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Abstract:  Natural hazard risk assessments predominantly focus on individual rather than multiple 

hazards. Recent years have seen greater attention given to the theory and methods of multi-hazard risk 

assessment (MHRA), but there is no widely agreed definition of MHRA and no clear routes for 

overcoming the problems associated with existing multi-hazard risk assessment approaches. We begin to 

address these knowledge gaps by comparing two frequently used but very different MHRA methods – 

risk index and mathematical statistics methods. The risk index method computes MH risk from risk 

factors (hazard, vulnerability, exposure), while the mathematical statistics method integrates historical 

time-series data to calculate MH risk. These methods were applied within the context of China’s Yangtze 

River Delta Region, comprising 85 million people in 140 administrative units. The analysis illustrates the 

inconsistency of existing MHRA methods. For example, the Zhabei and Hongkou districts rank 2nd and 

4th respectively, in terms of MH risk, according to the risk index method, but 132nd and 131st using the 

mathematical statistics method. In addition, neither method is able to account for interaction between 

different hazards, such as those observed in the 2011 Tohoku earthquake in Japan, and the subsequent 

tsunami and nuclear power station meltdown at Fukushima Daiichi. A refined MHRA model based on 

scenario simulation is therefore proposed and its relative merits discussed.  

 

Keywords: Multi -hazard risk assessment; risk index; mathematical statistics; scenario simulation 

 

1. Introduction 

The impacts of one hazardous event are often exacerbated by interaction with other hazards (e.g. the 

2011 Tohoku earthquake which led to a tsunami and subsequently the Fukushima Daiichi nuclear 

disaster), whilst some hazards occur one after another in quick succession without an evident common 

cause, for example in China’s Yangtze River Delta flooding may be caused by a typhoon, and by 

monsoonal (i.e. non-typhoon) rainfall from June to August each year. The short time period between 

events may reduce disaster resilience and recovery, and hence is indicative of greater risk than when 

events are considered individually. The problem is that by investigating single hazards in isolation to 

each other, the overall natural risks for these areas may be underestimated. To avoid this pitfall, more 

attention should be paid to multi-hazard risk assessment (MHRA).  
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Many studies have been carried out examining the theory and methods of MHRA (Armonia, 2006; Di 

Mauro et al., 2006; Marzocchi et al., 2009). Generally speaking, MHRA is based on single-hazard risk 

assessment; the main advantage of MHRA is that it puts different types of hazards into a single system 

for a joint evaluation. In principle, it takes into account the characteristics of each hazardous event (e.g. 

probability, frequency, intensity/magnitude), and their mutual interactions and interrelations. The aim of 

MHRA is to have a holistic view of the total effects or impacts by assessing and mapping the expected 

loss, due to the occurrence of various natural hazards, on the social, environmental and economic settings 

in a given area (Dilley et al., 2005; Armonia, 2006).  

 

Broadly speaking, two main approaches to MHRA have been developed. These are: 1) a focus on 

multiple hazards which affect a given area through the development of a synthetic indicator; and 2) 

assessment of the integrated losses for a given period of time using statistical methods. MHRA methods 

are thus an extension of existing methods applied in assessment of single hazards. There are no MHRA 

studies that compare analysis of risk using these two approaches for the same area. Therefore, a 

comparison between these two methods is conducted to gain insights into the utility of the MHRA 

methods and their relative advantages and limitations. 

 

This paper compares the risk index and mathematical statistics methods (definition and methodology), 

and then applies them to the Yangtze River Delta to analyze differences, including data needs and results. 

After discussing possible reasons for differences in results, the relative merits of these two methods are 

summarized, and a refined MRHA model is proposed. 

