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Driven Bose-Hubbard dimer under nonlocal dissipation: A bistable time crystal
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We investigate the critical behavior of the open coherently-driven Bose-Hubbard dimer under nonlocal
dissipation. A conserved quantity arises from the nonlocal nature of the dissipation, rendering the dimer
multistable. In the weak-coupling semiclassical limit, the displayed criticality takes the form of amplitude
bistability and breaking of spatial and temporal symmetries. A period-bistable time crystal is formed, consisting
of Josephson-like oscillations. Mean-field dynamics and quantum trajectories complement the spectral analysis
of the Liouvillian in the approach to the semiclassical limit.
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I. INTRODUCTION

Phase transitions substantiated by a mean-field bifurcation
have been intimately tied to the evolution of quantum optics.
Characteristic cases include the Dicke phase transition [1],
co-operative resonance fluorescence [2], and the laser [3].
The study of quantum phase transitions in zero dimensions
[4] far from thermal equilibrium reappraises the definition
of the thermodynamic limit alongside the distinct role of
quantum fluctuations, taking the form of an ostensible devi-
ation from the mean-field dynamics [5,6]. Furthermore, the
work of Ref. [7] has already drawn the analogy between
quantum phase transitions in closed systems and dissipative
phase transitions (DPTs) in open quantum systems, through
analyzing the spectrum of the Liouvillian, while the properties
of the steady state have been assessed with respect to the
particular critical eigenvalue defining the Liouvillian spectral
gap [8]. To date, DPTs attract a significant and ongoing
interest among the communities of cold atoms, circuit QED,
and semiconductors (see, e.g., Refs. [9–16]).

In that background, the interplay between coherence and
dissipation renders the Bose-Hubbard dimer (BHD) a suit-
able candidate for assessing the role of conserved quantities
and the associated symmetries in dissipative quantum phase
transitions. A transition from intermittent entanglement to a
persistently entangled state was demonstrated a few years ago
for a dissipative BHD [17]. The standard phenomenological
approach to dissipation amounts typically to the definition
of a Liouville superoperator governing the system response,
assessed against its coherent evolution. Statistical indepen-
dence of the reservoirs the system is coupled to gives rise to
the configuration of local dissipation, while coupling to one
common bosonic reservoir generates nonlocal dissipation.

Critical behavior in the presence of a coherent drive,
leading to symmetry breaking, has been very recently taken
up for local dissipation when characterizing the quantum
correlation properties of the BHD [18,19]. In many cases,
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local dissipation is well justified and often greatly simplifies
the analysis of the transient and the steady state. In reality,
however, different collective modes have different dissipation
rates, giving rise to some amount of nonlocal dissipation.

In this work, we demonstrate the importance of the nonlo-
cality of the dissipation in the open coherently-driven BHD.
A continuous swapping symmetry together with a conserved
quantity arises, leading to the occurrence of quantum multi-
stability [20]. Alongside the familiar first-order DPT [21] as-
sociated with semiclassical amplitude bistability, with origins
in the quantum Duffing oscillator [22], the BHD breaks the
spatial swapping symmetry as well as the time invariance of
the steady state. By studying the closure of the Liouvillian
gap as we approach a weak-coupling semiclassical limit, we
show that a dissipative time-crystal [23–29] with Josephson-
like oscillations is formed. We find that two different time-
crystalline periods coexist in the parameter regime of semi-
classical bistability. We employ and compare the semiclassical
Gross-Pitaevskii equations, quantum trajectories, and numer-
ical solutions of the Master Equation in a truncated Hilbert
space in order to fully appreciate the novel phases.

