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Abstract

Background

Mild cognitive impairment is a common systemic manifestation of chronic obstructive pulmo-

nary disease (COPD). However, its pathophysiological origins are not understood. Since,

cognitive function relies on efficient communication between distributed cortical and subcor-

tical regions, we investigated whether people with COPD have disruption in white matter

connectivity.

Methods

Structural networks were constructed for 30 COPD patients (aged 54–84 years, 57% male,

FEV1 52.5% pred.) and 23 controls (aged 51–81 years, 48% Male). Networks comprised 90

grey matter regions (nodes) interconnected by white mater fibre tracts traced using deter-

ministic tractography (edges). Edges were weighted by the number of streamlines adjusted

for a) streamline length and b) end-node volume. White matter connectivity was quantified

using global and nodal graph metrics which characterised the networks connection density,

connection strength, segregation, integration, nodal influence and small-worldness.

Between-group differences in white matter connectivity and within-group associations with

cognitive function and disease severity were tested.

Results

COPD patients’ brain networks had significantly lower global connection strength (p = 0.03)

and connection density (p = 0.04). There was a trend towards COPD patients having a

reduction in nodal connection density and connection strength across the majority of net-

work nodes but this only reached significance for connection density in the right superior

temporal gyrus (p = 0.02) and did not survive correction for end-node volume. There were

no other significant global or nodal network differences or within-group associations with dis-

ease severity or cognitive function.
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Conclusion

COPD brain networks show evidence of damage compared to controls with a reduced num-

ber and strength of connections. This loss of connectivity was not sufficient to disrupt the

overall efficiency of network organisation, suggesting that it has redundant capacity that

makes it resilient to damage, which may explain why cognitive dysfunction is not severe.

This might also explain why no direct relationships could be found with cognitive measures.

Smoking and hypertension are known to have deleterious effects on the brain. These con-

founding effects could not be excluded.

Introduction

Mild cognitive impairment is a relatively common feature of a number of chronic diseases,

including diabetes, kidney disease and rheumatoid arthritis [1–3]. Chronic obstructive

pulmonary disease (COPD) is a chronic respiratory disease which is one of the leading

causes of morbidity and mortality worldwide. It is associated with a number of extra-pul-

monary co-morbid conditions, which occur more frequently in COPD than in smokers or

never smokers, suggesting an intrinsic link to the disease [4]. One such co-morbidity is

cognitive dysfunction, with estimates of its prevalence ranging from 10–61% [5]. Whilst

the deficit is not universally very severe, its presence is associated with greater disability

[6], poorer medication compliance [7] and an elevated risk of an exacerbation of their

respiratory symptoms and mortality [6]. The pathophysiological origins of this cognitive

dysfunction are not understood, but may involve structural and functional changes to

brain anatomy secondary to cerebral small-vessel disease (SVD) [8–11]. Diffusion tensor

imaging studies have reported a diffuse pattern of diffusion abnormalities in COPD sug-

gestive of widespread deterioration of the tissue microstructure [10,12,13]. In SVD com-

parable diffusion abnormalities have been found to correlate more strongly with cognitive

function and better predict cognitive decline and conversion to dementia [14] than con-

ventional markers of SVD [15,16].

Cognitive function is reliant on efficient communication between networks of distrib-

uted brain regions interconnected by white matter fibre tracts [17,18]. This network com-

plexity manifests as a hierarchical modular organisation (i.e. highly integrated sub-net-

works nested within larger networks) [19] featuring both global and nodal ‘small-world’

properties and an exponentially truncated power law degree-distribution indicative of the

presence of a small number of heavily connected ‘hub’ brain regions [20]. It follows that

pathology which disconnects white matter fibres or perturbs the network configuration,

will be deleterious to function [17,18]. Indeed, it has been reported that the relationship

between diffusion abnormalities and cognitive dysfunction in SVD is mediated by struc-

tural network disruption [21]. It is plausible that the same process is responsible for cogni-

tive dysfunction in COPD.