 

2. Definition and formula of risk  

In risk index method, risk is defined as the probability of loss caused by the interaction between the 

vulnerability of exposure and the hazard. The risk expression mostly quotes the indexes of hazard, 

exposure and vulnerability (ISDR, 2004): 

 

                    Risk = Hazard x Exposure x Vulnerability                           (1) 

 

In equation 1, hazard means potentially damaging physical events which could occur in a study area; 

exposure means elements (e.g. people, crops, infrastructure) which expose to that hazard; vulnerability 

means the intrinsic characteristics of those elements that makes them more or less susceptible to adverse 

impact. 

 

The mathematical statistics method describes risk according to the probability of occurrence of an event 

and the severity it has toward human life, property and the environment, which could be expressed by the 

cross product of the probability and the probable consequence (IUGS, 1997): 

 

                      Risk =Probability x Consequence                            (2) 

In equation 2, probability represents the probability of occurrence of hazard; consequence represents the 

magnitude of impact caused on realization of the hazard.  Hence, the risk index method helps to 

understand the disaster formation mechanism and the contribution of hazard, vulnerability and exposure 

to overall risk (which is often referred to “risk formation approach” in the risk literature); while the 
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statistics method expresses risk as probabilistic loss, and can be used to predict and evaluate future 

disaster losses.  

3. Methodology 

3.1 Risk index method 

This method calculates a risk index with reference to the disaster formation approach (equation 1). 

Selection of component indicators for hazard, vulnerability and exposure, and calculation of associated 

weights are key steps in the risk index approach. The process is similar to that for an individual hazard, 

but in MHRA all single hazard risks are aggregated in a unified risk index. Some methods (Category 1 

below) first aggregate all the single hazards in a multi-hazard index and then calculate multi-hazard risk 

considering vulnerability and exposure. Others (Category 2 below) calculate single hazard risk 

considering exposure and vulnerability for all hazards and then aggregate these risks to determine 

multi-hazard risk.  

 

Category 1: This approach analyzes the hazard, vulnerability and exposure to obtain the respective 

multi-hazard, vulnerability and exposure indices. The multi-hazard risk index is then calculated by 

summation (Munich Re 2003; Schmidt-Thomé et al. 2003; Fleischhauer et al. 2005; Schmidt-Thomé 

2006a; Schmidt-Thomé 2006b; SCEMDOAG 2006). It can be expressed as:  

1 1 1

( , , )
n n n

i i i

i i i

R f H V E
= = =

= ∑ ∑ ∑                        (3) 

 

Where: R is Multi -hazard risk; Hi is Hazard; Vi is Vulnerability and Ei is Exposure. 

 

The Calculation of the Total Place Vulnerability Index in the State of South Carolina, USA 

(SCEMDOAG, 2006) used this method to calculate a multi-hazard index, aggregating all hazards with 

equal weight. An urban multi-hazard risk analysis using Geographic Information System (GIS) and 

remote sensing for Kohima Town, India (Khatsu and Van Westen, 2005) used ArcGIS software1 to 

overlay equal weighted, single hazard maps to generate a multi-hazard map. These methods do not fully 

reflect the spatial variability in various impacts of different hazards in an area. The Natural Hazard Index 

for Mega-cities (Munich Re, 2003) used average annual losses and probable maximum loss as indicators 

for hazard analysis (in a ratio of 80:20 for each relevant hazard), but the key problem here is that the 

probable maximum loss for very infrequent catastrophes is unknown. The ESPON multi-hazard 

approach (Schmidt-Thomé et al., 2003; Fleischhauer et al., 2005; Schmidt-Thomé, 2006a; 

Schmidt-Thomé, 2006b) used the Delphi method to decide weights for each hazard. Delphi analysis 

draws on collective wisdom and absorbs useful ideas, which is assumed to make the result more accurate, 

but the process is relatively complicated and protracted, which makes it difficult to apply widely. 

Furthermore, results obtained by Delphi analysis may vary according to experience of participants 

involved (i.e. familiarity bias), and are sensitive to any events that occur during the deliberative process 

(availability bias).  