II. THE MODEL

We consider a BHD whose dynamical evolution is gov-
erned by the Lindblad equation (with h̄ = 1)

∂t ρ̂ = −i[Ĥ, ρ̂] + γD[â1 + â2](ρ̂) ≡ L(ρ̂ ). (1)

Here, D[L̂](•) = L̂ • L̂† − (1/2){L̂†L̂, •} is the dissipator,
while the system Hamiltonian under coherent drive, in a frame
rotating with the pump frequency ωp, reads

Ĥ =
∑

i=1,2

−�â†
i âi + Uâ†

i â†
i âiâi + F (â†

i + âi )

− J (â†
1â2 + â1â†

2), (2)

where âi is the i-mode bosonic annihilation operator, � =
ωp − ωc is the detuning between the pump and the resonant
mode frequencies, ωp and ωc respectively, U is the interaction
strength, F is the driving amplitude, and J is the intermode
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coupling. For nonlocal dissipation, L̂ = â1 + â2. The driving
term originates from the interaction of the two bosonic modes
â1,2 with a coherent source treated as a (semi)classical field.
Drive and decay only affect the bonding mode (â1 + â2)/

√
2,

which couples to the antibonding mode (â1 − â2)/
√

2 solely
via the nonlinearity. We rescale the pump amplitude and
the interaction with the help of a generic parameter N (the
analog of the laser saturation photon number, for instance), as
F = √

NF̃ and U = Ũ/N , such that
√

UF is constant for any
N . This allows us to consider a well defined weak-coupling
thermodynamic limit, N → ∞, where the boson number di-
verges (〈â†

i âi〉 ∝ N). In this limit, quantum fluctuations are
negligible, and a semiclassical analysis is adequate [19]. Our
system exhibits three important properties delineated below.

The first one is the presence of a continuous symmetry
L(Û (φ) • Û (φ)†) = Û (φ)L(•)Û (φ)† generated by the uni-
tary operator Û (φ) = eiφẐ2 (for real φ), with the swapping op-
erator Ẑ2 = ∑

n1,n2
|n1, n2〉 〈n2, n1| (written in the Fock-state

basis of the two individual modes). The swapping operator
is a conserved quantity. This is only possible due to the
nonlocality of the dissipation [30] and is the origin of quantum
multistability [20]. Since there are infinitely-many possible
initial expectation values of Ẑ2, there are also infinitely-many
steady states. This is true for any value of N . For a finite
N , the steady state reads ρ̂ss = r̂0,1 + c0,2r̂0,2, where r̂0,1 is
a density matrix while r̂0,2 is not, and the coefficient c0,2 =
Tr[Ẑ2ρ̂(0)] depends on the initial condition. This steady state
is symmetric, i.e., Û (φ)ρ̂ssÛ †(φ) = ρ̂ss, irrespective of the
initial condition.

Secondly, the system we consider presents limit cycles [31]
in the limit N → ∞. These are persistent periodic oscilla-
tions in the infinite time limit of the dynamical evolution.
Recently, an open quantum system with this property has
been termed a boundary time crystal [24]. It is there argued
that while the total Hamiltonian (of the boundary, the bulk,
and their coupling interaction) is time-translation invariant,
the boundary system presents limit cycles, thus breaking the
global time-translation symmetry and forming time crystal
with a nonrigid period that is allowed to change continuously
as a function of the system parameters. Our system satisfies
the same conditions. The dependence on the period of the
coherent drive can be eliminated by a gauge transformation.
This means that any emergent periodic response stems from a
continuous breaking of time-translation invariance in contrast
to the discrete fashion due to the presence of a Floquet-map
eigenvalue in the unit circle [25,28]. The steady state of
the BHD, which spontaneously breaks the time-translation
invariance of the Liouvillian, assumes the form (for N → ∞)

ρ̂ss(t ) = r̂0,1 +
D0∑

d=2

c0,d r̂0,d +
D1∑

d=1

(c1,d ei|λ1|t r̂1,d + H.c.), (3)

where L(r̂n,d ) = λnr̂n,d , cn,d are coefficients depending on
the initial system density matrix ρ̂(0), and λ1 is a purely
imaginary eigenvalue responsible for the formation of a limit
cycle [32]. The upper limits D0 and D1 in the sums of the
right-hand side in Eq. (3) are unknown. The index d =
1, ..., Dn labels the degeneracy of the eigenvalue λn. In princi-
ple, one could prepare an initial condition such that the coeffi-
cients c1,d vanish and the system reaches a time-independent

steady state. For a system prepared in such a manner, an
infinitesimal disturbance would lead to c1,d 	= 0 with some
degeneracy d , causing the response to oscillate ceaselessly
and forming a time crystal. This could in principle be observed
in any time-delayed two-point measurement.