The present study provides an exploratory cross-sectional patient-control investigation of

large-scale structural networks in a well-defined cohort of stable patients with COPD. We

hypothesised that patients with COPD would have impaired white matter connectivity relative

to control subjects and that the magnitude of this network disruption would be related to

lower cognitive function and greater disease severity.

White matter connectivity in chronic obstructive pulmonary disease
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Materials and methods

Subjects

31 stable COPD patients were recruited as part of a previous study [10]. Data from six of these

patients were unavailable at the time of the original publication [10]. All participants were out-

patients recruited from St George’s University Hospital and Royal Brompton Hospital between

2010 and 2011, 17 of whom, had not been hospitalised within the preceding 12 months of data

collection. The remaining 14 had previously been inpatients admitted to St. George’s Hospital

NHS Trust with a primary diagnosis of COPD exacerbation from whom data were obtained

within 12 months of discharge. All participants were assessed whilst in a stable condition. Dif-

fusion data was unavailable for one patient. Additionally, 26 non-COPD control subjects were

recruited from the local community, three of whom were later excluded, two due to a scanner

fault and one due to the presence of additional neuropathology (see [10] for a full list of exclu-

sion criteria). This resulted in a cohort of 30 COPD patients and 23 controls. All participants

provided written informed consent. This study was approved by Wandsworth and East Cen-

tral London Research Ethics Committees (Ref: 10/H0721/16) and by St George’s University of

London, Joint Research Office (Ref: 090147).

Demographic and clinical characteristics of this cohort can be viewed in Table 1. To sum-

marise, patients with COPD were well-matched for age and sex (aged 54–84 years, 57% male)

compared to controls (aged 51–81 years, 48% Male). Patients with COPD met the Global Ini-

tiative for Chronic Obstructive Lung Disease (GOLD) classification [22] for moderate-severe

airflow obstruction (FEV1 = 52.5 ± 21.1% pred., GOLD stage 3 (1), median (IQR)) and were

not significantly hypoxaemic (PO2 = 9.9 ± 2.5 KPa) and were normocapnic (PCO2 = 5.0 ± 0.7

kPa). Patients with COPD had smoked for a significantly greater number of pack years and

were significantly more anxious and depressed than controls (see Table 1). Only one COPD

patient met the Mini Mental State Examination (MMSE) criteria for severe cognitive

impairment, however, patients with COPD had significantly lower estimated pre-morbid IQ

and lower cognitive function across all the cognitive domains assessed (see Table 1).

Statistical power

The sample size was informed by past empirical evidence and scientific reasoning. A sample

size of N = 55 was chosen based on feasibility, economic grounds and previous research by

other authors [11,23]. No formal power calculation was performed.

Cognitive and disease severity measures

Full details have been provided previously [10]. To summarise, post-bronchodilator spirome-

try, arterial blood gas analysis, a modified form of the Framingham Stroke Risk Profile (FSRP)

[10,24], Charlson Co-morbidity Index [25] and a health status measure–the St George’s Respi-

ratory Questionnaire (SGRQ) [26] were administered to the patient group only. These mea-

sures were not collected for the controls as they were healthy individuals, therefore, we could

not formally confirm that controls had normal lung function and blood gases. All subjects

completed the Hospital Anxiety and Depression Scale (HADS) [27] and neuropsychological

assessment, including the Mini Mental State Examination (MMSE), the Wechsler Test of

Adult Reading (providing an estimate of pre-morbid IQ) and sub-scales taken from the

Wechsler Adult Intelligence Scale–III, the Wechsler Memory Scale–III, the Delis-Kaplan Exec-

utive Function System, and the Rey-Complex Figure Test and Recognition Trial (see [10] for

the specific subtests used). Composite scores were calculated, assessing the following cognitive

domains: Executive Function (average of the Delis-Kaplan Executive Function System scaled

White matter connectivity in chronic obstructive pulmonary disease
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Table 1. Demographics.