 

Category 2: In this approach, each hazard risk index is first assessed individually for a given area. 

                                                             
1
 ArcGIS is proprietary software produced by Esri. It is a computer suite consisting of a group of geographic 

information system (GIS) software for working with geographic information and maps. For details, see the Esri 

website (http:// http://www.esri.com/software/arcgis). 
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Weights are then assigned to each individual hazard risk and summation is used to derive the 

multi-hazard risk index (Wood et al. 2003; JRC 2004; Bell and Glade 2004; Dilley et al. 2005; Arnold et 

al. 2006; Sales et al. 2007; Wang et al. 2008; Wipulanusat et al. 2009). This approach is depicted as:  

 

                     
1

( , , )
n

i i i

i

R f H V E
=

=∑                        (4) 

 

Where: R is Multi -hazard risk; Hi is Hazard; Vi is Vulnerability and Ei is Exposure. 

 

Most applications in this category calculate multi-hazard risk by aggregating single hazard risk using 

ArcGis or other GIS software. Examples include the European Commission’s Joint Research Centre 

(JRC)2–Multi -risk Approach (Wood et al., 2003; JRC, 2004; Sales et al., 2007), a Multi-Hazard Analysis 

in the village of Bíldudalur, Iceland (Bell and Glade, 2004), the World Bank’s methodology for Natural 

Disaster Hotspot analysis (Dilley et al., 2005; Arnold et al., 2006), the DDRM multi-risk approach 

(Fleischhauer, 2005; Armonia, 2006), and a Multi -hazard risk assessment using GIS and remote sensing 

in the Pak Phanang Basin, Thailand (Wipulanusat et al., 2009). These methods suffer the same drawback 

of the Category 1 methods, in that the multi-hazard risk index is calculated by aggregating all single 

hazard risks with equal weight, which does not adequately reflect the various impacts of different hazards 

present in the same area.   

 

Whilst both categories of methods have helped to develop the practice of MHRA and can be used to 

better compare the relative degree of danger between different areas, most applications utilize hazard, 

vulnerability and exposure to assess the final multi-hazard risk without considering probabilities and 

exceedence probabilities, and thus these methods cannot reflect the real risk situation in the study areas.   

Although the tools are useful in a relative sense for synthetic indicator, they  are less helpful in an 

absolute sense for determining integrated losses.  

 

3.2 Mathematical statistics method 

The mathematical statistics method is based upon analysis of past natural disasters. Through analysis of 

the relationship between the probability of an event, and the magnitude of the consequences of that event, 

an exceedence probability-loss curve can be built. Such curves are used to predict and evaluate future 

disaster risk. 

 

The basic model for the mathematical statistics method is shown in equation 2 above, and the associated 

loss curve in Figure 1. Loss here is the loss (damage) associated with the disaster, EP(L) is the 

exceedence probability for the corresponding loss. Both parametric and nonparametric methods are used 

to derive probabilities.  

Figure 1. Exceedence probability-loss curve 

 

 

                                                             
2
 The European Commission�s Joint Research Centre comprises seven scientific institutes in which the Institute 

for Environment and Sustainability (IES) has developed harmonized EU-wide methodologies and information 

systems for the prevention and prediction of weather-driven natural hazards in order to optimize the support and 

exchange expertise on risk reduction and management. 
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Parametric method: The mathematical theory in this method supposes that disaster losses follow a 

known distribution function. Data on historical losses are used to estimate the distribution function 

parameters, and then the probability distribution can be calculated using these parameters. In this 

distribution curve, occurrence sequences of disaster can be depicted as F(X, u1, u2, u3), with u1, u2, u3 

being the distribution parameters. Through random sampling X1, X2, X3… Xn in the X with n sample, 

distribution parameters ui= R(X1, X2, X3… Xn) can be calculated, and then the probability of different 

disaster losses can be calculated by the distribution curve. Grünthal et al. (2006) built exceedence 

probability-mean wind speed curves for windstorm risk assessment using Schmidt and Gumbel 

distributions (Gumbel, 1958). Stedinger et al. (1992) estimated the parameters by the method of 

moments for Gumbel typeϨ, Pearson type Ϫ, Weibull and Lognormal, and Grünthal et al. (2006) used 

these distributions to build exceedence probability-discharge curves for flood risk assessment. 