Finally, the system response is determined by semiclassical
complex-amplitude bistability as N → ∞. This is known to
occur in the BHD under local dissipation for the same driving
configuration as the one we consider here [33]. Semiclassi-
cal bistability manifests itself as a region in the parameter
space where two semiclassical fixed points, with different
complex amplitudes, appear. In our model, we will show that
two attractors, specifically limit cycles with different periods,
coexist in this region.

III. RESULTS

In order to assess the system behavior as N → ∞ we resort
to the Gross-Pitaevskii (semiclassical) approach, in which
the operators in the Heisenberg picture are replaced by their
expectation values αi = 〈âi〉. We remark that our continuous
swapping symmetry is intrinsically quantum and cannot be
captured by the semiclassical picture, where it shows up
merely as a discrete swapping symmetry α1 ↔ α2. We com-
pare the semiclassical predictions with the calculations in the
quantum regime for increasing values of N .

In Fig. 1(a) we depict the steady state expectation value
of the rescaled total number of bosons n̂tot/N = (â†

1â1 +
â†

2â2)/N as a function of the rescaled pump amplitude F̃/γ =
F/(

√
Nγ ). We present in color the quantum results for differ-

ent values of N . The continuous (dashed) black lines indicate
stable (unstable) semiclassical fixed points. One can see that
as N increases, the occupation number in the quantum regime
approaches one of the two semiclassical stable branches. The
transition between the two branches becomes increasingly
sharper, suggesting the formation of a discontinuous jump, as
one would expect from a first-order DPT [8,21].

The basin of attraction of the stable fixed points is just
the two-dimensional plane given by α1 = α2 in the four-
dimensional phase space defined by the real and imaginary
parts of α1 and α2. A randomly chosen initial condition gener-
ates a trajectory that most certainly avoids the plane, converg-
ing to one of the families of limit cycles which revolve around
the stable fixed points. The amplitude of the attained limit
cycle is determined by the initial difference in the coherent
states α1(0) − α2(0), although its period is solely dependent
on the set of parameters entering in Eq. (1), except in the
region of bistability, where limit cycles with two different
frequencies have different basins of attraction. Interestingly,
the limit cycles break the swapping symmetry. They are the
so-called Josephson oscillations. A typical example of these
oscillations is depicted in Fig. 1(b).

In Fig. 1(d), we show the five eigenvalues whose real parts
are closer to zero (defining the sequence of the gaps), for
increasing values of N . We distinguish them using different
colors and markers according to the proximity of their real
parts to the zero eigenvalue (which is doubly degenerate—for
the identity and the swapping operator). We consider only one
of the two complex eigenvalues forming a conjugate pair. It is
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FIG. 1. Limit cycles and the Liouvillian spectrum. (a), (c) Steady-state total number of bosons 〈n̂tot〉/N and the first five Liouvillian
gaps, respectively, as a function of F̃/γ for different values of N . In (a) the black solid and dashed lines, denoted by SC, depict semiclassical
predictions. In (c) the semiclassical limit-cycle frequencies are juxtaposed (in black squares) to the plot depicting the imaginary part of the gaps
for N = 4. (b) Relative phase φ = Arg[α1] − Arg[α2] (dashed red) and population difference z = (|α1|2 − |α2|2)/N (blue) versus time in the
semiclassical Josephson limit cycle for F̃/γ = 0.4. The 40γ −1 time window is centered around t0 = 3.5 × 105γ −1. (d) Quantum second-order
correlation function g(2)(τ ) (symmetric with respect to the two modes i = 1, 2) for three different pump amplitudes in the quantum regime and
N = 5. The parameters are: �/γ = 0.7, J/γ = 1.5, and Ũ/γ = 1. The Fock space per site is truncated at 10, 14, 18, 21, and 24 bosons for
N = 1, 2, 3, 4, and 5, respectively.

evident that all the gaps are closing with growing N . Eigen-
value crossings are also visible, while for moderate pump
strengths there is an eigenvalue with an inverted-parabolic
shape, flattening to zero as N increases. This eigenvalue has
zero imaginary part, suggesting that it is itself responsible for
a first-order DPT in the thermodynamic limit mediated by the
presence of bistability [8].

