; ð11Þ

and valid for k ≠ 0. Here we have defined a nonlinear scale

k−2NL ¼ 1

12π2

Z
∞

0

PLðk0Þdk0: ð12Þ

Note that this scale is calculated using PL, the linear matter
power spectrum, at z ¼ 0, since the linear growth is
normalized to Dð0Þ ¼ 1.
If we relinearize (10) by Taylor expanding the expo-

nential to first order in the quantity Dðz0ÞDðzÞ we recover
the geometric linear ansatz, Eq. (2); but the full result for
the cross-spectrum, Eq. (7), retains the exponential sup-
pression for sufficiently high k. Thus, at sufficiently high
redshift, we recover

PZelðk; z; z0Þ → PGLðk; z; z0Þe−½Dðz0Þ−DðzÞ�2ðk=kNLÞ2

as DðzÞ → 0 and Dðz0Þ → 0: ð13Þ

This result illustrates why the PGLðk; z; z0Þ approxima-
tion has proved successful in part to model unequal time
correlators. At sufficiently large z and for sufficiently low k,
the approximation is recovered exactly. On the other hand,
the Zel’dovich approximation introduces a scale- and time-

dependent correction to the geometric linear approximation
which is present at sufficiently high k even when DðzÞ is
small. The suppression in cross-power is a consequence of
the relative displacement of the matter field between two
redshifts due to gravity; the typical wave number at which it
becomes important is kNL=jDðz0Þ −DðzÞj. The suppression
factor reduces to unity when z ¼ z0, as expected.
It is valid to question whether either of the expressions

(11) or (13) can be useful given that the corrections become
important in a high-k, nonlinear regime where the auto-
power will not be well approximated either by PLðkÞ or
PZelðkÞ. Empirically, we will show in Sec. IV that our
resummed Zel’dovich approximation gives an excellent fit
to the ratio between cross- and auto-power spectra from
fully nonlinear simulations, all the way to small scales
k ∼ 10 hMpc−1. This is despite the fact that the prediction
for the autopower spectrum delivered by Zel’dovich is not
accurate enough for cosmological applications [30]. The
reason why Zel’dovich works so well for our purposes must
therefore be attributed to taking ratios such that the overall
growth of nonlinear structure is factored out. Once this ratio
is taken, high-k power suppression is driven by displace-
ments arising from near-linear low-k velocity fields. As
emphasized by Ref. [29], accurate power spectrum ratios
can be recovered in this limit through a careful choice of
resummation.

III. STANDARD PERTURBATION THEORY

Previous work by Kitching and Heavens [9] proposed
the use of standard perturbation theory for modeling
unequal time correlators. In this context, the nonlinear
matter overdensity field is expressed as a perturbative
expansion over a set of functions fnðkÞ, which are
functions involving n powers of δLðk; z ¼ 0Þ. The pertur-
bative expansion is expressed as follows,

δðk; zÞ ¼
X∞
n¼1

DnðzÞfnðkÞ ð14Þ

where DðzÞ is the growth factor we have defined in Sec. I.
The expansion of the matter power spectrum up to quartic
order in the density (the “one-loop” approximation) at a
given redshift is

PSPTðk; zÞ ¼ D2ðzÞPLðkÞ þD4ðzÞP22ðkÞ þ 2D4ðzÞP13ðkÞ
ð15Þ

where P22 and P13 involve the autocorrelation of f2
and cross-correlation of f1 and f3 terms, respectively
[e.g., [14] ].
Reference [9] extended the application of the expansion

in Eq. (14) to find an approximate expression for the
unequal time power spectrum at one-loop order in SPT
[Eq. (6) in [9] ],

UNEQUAL TIME CORRELATORS AND THE ZEL’DOVICH … PHYS. REV. D 100, 023543 (2019)

023543-3



PSPTðk;z;z0Þ ¼DðzÞDðz0ÞPLðkÞþD2ðzÞD2ðz0ÞP22ðkÞ
þ ½D3ðzÞDðz0ÞþDðzÞD3ðz0Þ�P13ðkÞ: ð16Þ

The first term in Eq. (16) recovers the geometric linear
approximation, Eq. (2). We will also refer to this term as
“11” to follow standard notation in SPT. The SPT expres-
sion incorporates two new terms which are scale- and time-
dependent. The second term of the sum, we will refer to as
“22”; and the third, as “13”.
A shortcoming of SPT is that the sum of P22ðkÞ and