 

Because the factors that contribute to natural disasters are complex, there is sometimes a lack of 

historical data, and sample size is too small. These make it difficult to assume a probability distribution 

function that reflects the real situation for parameter estimation, and hence an alternative method is 

needed.  

 

Nonparametric method: The nonparametric method mainly includes histogram density estimation, 

kernel density estimation and information diffusion to derive probability estimates. Histogram density 

estimation first draws a histogram and curve according to varying degrees of disaster, then based on the 

curve type, adopts a moving average (using exponential smoothing or other methods) to analyze 

historical loss data. A mathematical statistics model can then be built to reflect the functional relationship 

between disaster degree and frequency. However, the results obtained with this method are crude and are 

influenced greatly by the interval choice. In order to overcome the disadvantages of histogram density 

estimation, Rosenblatt (1956) and Parzen (1962) proposed the use of kernel density estimation, which 

can be used to estimate the probability density function of arbitrary shapes. Kernel density estimates are 

closely related to histograms, but can be endowed with properties such as smoothness or continuity by 

using a suitable kernel. Let (x1, x2, … , xn) be a sample drawn from some distribution with an unknown 

density ƒ. Its kernel density estimator is depicted as: 

 

                          

                                     (5) 

 

 

Where K(•) is the kernel function, and h > 0 is a smoothing parameter called the bandwidth. However, the 

key problem of how to choose an appropriate smoothing parameter still remains. The information 

diffusion method was introduced by Huang (1997) to overcome this problem, and using this method can 

improve the accuracy of natural disaster risk assessment. Let losses (u1, u2, … , un) be a sample, Ti is the 

real losses in each disaster, the probability distribution can be calculated as: 

 

                        (6) 
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sample number m. Information diffusion method can use sample data to assess natural disaster risk. 

Huang (2000) showed that this method is about 28% more efficient than histogram density estimation.  

The mathematical statistics method using historical data biasing the calculation towards expected loss, 

and gives more consideration on the probability of occurrence, but exposure and vulnerability are 

neglected to some extent. 

 

4. Case study of the Yangtze River Delta  

4.1 Case study region 

The Yangtze River Delta (Figure 2), located in the central part of the eastern coastal area of China, 

comprises 140 counties including those in the southern Jiangsu and northern Zhejiang provinces, and 

includes 16 major cities, of which the largest is Shanghai. With an area of 99,600 km2 (1% of the country 

area) and a population of about 85 million (6.5% of the country population), the area contributes 17.8% 

of Gross Domestic Product (GDP), 22% of financial revenue, and 34.8% of export trade, making it one of 

the country’s main economic regions. According to historical data, in China, 16% of all typhoons that 

occurred between 1950 and 2010 made landfall in this region, and nearly 30% influenced the region. The 

region was hit by catastrophic floods in 1991 and 1999, which cause direct economic losses of 11 and 

14.1 billion Yuan respectively.  
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(Taizhou* is in Jiangsu Province, Taizhou** is in Zhejiang province.) 

 

Figure 1.  The Yangtze River Delta  

 

 

With both population density and economic activity growing, this already vulnerable region is becoming 

increasingly susceptible to natural disasters. This growing vulnerability, combined with occurrence of 

several different natural hazards, makes the area a suitable region in which to research multi-hazard risk 

appraisal. 

 

4.2 Research data and methods  

4.2.1 Data 

The comparative analysis of the two HRA approaches is conducted for the Yangtze River Delta region, 

using the data shown in Table 1. Historical disaster data is needed by both methods, whilst the risk index 

method requires more detailed socioeconomic data, which has been available only since 2006. 