In addition, there are two eigenvalues with a nonzero
imaginary part at low and high pump strengths. Their imag-
inary parts converge very quickly for relatively small N (at
F̃/γ = 1.65 we have a maximum of ∼13 bosons for N = 4).
These are the eigenvalues responsible for the limit cycles as
N → ∞. To illustrate this point, we show the frequencies of
the semiclassical limit cycles (in black squares) in the plot
N = 4. For low pump values, the scaled frequency Im[λ]/γ
has already reached its N → ∞ value for N = 4. As we have
already anticipated, two limit cycles with different periods co-
exist in the semiclassical bistable region (1.02� F̃/γ � 1.1).
Either one or the other is reached in the long-time
limit, depending on the amplitude of the initial coherent
state.

The closure of the first gap for all the pump values
we have considered suggests a critical slowing down
transcending the bistability region, in contrast with
local dissipation [32]. To show this we employ the
time-delayed second-order correlation function [16]
(symmetric with respect to the two modes i = 1, 2)

g(2)(τ ) = 〈â†
i (0)â†

i (τ )âi(τ )âi(0)〉ss / 〈â†
i âi〉2

ss = Tr[â†
i (0)âi(0)

eτL(ρ̂ ′)]/ 〈â†
i âi〉ss, where ρ̂ ′ = âiρ̂ssâ

†
i / Tr[â†

i âiρ̂ss] is the
state of the system after an initial detection of the mode
i and is evolved during a time τ before making a second
measurement. The subscript ss refers to the steady state.
After a sufficiently long time, if the steady state is unique,
g(2)(τ ) will relax to the value of 1, due to its normalization.
In Fig. 1(c) we plot g(2)(τ ) for three pump values. One can
observe that the correlations take a long time to decay for
F̃/γ = 0.5, far below the bistability region. Furthermore,
the function does not always converge to 1. This is a
clear manifestation of the infinite number of steady states:
The initial detection changes the value of the conserved
quantity 〈Ẑ2〉, so the system must relax to a different steady
state.
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FIG. 2. Emergence of limit-cycle oscillations. Normalized popu-
lation difference z = 〈â†

1â1 − â†
2â2〉/N as a function of time and the

respective Fourier transform for two different pump values: F̃/γ =
0.4 in (a) and F̃/γ = 1.05 in (b) and (c). The initial condition is
a scaled coherent state |α1 = 0, α2 = 0.1

√
N〉 in (a) and (b) and

|α1 = 0, α2 = √
N〉 in (c). In the bistability region (F̃/γ = 1.05)

these initial states lead to the lower and upper semiclassical branches
[see Fig. 1(a)], respectively. For finite N , the results in (a) are
obtained by solving Eq. (1), while in (b) and (c) by averaging over
5000 quantum trajectories. The Fock space per site is truncated at 30
bosons for N = 15 in (a) and at 90 for N = 25 in (b) and (c). The
rest of the parameters are the same as in Fig. 1.

Figure 2 clearly depicts the emergence of the periodic
oscillations as N → ∞. In frames (b) and (c), we can ob-
serve frequency bistability, starting from two different initial
conditions. Here we are in the semiclassical bistability region
with finite N , where the oscillations are damped. Moreover,
we show in Ref. [32] that single trajectories Fourier transform
as well to a neat frequency peak matching that of the semiclas-
sical response (apart from a small deviation due to stochastic
jumps).

In the bistability region, a single quantum trajectory ev-
idences switching between the dim and bright metastable
states [6]. This is accompanied by a frequency switch for
the oscillations between the two (frequency) branches drawn
in Fig. 1(c) for N = 4. However, for large but finite N , the
inverse of the switching rate is larger than the lifetime of
the oscillations, which means that on average one obtains an
oscillation frequency corresponding to either the lower or the
upper branches of Fig. 1(c), depending on the initial condition
[see Figs. 2(b) and 2(c)].