P13ðkÞ terms tends to cancel out at large wave numbers,
leading to unstable numerical predictions. Regularizations
of these terms [31] are known to stabilize the calculation in
the presence of these large cancellations. In the case of
unequal time correlations, the rescaling of each term by
powers of the growth factor break the exact cancellation,
allowing for better numerical convergence [Eq. (16)].
Nevertheless, we expect SPT to be most successful below
a typical k≲ 0.2–0.3 h=Mpc. We will see in Sec. IV B that
the Zel’dovich approximation provides a more stable and
accurate expression for unequal-time power spectrum
calculation.

IV. RESULTS

A. Comparison to simulations

To assess the accuracy of the Zel’dovich approximation
for modeling unequal time correlators, we perform a set of
comparisons between the predictions derived in the pre-
vious sections and numerical simulations. To this end, we
use a cosmological N-body simulation of 200 h−1Mpc on
each side ran with the smoothed-particle-hydrodynamics
code GADGET [32,33]. The cosmology adopted for this run is
consistent with current constraints from the cosmic micro-
wave background obtained by thePlanck collaboration [34].
The configuration of cosmological parameters used corre-
sponds to a flatΛCDMuniversewith a darkmatter density of
Ωc ¼ 0.26, a baryon density of Ωb ¼ 0.05, a primordial
spectral index of ns ¼ 0.96, a Hubble constant of H0 ¼
67.27 km=sMpc−1 and σ8 ¼ 0.831. The dark matter par-
ticle mass was MDM ¼ 7.8 × 109 M⊙. The simulation out-
puts span the range 0 ≤ z ≤ 2, which are typically of interest
to future lensing surveys. All equal and unequal time power
spectra of the simulated matter density field were obtained
by using the publicly available software GENPK [35].
We tested the accuracy of the Zel’dovich approximation

by comparing the simulated cross-spectra, Psimðk; z; z0Þ, to
our analytical prediction derived in Sec. II. We normalize
Psimðk; z; z0Þ by the more commonly adopted geometrical
approximation, effectively showing our results in terms of
the ratio

rsim ≡ Psimðk; z; z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psimðk; zÞPsimðk; z0Þ

p ; ð17Þ

where all power spectra are computed directly from the
simulations. To assess the accuracy of the Zel’dovich
approximation, we compare rsim to

rZel ≡ Psimðk; z̄Þe−½Dðz0Þ−DðzÞ�2ðk=kNLÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psimðk; zÞPsimðk; z0Þ

p ; ð18Þ

i.e., the unequal time power spectrum estimate is obtained by
using Eq. (11), replacing the Zel’dovich autopower spectrum
with Psimðk; z̄Þ. As a reminder, z̄ is obtained by numerically
solving the requirement thatD2ðz̄Þ ¼ DðzÞDðz0Þ. One could
alternatively adopt

r0Zel ≡ e−½Dðz0Þ−DðzÞ�2ðk=kNLÞ2 : ð19Þ

In practice, the difference between rZel and r0Zel is≲5% for all
z and z0 considered and in the k < 1.5 hMpc−1 range, where
r is significantly above zero. For the adopted cosmology, we
also estimated kNL ¼ 0.24 hMpc−1 from Eq. (12).
We chose two reference redshifts z ¼ f1.02; 0.58g for

which to obtain Psimðk; z; z0Þ, which represent the typical
mean redshift of the next and current generation of weak
lensing surveys, respectively. We then sampled z0 over the
range of interest for these surveys, considering both large
and small redshift separations. These two limits are
representative of the typical redshift uncertainty due to
photometric redshifts (i.e., Δz≡ jz − z0j ≃ 0.04) and of the
separation between typical tomographic bins (i.e., up to
Δz ≃ 1). For each z0, we show in Fig. 1 the comparison
between rsim (solid lines) and rZel (dashed lines). The
results demonstrate that the Zel’dovich approximation
gives an excellent prediction for the ratio of the cross-
spectrum to the geometric mean for both reference redshifts
and throughout the whole range of z0 considered. The
exponential factor introduced by the Zel’dovich approxi-
mation is crucial to account for large-scale flows, as
discussed at the end of Sec. II. The geometric linear mean
approximation (black dotted horizontal lines) systemati-
cally and significantly overpredicts the cross-power spec-
trum at k≳ 1 hMpc−1. The error in the suppression factor,
given by rsim − rZel, is limited to< 10% (and is typically of
order 5%) for all z and z0, even up to k ¼ 10 hMpc−1. This
is likely to be accurate enough for any practical purposes
given that the suppression factor anyway constitutes only a
small correction to observables (see Sec. V).
Notice thatwe havenot, at anypoint, attempted to validate

predictions of the overall amplitude and scale dependence of
the matter power spectrum in SPT nor in the Zel’dovich
approximation. The modeling approach presented in this
work aims for successfully describing rsim alone.