 

Table 1. Data for MHRA in the Yangtze River Delta 

 

Method Data Index 
Statistical 

unit 

Time 

interval 
Source 

Risk index 

method 

Socioeconomic 

data 

Population size, gender 

ratio, age structure, traffic 

condition, 

telecommunication facilities 

and medical condition 

County 

level 
2006 Statistical Yearbook 
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Historical 

disaster data 

Number of disaster 
County 

level 
1950-2000 

Meteorological 

Department and Civil 

Administration 

Department 
Deaths caused by disaster  Total area 1950-2000 

Mathematical 

statistics 

method 

Socioeconomic 

data 
Population size City level 1950-2010 Statistical Yearbook 

Historical 

disaster data 

Deaths caused by disaster City level 1950-2010 Meteorological 

Department and Civil 

Administration 

Department 

Population affected by 

disaster3 

County 

level 
1990-2010 

 

4.2.2 Methods 

Risk index method: The multi-hazard index was the sum of each hazard value multiplied by its weight, 

which was calculated according to the average historical death toll caused by this hazard. Gender ratio, 

age structure, traffic condition, telecommunication facilities and medical condition were selected to 

calculate the vulnerability index with the help of the entropy method. The exposure index was 

represented by the population density. Multi-hazard risk index to human life was then calculated by 

aggregating the multi-hazard index, the vulnerability index and the exposure index. Finally, the 

multi-hazard risk index map of human life was developed (Liu and Xu, 2012). 

 

Mathematical statistics method: The multi-hazard risk on human life was assessed based on information 

diffusion. The probability distribution of single-hazard loss was calculated based on historical loss data 

(1950-2010). These single-hazard losses were aggregated to integrated losses, and the exceedence 

probability calculated based on the probability distribution of a single-hazard. Finally, exceedence 

probability-loss curve and maps of multi-hazard risk on human life with different exceeding probability 

were developed with the help of ArcGIS software (Liu, 2011). 

 

These two methods both can be expanded to evaluate the risk of more than two hazards and exposures. 

Compared to the mathematical statistics method, the risk index method is simple and easy to apply. 

Though mathematical statistics method requires less data than the risk index method, updating the 

required data is more difficult than the risk index method, as the exceedence probability-loss curve must 

be rebuilt with each update.  

 

4.3 Results 

The multi-hazard risk index map (Figure 3) shows that high-risk index areas are mainly found in 

Minhang, Putuo, Zhabei, Huangpu, Yangpu, Hongkou, Baoshan, Changning in Shanghai city and 

Wenling in Taizhou** city. Minhang, Putuo, Zhabei, Huangpu, Yangpu, Hongkou, Baoshan, Changning 

rank as high risk areas due to a high exposure index value (high population density) and high hazard 

index value (mainly flood hazard). The risk index value of Wenling is also large due to high typhoon 

hazard and vulnerability index values though the exposure index value is very small. Low-risk index 

                                                             
3 Multi-hazard risk was assessed at city level in 2011. In this research, deaths in each county were calculated through dividing the 
deaths in the city level with a certain weight, which is decided by population affected by flood and typhoon in each county from 
2001 to 2010 
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areas are mainly found in the north-western part of the region and some counties in Hangzhou southwest.  

 

In the map of multi-hazard risk to human life, with 10 year, 20 year and 50 year return periods, the death 

level distribution are basically identical (Liu, 2011), so here a risk map using a 20 years return period was 

chosen for comparison. Because the results of integrated losses are expressed as deaths per million 

people, the population size of each county in 2006 were input into to calculate the possible deaths in this 

year caused by multi-hazard with 20 years return period (Figure 4). Note that in this map, Ninghai, Cixi 

and Jinzhou in Ningbo, Fuyang in Hangzhou, Baoying in Changzhou are at high risk level and counties 

in Shanghai are at a low level. 