In Fig. 2(c), one can notice a mismatch between the fre-
quency peaks in the semiclassical and the quantum regimes

for N = 25. There are two reasons for this: (i) the semiclassi-
cal evolution remains transient and the frequency has not yet
attained its limit-cycle value (which depends nonlinearly on
the mode population and therefore decreases in the long-time
limit), (ii) the imaginary part of the Liouvillian eigenvalue
responsible for the oscillations has not yet converged to its
N → ∞ value.

We now propose a mechanism accounting for the observed
periodic oscillations. When Ũ = 0, bonding and antibonding
modes are decoupled, and the antibonding mode evolves
coherently giving trivial periodic oscillations in both the quan-
tum and semiclassical regimes. When Ũ 	= 0, the interaction
term becomes very inefficient in coupling both modes when
the antibonding-mode population is sufficiently small. The
emergence of the limit cycles is then due to an effective
decoupling between the two modes (see also Ref. [32] for
further details).

IV. DISCUSSION

Nonlocal dissipation for open quantum systems without
detailed balance has been considered in the context of noise-
less subsystems or decoherence-free subspaces [34,35], in
cold atoms or many-body spin systems [24,36–38], and in
a recent proposal of a Floquet time crystal [25]. In general,
that type of dissipation is either engineered or appears as
a consequence of photon-mediated long range interactions.
The specific form of Eq. (1) can be derived [32] from first
principles if one considers that both modes in our system
have the exact same coupling with a single bosonic bath. This
approach is similar to Ref. [34].

In practice, the assumption of identical coupling between
the two modes and the environment is idealistic. While the
coupling strength between the two system modes and the
reservoir modes (with frequencies in the vicinity of the driving
frequency) could be equal, in general the relative phases will
be different [32]. This implies a mixture of bonding and
antibonding dissipation and, in turn, the mixture of local and
nonlocal dissipation following a change of basis. An impor-
tant question, then, concerns the implications of a broken sym-
metry with respect to the swapping operation in the presence
of a small yet non-negligible amount of dissipation for the
antibonding mode. This perturbation has the consequence of
lifting the degeneracy of the zero eigenvalue in the Liouvillian
spectrum and also destroying the limit cycles. However, as we
show in Ref. [32], periodic oscillations persist for long times,
and the time-crystalline period is robust.

The BHD has already been studied in the laboratory [14].
The type of dissipation in our model could be realized in a
circuit QED experiment coupling two degenerate modes to
a microwave resonator at a single spatial location, where the
wave function overlap between the resonator mode and both
system modes is identical. Alternatively, it could be realized
with polaritons in two coupled semiconductor micropillars
if the bonding and antibonding mode linewidths differ by
two orders of magnitude or more. This could be achieved by
etching the sample in such a way that the nonradiative losses
[39] of the bonding mode make the dominant part of the total
dissipation.
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Harouri, L. LeGratiet, O. Bleu, D. Solnyshkov, G. Malpuech,
I. Sagnes, S. Ravets, A. Amo, and J. Bloch, Nat. Photon. 13,
283 (2019).

[40] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun.
183, 1760 (2012).

[41] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun.
184, 1234 (2013).

[42] B. Buca, J. Tindall, and D. Jaksch, Nat. Commun. 10, 1730
(2019).

[43] I. L. Aleiner, B. L. Altshuler, and Y. G. Rubo, Phys. Rev. B 85,
121301(R) (2012).

[44] K. Rayanov, B. L. Altshuler, Y. G. Rubo, and S. Flach, Phys.
Rev. Lett. 114, 193901 (2015).

[45] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan,
Phys. Rev. Lett. 116, 240404 (2016).

[46] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[47] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2002).
[48] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack,

R. Silva, J. B. Brask, and N. Brunner, New J. Phys. 19, 123037
(2017).

[49] F. Ciccarello, Quantum Meas. Quantum Metrol. 4, 53 (2018).
[50] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,

F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. Von
Keyserlingk, N. Y. Yao, E. Demler, and M. D. Lukin, Nature
(London) 543, 221 (2017).