Controls COPD Statistic (df) p
N 23 30

Age 65.6 ± 7.4 67.2 ± 8.3 0.760 (51) 0.4511

Males (%) 47.8 56.7 1.385 0.6652

Height (m) 1.7 ± 0.1 1.7 ± 0.1 -0.570 (45) 0.5721

Body mass index (kg/m2) 26.9 ± 4.7 26.6 ± 4.4 -0.266 (43) 0.7921

Smoking (pack years) 0.0 (4.0) 53.5 (27.0) 682.5 <0.00013����

Cardiovascular risk (FSRP) 6.1 ± 3.2 7.2 ± 4.1 1.046 (51) 0.3011

Exacerbations in last 12 months - 1.0 (3.0) - -

SGRQ–total (health status) - 53.7 ± 30.0 - -

SGRQ—symptoms - 62.9 ± 21.7 - -

SGRQ—activity - 73.2 (22.6) - -

SGRQ—impacts - 41.8 ± 18.9 - -

Co-morbidity Index 0 (0) 0 (1) 232.0 0.0093��

HADS–anxiety 3.9 ± 2.8 7.4 ± 4.5 3.390 (44.4) 0.0021a��

HADS–depression 1 (4) 5 (7) 3.061 0.0023��

HADS–total 6.8 ± 5.0 11.8 ± 8.0 2.788 (49.4) 0.0081a��

Cognitive Function

Estimated pre-morbid IQ 110.0 (16.0) 103.0 (16.8) -2.552 0.0113�

Executive function 12.3 ± 2.6 9.4 ± 2.5 -4.096 (51) <0.0011���

Episodic memory 10.9 ± 3.1 9.3 ± 2.4 -2.147 (51) 0.0371�

Processing speed 108.0 (18.0) 89.5 (24.8) 178.5 0.0023��

Working memory 106.6 ± 15.5 94.2 ± 12.5 3.229 (51) 0.0021��

MMSE 30.0 (1.0) 28.0 (2.0) 154.5 <0.0013���

Lung Function

FEV1 (% pred.) - 52.5 ± 21.1 - -

FVC (% pred.) - 86.0 ± 32.1 - -

FEV1/FVC (%) - 48.9 ± 15.8 - -

GOLD Stage I (%) - 10 - -

GOLD Stage II (%) - 31 - -

GOLD Stage III (%) - 35 - -

GOLD Stage IV (%) - 17 - -

Normal FEV1/FVC at assessment (%) - 7 - -

Arterial Blood Gases

PO2 (kPa) - 9.9 (2.5) - -

PCO2 (kPa) - 5.0 (0.7) - -

pH - 7.4 ± 0.0 - -

Group comparison of demographic and clinical characteristics for the COPD patient group (aged 54–84 years, 57% male) and control group (aged 51–81 years, 48%

Male). For Gaussian data,
1independent t-tests, group means ± standard deviations, t-statistics, degrees of freedom (df) and p-values (p) are reported. For categorical data,
2chi-squared tests, group percentages, chi-square statistics and p-values (p) are reported. For non-Gaussian data,
3Mann-Whitney U tests, group medians (interquartile ranges), U statistics and exact probabilities (p) are reported.
aCorrection for unequal variances.

Significant at �p<0.05,

��p<0.01,

���p<0.001 and

����p<0.0001.

https://doi.org/10.1371/journal.pone.0223297.t001

White matter connectivity in chronic obstructive pulmonary disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0223297 October 3, 2019 4 / 22

https://doi.org/10.1371/journal.pone.0223297.t001
https://doi.org/10.1371/journal.pone.0223297


scores), Episodic Memory (combined average of Wechsler Memory Scale–III and Rey-Com-

plex Figure Test and Recognition Trial scaled scores), Processing Speed (Processing Speed

Index from the Wechsler Adult Intelligence Scale–III) and Working Memory (Working Mem-

ory Index from the Wechsler Adult Intelligence Scale–III) [10].