 

 

 

 

 

 

 

 

 

 

 

 
       

   Figure 3. Multi-hazard risk index        Figure 4. Multi-hazard risk with 

                                           20 years return period in 2006 

Because the results obtained in the risk index method are a synthetic indicator (unit less index), and in the 

mathematical statistics method results are integrated losses (deaths), they cannot be compare directly. 

Therefore, spearman correlation was used to calculate the rank-order correlation of counties for the two 

multi-hazard risk approaches.  

 

As shown in Tables 2 and 3, the top 10 and bottom 10 countries in synthetic indicator and integrated 

losses are totally different. For example, the Zhabei and Hongkou rank 2nd and 4th respectively in the 

synthetic indicator risk index method, but 132nd and 131st in integrated losses using the mathematical 

statistics method. Spearman rank correlation coefficient is -0.14, so there is no correlation between them. 
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Table 2. Highest MH risk counties      Table 3. Lowest MH risk counties 

 

 

 

 

 

 

 

 

 

5. Discussion 

5.1 Comparative performance 

The results obtained by these two methods are totally different and have no correlation. The possible 

reasons for the difference are: 

 

1) In multi-hazard risk index assessment, the vulnerability and exposure indexes were built with data for 

2006 only, so results may not reflect the danger degree in exposure and vulnerability. Integrated loss 

assessment used historical loss data from 1950-2010, but it cannot consider the vulnerability situation. 

Exposure value and vulnerability change every year as the population grows and the economy develops. 

A high vulnerability value in 2006 can make a county rank high in the synthetic indicator, but in other 

years this county may have a low vulnerability, which make it have few disaster loss records,  lead to a 

low rank in integrated losses.  

 

2) In the multi-hazard risk index assessment, risk is calculated as a product of hazard, vulnerability and 

exposure. The great difference in population density (exposure index) leads to results only on the basis of 

exposure index, e.g. population density in Huangpu is 48 501 people per km2, which is nearly 500 times 

bigger than Chunan with 102 people per km2. .  

  

3) Mathematical statistics method on loss assessment ignores the influence of extreme events (where 

return periods are significantly greater than the time period represented in the sample of observed data). 

Including more extreme events in the sample can make probability of exceedence higher and influence 

the shape of the probability distribution curve, e.g. counties in Ningbo are at high risk in the 20 year 

return period map, because the Ningbo region experienced a particularly devastating typhoon in 1956, 

causing many deaths, and this rare event is included in the generative data. 

 

Rank Synthetic indicator Integrated losses 

1 Yangpu Ninghai 

2 Zhabei Fuyang 

3 Huangpu Cixi 

4 Hongkou Jinzhou 

5 Putuo Baoying 

6 Minhang Fenghua 

7 Changning Xiaoshan 

8 Wenling Yuyao 

9 Baoshan Linhai 

10 Yuhuan Wenling 

 

Rank Synthetic indicator Integrated losses 

131 Pukou Hongkou 

132 Linan Zhabei 

133 Anji  Changning 

134 Dantu Luwan 

135 Jingkou Jingan 

136 Danyang Putuo 

137 Jiangyan Tongzhou 

138 Runzhou Pingjiang 

139 Kunshan Qinhuai 

140 Yizheng Jinqu 
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5.2  Relative merits of the two methods 

Despite the results being very different, it cannot be concluded that one method is wrong or that neither is 

correct, because they have a different focus. The advantages and disadvantages of these two methods are 

summarized in Table 4. The synthetic indicator mainly uses the risk index method, which analyzes risk 

considering the disaster formation mechanism, and emphasizes relative risk by considering more fully 

the exposure and vulnerability; however it ignores risk probability, with results obtained used to compare 

the relative danger between different areas, but with no reflection of the real risk situation in these areas. 