054303-5

https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1002/qute.201970013
https://doi.org/10.1103/PhysRevA.18.1571
https://doi.org/10.1103/PhysRevA.18.1571
https://doi.org/10.1103/PhysRevA.18.1571
https://doi.org/10.1103/PhysRevA.18.1571
https://doi.org/10.1103/PhysRevA.2.1170
https://doi.org/10.1103/PhysRevA.2.1170
https://doi.org/10.1103/PhysRevA.2.1170
https://doi.org/10.1103/PhysRevA.2.1170
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1109/3.7075
https://doi.org/10.1109/3.7075
https://doi.org/10.1109/3.7075
https://doi.org/10.1109/3.7075
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1073/pnas.1306993110
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1103/PhysRevA.88.063606
https://doi.org/10.1103/PhysRevA.88.063606
https://doi.org/10.1103/PhysRevA.88.063606
https://doi.org/10.1103/PhysRevA.88.063606
https://doi.org/10.1103/PhysRevA.94.063805
https://doi.org/10.1103/PhysRevA.94.063805
https://doi.org/10.1103/PhysRevA.94.063805
https://doi.org/10.1103/PhysRevA.94.063805
https://doi.org/10.1103/PhysRevA.95.013812
https://doi.org/10.1103/PhysRevA.95.013812
https://doi.org/10.1103/PhysRevA.95.013812
https://doi.org/10.1103/PhysRevA.95.013812
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevE.97.020202
https://doi.org/10.1103/PhysRevE.97.020202
https://doi.org/10.1103/PhysRevE.97.020202
https://doi.org/10.1103/PhysRevE.97.020202
http://arxiv.org/abs/arXiv:1807.09884
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1088/1367-2630/aaf18b
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevLett.122.015701
https://doi.org/10.1103/PhysRevLett.122.015701
https://doi.org/10.1103/PhysRevLett.122.015701
https://doi.org/10.1103/PhysRevLett.122.015701
https://doi.org/10.1088/1742-5468/ab0c1c
https://doi.org/10.1088/1742-5468/ab0c1c
https://doi.org/10.1088/1742-5468/ab0c1c
http://link.aps.org/supplemental/10.1103/PhysRevB.100.054303
https://doi.org/10.1103/PhysRevA.95.043833
https://doi.org/10.1103/PhysRevA.95.043833
https://doi.org/10.1103/PhysRevA.95.043833
https://doi.org/10.1103/PhysRevA.95.043833
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevA.57.3276
https://doi.org/10.1103/PhysRevA.57.3276
https://doi.org/10.1103/PhysRevA.57.3276
https://doi.org/10.1103/PhysRevA.57.3276
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevA.47.1336
https://doi.org/10.1103/PhysRevA.47.1336
https://doi.org/10.1103/PhysRevA.47.1336
https://doi.org/10.1103/PhysRevA.47.1336
https://doi.org/10.1103/PhysRevA.89.023616
https://doi.org/10.1103/PhysRevA.89.023616
https://doi.org/10.1103/PhysRevA.89.023616
https://doi.org/10.1103/PhysRevA.89.023616
https://doi.org/10.1103/PhysRevA.97.053616
https://doi.org/10.1103/PhysRevA.97.053616
https://doi.org/10.1103/PhysRevA.97.053616
https://doi.org/10.1103/PhysRevA.97.053616
https://doi.org/10.1038/s41566-019-0380-z
https://doi.org/10.1038/s41566-019-0380-z
https://doi.org/10.1038/s41566-019-0380-z
https://doi.org/10.1038/s41566-019-0380-z
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1103/PhysRevB.85.121301
https://doi.org/10.1103/PhysRevB.85.121301
https://doi.org/10.1103/PhysRevB.85.121301
https://doi.org/10.1103/PhysRevB.85.121301
https://doi.org/10.1103/PhysRevLett.114.193901
https://doi.org/10.1103/PhysRevLett.114.193901
https://doi.org/10.1103/PhysRevLett.114.193901
https://doi.org/10.1103/PhysRevLett.114.193901
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426