B. Comparison to standard perturbation theory

We compute the SPT prediction for the ratio of the
unequal time power spectrum to the geometric mean by
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defining rSPT in complete analogy with Eq. (17). We
compare this prediction to rsim and rZel in Fig. 2. To obtain
the SPT one-loop power spectra, we use the publicly
available PKD

4 software [36] for computing P22ðkÞ and
P13ðkÞ, similarly to Ref. [9].
We choose z ¼ 0.58 and consider the large-difference

case (z0 ¼ 1.07, left panel), as well as a more typical
photometric redshift bin width (z0 ¼ 0.54, right panel). We
see that the Zel’dovich approximation is much more
accurate than SPT in both limits for predicting the ratio

between the cross-spectrum of the density field and the
geometric mean of the autospectra at z and z0.

V. APPLICATIONS

The Zel’dovich approximation to unequal time power
spectra can be applied to the modeling cosmological
observables when the redshift range is wide, or when
two fields that are being cross-correlated are separated by a
large redshift baseline. For example, the Zel’dovich
approximation could provide an alternative avenue for
modeling the unequal time power spectrum for weak
lensing [4] and clustering [5] in photometric surveys.
However, the contribution of the unequal time correlator

FIG. 1. The predicted ratio between the cross-spectrum of the density field at z and z0 ¼ zþ Δz and the geometric mean of the
autospectra. Specifically, we compare rsim (Eq. (17), solid lines) and rZel (Eq. (18), dashed lines). The top panels adopt z ¼ 1.02 as a
reference redshift; while the bottom panels use z ¼ 0.58. These are intended to represent the typical mean redshift of future and current
weak lensing surveys, respectively. From left to right, we vary Δz ¼ z0 − z in the range 0 ≤ z0 < 2. Overall the Zel’dovich
approximation, which to leading order is a simple exponential suppression of small-scale power given by Eq. (19), accurately describes
the decorrelation of density fields due to dynamical evolution. The horizontal dotted line in each panel represents the geometric mean
(linear theory) prediction.

4https://wwwmpa.mpa-garching.mpg.de/~komatsu/crl/list-of-
routines.html
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competes with the pure geometric effect of projection along
the light cone. In other words, in a light cone geometry,
widely separated redshift bins are not expected to show
correlations except on very long scales, where the linear
approximation the power spectrum may be sufficiently
accurate. Since we have shown dynamical effects introduce
exponential suppression of the cross-power beyond a
characteristic wave number, we now turn to estimating
the equivalent wave number for projection effects.

A. Competition with projection effects

Let us temporarily ignore all dynamical effects discussed
above and consider the impact of projection effects alone.
We define the three-dimensional correlation function of the
density field at a given redshift and as a function of the
projected comoving radius, r⊥, and line-of-sight comoving
distance, Π, as

ξδδðr⊥;Π; zÞ ¼
Z

dk2⊥dkz
ð2πÞ3 Pðk; zÞeiðk⊥·r⊥þkzΠÞ; ð20Þ

where k2 ¼ k2⊥ þ k2z . The projected 2D correlation function
wðr⊥; zÞ is then given by the integral over the line of sight:
wðr⊥; zÞ ¼