Integrated losses in a given time mainly relies on the mathematical statistics method to calculate possible 

losses (e.g. economic loss, mortality) caused by multiple natural hazards in a given region and time 

period. Mathematical statistics bias the calculation towards the expected loss and the corresponding 

probability, but exposure and vulnerability is neglected to some extent. Thus, there is a need for 

developing a method which can combine the advantages of these two methods. 

Table 4.  Advantages and disadvantages of risk index and mathematical statistical methods 

 Risk index method Mathematical statistical method 

Advantages 

• Considers the disaster formation 

mechanism. 

• Helps to understand the contribution of 

hazard, vulnerability and exposure to 

overall risk. 

• Better compares the relative danger 

between different areas  

• Simple to operate 

• Calculates the possible loss 

• Calculates exceedence probability for 

risk 

Disadvantages 

• Cannot calculate probability of the risk 

• Weight problem is not resolved 

• Neglects interaction between different 

hazards 

• Neglects vulnerability and exposure 

• Potentially biased by extreme events  

• Data update is complex  

• Neglects interaction between different 

hazards 

5.3 Scenario simulation 

Disaster scenarios can be simulated using a MH risk model built to take advantage of the merits of both 

the risk index and mathematical statistics methods. The risk index helps to analyze the disaster formation 

process, and the mathematical statistics method to estimate the possibility of loss. Using these two 

methods, after making clearly how natural hazards influence an area, simulation models can be built 

which simulate scenarios about some hazardous events of different magnitude and probability of hazard 

occur to assess overall risk. 

 

The basic framework of scenario simulation models is: 1) identify the exposure distribution in the study 

area; 2) identify the influence range of some hazards with different magnitude; 3) simulate scenarios 

about how these hazards influence the study area and identify the affected exposures; and 4) calculate 
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losses in different scenarios combing with the vulnerability of exposures. 

 

Scenario simulation has become a common approach in natural disaster risk assessment. GIS and 

multi-agent, neural network, cellular automata and other complex system simulation modeling have been 

used within scenario simulation to simulate the disaster development process under human disturbance, 

and to assess disaster risk dynamically with risk visualization. FEMA (2004) input national baseline data, 

inventory data, hazard maps and expert adjustment analysis parameters into their HAZUS-MH software, 

and then used scenario simulation to analyze various impacts (e.g. physical damage, economic loss, 

social impact) of flood, earthquake, hurricane. Riskcity, a GIS-based training package, developed by 

United Nations University – ITC School (UNU-ITC) uses GIS software to analyze different types of 

hazards, create an exposures database, assess vulnerability, and estimate annual loss for earthquakes, 

landslides, floods, and technological hazards (Van Westen, 2008). RiskScape, a software model 

developed by the Research Organizations GNS Science and the National Institute of Water and 

Atmospheric Research Ltd. (NIWA) in New Zealand can be used to calculate damage ratio and absolute 

loss from different natural hazards and for various exposures based on GIS (Schmidt et al. 2011). 

 

Such models greatly enhance disaster risk analysis precision and offer an important basis to reveal the 

cause of disasters, assist emergency rescue, simulate and formulate emergency control plan. However, 

though FEMA, Riskcity and RiskScape are named multi-hazard risk, they only calculate loss caused by a 

single-hazard without aggregation to integrated loss. In addition, they all neglect the interactions and 

interrelations between different hazards, e.g. one hazard may occur repeatedly in time; different hazards 

may independently occur in same place; different (or same) hazards may occur dependently in same 

place. There is therefore a need to develop an improved model of integrated loss for use in MHRA 

simulation.  