Image acquisition and pre-processing

Magnetic resonance (MR) images were obtained for all subjects, using a 3-Tesla Philips

Achieva dual TX scanner equipped with a 32-channel head coil and gradients up to a maxi-

mum of 80 mT/m, at St George’s University of London. T1-weighted 3D volume images were

acquired using a Turbo Field Echo sequence (TE = 3700ms, TR = 8200ms, flip angle = 8˚, pro-

viding 160 contiguous sagittal slices with an isotropic voxel dimension of 1mm3 and field-of-

view (FOV) of 240x240mm2). Fluid Attenuated Inversion Recovery images (FLAIR) were

acquired using an inversion recovery sequence (TE = 125 ms, TR = 11000 ms, TI = 2800 ms

with 60 contiguous axial slices of 3 mm slice thickness, FOV = 240 × 240 mm2 and voxel

dimension 0.962x3mm3). Diffusion-weighted images (DWI) were acquired using a diffusion

sensitised, single-shot spin-echo planar sequence (TE = 75ms, TR = 6450ms, 60 contiguous

axial slices, FOV = 224x224mm2 in a 112x112 matrix and voxel dimension 2mm3). The first

eight DWI volumes were acquired without diffusion sensitisation (b = 0s mm-2). The remain-

ing, were obtained with diffusion gradients applied in 32 non-collinear directions (b = 1000s

mm-2). DWI were simultaneously corrected for the geometric distortions caused by eddy cur-

rents and movement artefacts using FSL’s ‘eddy-correct’ (FSL, version 5.0.6, FMRIB, Oxford,

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Diffusion tensors were computed at every voxel within

the DWI using FSL’s ‘dtifit’ [28] and the skull removed using FSL’s ‘BET’ [29]. Fractional

Anisotropy (FA) was calculated at every voxel within the diffusion tensor images (DTI), repre-

senting the local ‘directionality’ of diffusion.

Total intracranial volume and white matter hyperintensities. Supratentorial grey mat-

ter, white matter and CSF tissues were segmented from the T1-weighted images, and white

matter hyperintensities of presumed vascular origin (WMHs) were segmented from the com-

bined tissue intensities from the T1-weighted and FLAIR using a semi-automated procedure

adapted from the standard SPM pipeline (SPM version 12, 2014, https://www.fil.ion.ucl.ac.uk/

spm/). This is described in full in [11,30]. Tissue volumes were quantified by integrating tissue

pixel volume contributions within each segmentation, and total intracranial volume was calcu-

lated as the sum of grey matter, white matter and CSF volumes. WMH volumes were presented

as a percentage of total intracranial volume [11].

Network construction. Brain networks can be regarded as a graph comprising a set of

nodes interconnected by a set of edges [31]. In the present study, structural networks were

constructed using the workflow shown in Fig 1. Network nodes consisted of 90 anatomical

grey matter regions defined using the Automated Anatomical Labelling atlas [32] and network

edges consisted of the white matter fibre tracts interconnecting these grey matter regions

(traced using deterministic tractography).

Node definition: Native T1-weighted images were co-registered to the b0 in native DTI-

space using boundary-based registration using FSL’s (FSL version 5.0.6) ‘epi-reg’ script [33].

The T1-weighted images were normalised to the high resolution T1-weighted Montreal Neu-

rological Institute (MNI) template image [34] provided with MRIcro (MRIcro, version 6,

2013, www.mricro.com) using a symmetric diffeomorphic non-linear transformation applied

via Advanced Normalization Tools [35] (ANTs, version 1.9, http://stnava.github.io/ANTs/).

These two transformations were combined, inverted and applied to the Automated Anatomi-

cal Labelling atlas (excluding the cerebellum) [32] thereby parcellating the native DTI into 90

White matter connectivity in chronic obstructive pulmonary disease
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supratentorial cortical and subcortical grey matter regions. Each region represented a node of

the network.

Edge definition: The trajectory of white matter fibre bundles was reconstructed from the

DTI using an in-house deterministic tractography algorithm. The algorithm was seeded across

the whole-brain using a super-resolution grid (0.5 mm3) with a step-size of 0.5 mm [36].

Streamlines were terminated if FA dropped below 0.2 or if the angle between principal eigen-

vectors exceeded 40˚. Edges were defined as the presence or absence of a streamline intercon-

necting node pairs. This resulted in a 90 x 90 adjacency matrix. Weights were ascribed to edges

using two weighting strategies with higher weightings given to edges composed of a greater

number of tractography streamlines. The two strategies included different corrections for

biases inherent to network construction.