R
dΠξδδ. Within a finite line-of-sight interval

½−Πmax;Πmax�, this can be expanded to give

wðr⊥; zÞ ¼
1

π2

Z
∞

0

dk⊥k⊥J0ðk⊥r⊥Þ

×
Z

∞

0

dkz
sinðkzΠmaxÞ

kz
Pðk; zÞ: ð21Þ

We thus define a projected5 two-dimensional power spec-
trum analogue as

P2Dðk⊥;Πmax; zÞ ¼
Z

∞

0

dkz
sinðkzΠmaxÞ

kz
Pðk; zÞ: ð22Þ

To study the impact of the projection, let us start
by defining a hypothetical survey with a 20 h−1Mpc
line-of-sight bin, i.e., with a projected power spectrum
P2Dðk⊥Þ≡ P2Dðk⊥;Πmax ¼ 10 h−1 MpcÞ. We will center
our survey on z ¼ 0.58, and suppress this z dependence
from the notation for brevity. Next, we consider increasing
the width of the survey bin incrementally in 10 h−1Mpc
slices, and ask how much additional power is introduced to
the projected density distribution by these increasingly
distant regions. We define the increment of the two-
dimensional power spectrum at each step as

ΔP2Dðk⊥;ΠmaxÞ ¼ P2Dðk⊥;ΠmaxÞ
− P2Dðk⊥;Πmax − 10 Mpc=hÞ: ð23Þ

Figure 3 shows the ratio ΔP2Dðk⊥;ΠmaxÞ=P2Dðk⊥Þ for
Πmax ¼ 20, 30, 40 and 50 Mpc=h. In other words, each line

FIG. 2. The predicted ratio between the cross-spectrum of the density field at z and z0 and the geometric mean of the autospectra,
including the SPT case. The left panel corresponds to z0 ¼ 1.07 and z ¼ 0.58, and the right panel, to z0 ¼ 0.54 and z ¼ 0.58. In this
figure, the simulation is represented by the green triangles [rsim, Eq. (17)], the Zel’dovich approximation by the red dashed line [rZel,
Eq. (18)] and the SPT predictions are shown in orange. The solid orange line represents the sum of the different SPT terms that
contribute up to second order on the density field. Each of the terms is shown in orange with different line styles: 11 (dashed), 22 (dot-
dashed), the absolute value of 13 (dotted). SPT predictions are accurate up to k ¼ 0.3 h=Mpc depending on the specific application.
Note that for the Zel’dovich prediction, we are plotting Eq. (11), while for the simulations we divide the simulated cross-spectrum
between the two redshifts by the geometric mean of the simulated autospectra. For SPT, we normalize by the geometric mean of the SPT
prediction.

5Note that an alternative and closely related quantity of interest
is the cross-power between two thin slices separated by Πmax. We
verified that characteristic decorrelation scale and conclusions
below are unaltered by considering this alternative quantity,
which is obtained by removing the kz denominator and replacing
sin by cos in the integrand of Eq. (22).
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shows the additional 2D power introduced as the notional
survey bin is broadened along the line-of-sight. The most
important effect is that contribution to the observable power
is exponentially suppressed beyond k⊥ ¼ 1=Πmax. (In
addition, the overall amplitude of ΔP2Dðk⊥Þ also decreases
as the slices become separated more widely.)
To understand why projected power is rapidly sup-

pressed in the limit where k⊥Πmax ≫ 1, note that the
integrand of the projected power (22) is highly oscillatory.
The point k⊥ ¼ 1=Πmax is indicated in Fig. 3 by stars, and
indeed we can see that the exponential decorrelation takes
hold at this typical scale.
To compare this projection decorrelation scale with the

dynamical decorrelation scale calculated via the Zel’dovich
approximation, we require to convert both into redshift
space. For the projection effects, if the two observed line-
of-sight slices are spaced by a sufficiently small redshift
interval Δz, the corresponding comoving distance is
cΔz=HðzÞ, and thus the decorrelation wave number asso-
ciated with pure geometry is

kgeomΔz ¼
HðzÞ
c

: ð24Þ

On the other hand, from dynamical structure growth as
approximated by Eq. (11), the decorrelation wave number is

kdynΔz ¼ kNL

�
dDðzÞ
dz

�
−1
: ð25Þ

These two estimates are compared in Fig. 4 to show that the
dynamical effects always apply at vastly larger wave
numbers (i.e., much smaller scales) than pure geometrical

decorrelation. Thus we should expect geometric and pro-
jection effects to bemore important, by orders ofmagnitude,
than dynamical effects.
The suppression factor is roughly equivalent to the ratio

between the free-fall velocities from structure formation to
the speed of light. This is because pure projection effects
decorrelate cross-spectra on scales comparable to the line-
of-sight separation of two slices. In agreement with this
heuristic picture, Fig. 4 shows that, at high redshift, the
separation of scales becomes progressively stronger and
dynamical effects therefore matter even less. Of course this
is a vastly simplified model of true observations, so our
result does not rule out that dynamical unequal-time effects
have some role to play in precision cosmology—but it does
suggest that they should always be subdominant.
The commonly adopted Limber approximation [37]