 

5.4 A conceptual model for MRHA 

Although existing scenario simulation models could take advantage of the merits of both risk index and 

mathematical statistics methods, in practice, they neglect the interaction between different hazards. In 

order to address this problem, we propose a conceptual model which can address the possible loss caused 

by multiple hazards, with an explicit consideration of interaction between different hazards. Its basic 

framework is shown in Figure 5. The key steps of this approach are as follows:  
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Fig 5. A conceptual model for MHRA 

 

 

1) Define the assessment spatial scope (e.g. world, district, local), resolution (e.g. grids, administrative 

district) and time frame (e.g. year, month, season) according to the request of stakeholders. 
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2) Multiple hazards will be assumed to occur during the research time frame. Identify the spatio-temporal 

extent of these hazards in the study region, and analyze the relationship between intensity and probability 

of occurrence for each hazard. 

 

3) Based on hazard interaction analysis, e.g. event tree analysis (Marzocchi et al., 2009), and 'disaster 

chain' analysis (Shi, 1991), identify what derivatives hazards can be induced by these assumed hazards 

and calculate the probability of occurrence for each derivatives hazard. 

 
4) Identify and analyze the spatial and temporal distribution of exposures which affected by these hazards 

in research area. 

 

5) Input all hazard data and affected exposure data into this part. The exposure loss caused by each 

hazard can be calculated through vulnerability analysis, e.g. vulnerability curve (Penning-Rowsell and 

Chatterton, 1977). 

 

6) Aggregate all losses caused by single hazard together to calculate the integrated losses. The 

aggregation process needs to consider the ‘exacerbation function’ (e.g. damage caused by one disaster 

can be made worse than expected due to a lack of recovery from a prior event), and avoid repetitive 

computation (e.g. some exposures have been totally destroyed by one disaster, but the exposure database 

cannot update immediately, so these totally destroyed exposures are still used to calculate loss caused by 

other disasters). 

 

7) Simulate all possible scenarios and calculate the corresponding losses. Then the exceedence 

probability-loss curve and multi-hazard risk maps with different multi-hazard return period can be drawn 

with the probability of multiple hazards occurrence and the corresponding integrated losses. 

 

Compared to existing methods, this model will not only calculate the exceedence probability of 

multi-hazard risk, but also analyze the relevant relationships between different hazards. 

 

6. Conclusion 

MHRA is used to assess the excepted loss caused by multiple hazards in a given area. It takes into 

account the characteristics of each hazardous event, and their mutual interactions and interrelations.  

The risk index and mathematical statistics methods both have certain drawbacks in MHRA. The 

synthetic indicator of multiple hazards affecting a given area mainly uses the risk index method, which 

analyzes risk considering the disaster formation mechanism, and emphasizes relative risk by considering 

more fully the exposure and vulnerability, but it ignores risk probability. The results obtained are used to 

compare the relative danger between different areas, but do not reflect the real risk situation. Integrated 

losses in a given time mainly relies on the mathematical statistic method to calculate possible losses (e.g. 

economic loss, mortality) caused by multiple nature hazards in a given region and time period. Methods 

using mathematical statistics bias the calculation towards the expected loss, and give more consideration 

on the probability of occurrence, but exposure and vulnerability is largely neglected. 

 

Scenario simulation, used digital technology tools, can simulate different disaster scenarios, including 
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the disaster formation process, so as to assess possible loss. Simulation can take advantage of the merits 

of both risk index and probabilistic methods, so is considered a more comprehensive method to analyze 

multi-hazard risk. However, existing scenario simulation models do not consider interaction between 

different hazards. 

 

A relatively comprehensive MHRA conceptual model is therefore proposed. MHRA of natural hazards is 

focused on scenario simulation, with explicit consideration of the relationship between different hazards. 

This model can take advantage of the merits of both risk index and mathematical statistics methods; it not 

only analyzes risk considering the disaster formation mechanism from hazard, vulnerability and 

exposure, but also calculates the possible loss and corresponding probability in different scenarios. The 

relationship between different hazards will be considered in model construction, so hazard interaction 

must also be analyzed. How best to build these modules (e.g. hazard interaction analysis, vulnerability 

analysis) is the subject of ongoing research.  
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