Streamline length adjusted weighting strategy: Network weights (wijlngth) were defined

according to a modified form [21] of Hagmann et al’s [37] formula, where l is the length (mm)

of the set of N unique streamlines terminating in nodes i and j,

wlngthij ¼
1

2

XN

m¼0

1

lm
: ð1Þ

This method corrects for the distal bias caused by the relationship between length of tracto-

graphy streamlines and their constituent number (due to longer streamlines containing a

greater number of tractography seed points).

Volume-adjusted weighting strategy: Weights (wijvol) were defined using a modified form

of Heuvel and Sporns equation [38], where the number of streamlines terminating in nodes i
and j was normalised by the sum of end-node volumes V,

wvolij ¼
2N

ðVi þ VjÞ
: ð2Þ

Fig 1. Network construction. The native T1-weighted images were co-registered to the DTI and transformed to Montreal Nerological

Institute space. These transforms were combined, inverted and applied to the AAL atlas (excluding cerebellum) parcellating 90 anatomical

regions on the DTI (Network nodes). White matter fibre tracts were traced from the DTI (Network edges). Structural networks were defined

from the nodes and edges, and the edges weighted by the number of constituent streamlines adjusted for streamline length and end-node

volume. Networks were thresholded across 40 edge weighting and edge density thresholds. Weighted and unweighted network metrics were

calculated at each threshold and used to construct network metric curves.

https://doi.org/10.1371/journal.pone.0223297.g001
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Larger node volumes contain a greater number of tractography seed points and will there-

fore have a higher probability of being connected by streamlines. This confound was adjusted

for by normalising the number of streamlines by the combined end-node volumes. This

method also corrects for localised atrophy of grey matter nodes and for differences in head

size.

Summary network metrics. Summary network graph metrics were selected that could be

calculated for both weighted and unweighted networks. These described the nodal and global

topology of the networks in terms of edge density (unweighted degree), streamline density

(weighted degree also known as strength), segregation (unweighted and weighted local effi-

ciency), integration (unweighted and weighted nodal efficiency) and nodal influence

(unweighted and weighted betweenness centrality). These were computed at each network

node using the brain connectivity toolbox (http://www.brain-connectivity-toolbox.net/) [39]

providing nodal network metrics and averaged across all nodes to provide global network met-

rics (metric definitions and details can be found in Table 2). Additionally, weighted and

unweighted small-worldness were quantified—composite measures calculated from the

Table 2. Network metric definitions.

Unweighted metrics Weighted metrics

Edge and connection

density

Degree (k) ki ¼
P
j2N aij;

where N is the set of all nodes in the network, (i,j) is an edge

connecting nodes i and j, and aij is the edge connection status

between nodes i and j i.e. present = 1, absent = 0.

kwi ¼
P
j2N wij;

where wij is the normalised edge weight 0� wij� 1, where

normalisation has been performed by dividing weights by the

maximum weight in the network.

Segregation

Local Efficiency (Eloc) Eloc;i ¼ 1

n

P
i2N

P
j;h2N;j6¼i

aijaij ½djhðNiÞ�
� 1

kiðki � 1Þ
;

where is the djh(Ni) is the length of the shortest path between j and h,
that contains only neighbours of i.

Ewloc;i ¼ 1

2

P
i2N

P
j;h2N;j6¼i

ðwijwij ½dwjh Nið Þ�
� 1Þ

1
3

kiðki � 1Þ
;

Clustering Coefficient

(C)
Ci ¼ 1

n

P
i2N

2ti
kiðki � 1Þ

;

where n is the number of nodes in the network and is the ti number

of triangles around node i,
ti ¼

P
j;h2N aijaihajh;

Cwi ¼ 1

n

P
i2N

2twi
kiðki � 1Þ

;

where

twi ¼
P
j;h2N aijaihajh;

Integration

Global Efficiency (E)
Ei ¼ 1

n

P
i2N

P
j2N;j6¼i

d� 1
ij

n� 1
,

where dij is the distance or length of the shortest path between nodes

i and j, defined as the number of edges forming the shortest

topological route between nodes i and j.