essentially makes use of the geometric decorrelation when
assuming that modes contributing to cosmological observ-
ables are typically transverse to the line of sight [38]. In the
phrasing of the unequal time correlator, the contribution of
Pðk; z; z0Þ to observables can be neglected when z ≠ z0.
However, this assumption fails at large scales (k ≪ kgeom),
as correlation is preserved, and thus full-sky observables
need to be modeled beyond the Limber approximation. In
that regime, we have seen that the geometric linear model
for the matter power spectrum, Eq. (2), becomes accurate.

B. Are there any circumstances in which unequal
time correlators matter?

The intrinsic correlations of galaxy shapes [39,40]
are a known contaminant to weak lensing cosmology.
Reference [41] demonstrated that it becomes crucial to

FIG. 4. Comparison of the pure geometric and dynamical
decorrelation scales, where the latter is computed using the
Zel’dovich approximation and the former is given by a rough
estimate described in the text. The pure geometric decorrelation
always applies at vastly larger scales and therefore dominate over
dynamical effects for most conceivable observables.

FIG. 3. Geometric decorrelation of cosmological 2D power
spectra for successive comoving line-of-sight separations in the
absence of the dynamical effects. Each line shows the ratio
ΔP2Dðk⊥Þ=P2Dðk⊥Þ for successive 10 h−1 Mpc slices in line-of-
sight distance. Farther away slices contribute less to the projected
two-dimensional power spectrum and, at high k⊥ ≫ 1=Πmax, stop
contributing any power at all. The stars indicate the point at which
k⊥ ¼ 1=Πmax, justifying the use of this relation as a characteristic
decorrelation scale associated with projection or geometry.
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model the cross-correlation between the matter field
responsible for gravitational lensing, and the intrinsic
shapes of galaxies sourced by the tidal field of the large-
scale structure. Intrinsic alignments have been observed to
high significance in current surveys, most recently in the
LOWZ sample of the Baryon Acoustic Oscillation Survey
[42] and they have been proposed as a probe of cosmology
in their own right [7,43–45].
One of the main uncertainties in the modeling of intrinsic

alignments is their time evolution [6]. Current models vary
in their assumptions of when galaxies acquire their align-
ment properties. One case assumes that galaxies react
instantaneously to the effect of large-scale tides (although
this hypothesis is under pressure from theoretical argu-
ments [46]). Other scenarios assume that galaxies establish
their alignment at some earlier redshift and evolve passively
thereafter (see discussion in [47]). In this second type of
scenario, the Zel’dovich approximation can be a viable
alternative to model the correlation between the matter field
at a given redshift and the alignment sourced by the tidal
field at a given earlier epoch. We plan to explore this
avenue of study in future work.
In recent work, Ref. [48] made predictions of intrinsic

alignment observables assuming that galaxies established
their alignment at an initial position and redshift and
evolved passively thereafter. In their approach, the
Zel’dovich approximation was applied in the computation
of the advection contribution, while Eulerian SPTwas used
to model the cosmological fields. Our work therefore gives
some indirect support to the approach of Ref. [48]: we have
established that a low-order Lagrangian description cor-
rectly captures the dynamical decorrelation of power even
on highly nonlinear small scales.

VI. CONCLUSIONS

In this work, we have presented an application of the
Zel’dovich approximation to model unequal time correla-
tors for cosmology which we have validated by performing
a comparison to numerical N-body simulations. We pre-
sented a simple recipe to obtain accurate predictions for
unequal time correlators by rescaling predictions for the
nonlinear matter autospectra, which can be obtained from
fits to simulations or emulators, for example.
We have also discussed the application of the Zel’dovich

approximation to unequal time correlators in the context of
future photometric galaxy surveys, and we have shown that
the impact of unequal time correlators should be subdomi-
nant due to projection effects in the light cone geometry.
Nevertheless, unequal time correlators might be of use in
the modeling of certain cosmological observables such as
galaxy intrinsic alignments; in this context our work has
established that low-order Lagrangian “advection” cor-
rectly describes the decorrelation of power even at high
wave numbers, in the deeply nonlinear regime.
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