Ewi ¼
1

n

P
i2N

P
j2N;j6¼i

ðdwij Þ
� 1

n� 1
,

where dijw is the distance or length of the shortest path between nodes

i and j, defined as the sum of the inverse of weights forming the

shortest topological route between nodes i and j.
Characteristic Path

Length (L)
Li ¼ 1

n

P
i2N

P
j2N;j6¼i

dij

n� 1
; Lwi ¼

1

n

P
i2N

P
j2N;j6¼i

dwij
n� 1

,

Nodal influence

Betweenness Centrality

(b) bi ¼
1

ðn� 1Þðn� 1Þ

P

h; j 2 N

h 6¼ j; h 6¼ i; j

r
ðiÞ
hj
rhj
;

where ρhj is the number of shortest paths between nodes h and j, and

ρhj (i) is the number of shortest paths that pass through node i.

bwij ¼ 1

ðn� 1Þðn� 1Þ

P

h; j 2 N

h 6¼ j; h 6¼ i; j

r
ðiÞ
hj
rhj
;

Small-world structure

Small-worldness (S) S ¼ C=Crand
L=Lrand

;

where Crand and Lrand are the average unweighted clustering

coefficient and average unweighted characteristic path length

computed on 100 randomly re-wired networks.

Sw ¼ Cw=Cwrand
Lw=Lwrand

,

where CW
rand and LWrand are the average weighted clustering

coefficient and average weighted characteristic path length computed

on 100 randomly re-wired networks.

https://doi.org/10.1371/journal.pone.0223297.t002
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characteristic path length and clustering coefficient normalised by the equivalent metrics com-

puted over 100 randomly re-wired networks [40]. Networks were considered to have ‘small-

world’ topological properties when unweighted or weighted small-worldness>>1.

Adapted from [39].

Network thresholding. The networks were thresholded so that low weight network edges

that are likely to have been generated by noise within the DTI data, were removed. The choice

of threshold is largely arbitrary [41]. Additionally, the topological properties of a network are

highly dependent on the number of edges in the network, therefore, it is necessary to control

for edge density when evaluating network topology [42]. Consequently, all network metrics

were assessed at 40 evenly-spaced fixed levels of edge density except for unweighted degree,

itself an indicator of edge density, which was assessed across 40 fixed levels of edge weighting.

The upper edge density threshold was determined by the maximum value at which all subjects’

networks could be successfully density-matched. Edge weighting thresholds were set as the

average edge weight for the average subject at each density threshold.

Network metric curves were constructed by plotting the network metric value at each net-

work threshold. At high edge weighting thresholds and low edge density thresholds, low

weight edges will have been removed, meaning that hub nodes will have a greater influence

over the network metrics at these thresholds.

Statistical analysis

Between-group differences in WMHs and total intracranial volume were tested using ANCO-

VAs. WMHs were log10-transformed to correct for non-Gaussianity prior to analysis.

Between-group differences in nodal and global network graph metrics were tested for the total

area under each metric curve (AUCtotal) and at every point along the metric curve (point-by-
point). This latter method was used to verify the AUCtotal results and to determine which net-

work thresholds were primarily contributing to significant effects. For the AUCtotal method,

between-group comparisons were performed using parametric (Gaussian data and data that

could be log10-transformed to Gaussian) and non-parametric permutation ANCOVAs with

10000 permutations (non-Gaussian data), performed using SPSS version 24 (IBM Corp, 2015)

and FSL’s randomise (FSL version 5.0.6) (Winkler et al., 2014), respectively. Residuals were

checked for gaussianity using histograms and quantile-quantile plots. Results were Bonferroni

corrected for multiple comparisons. Statistical testing for the point-by-point analyses was per-

formed using permutation ANCOVAs and corrected for multiplicity across the network

thresholds using the multi-threshold permutation correction (MTPC) method [43,44] per-

formed using in-house software. For results to be considered significant they were required to

exceed the familywise error (FWE) adjusted critical threshold and the area under the curve

(AUCMTPC) of supra-critical clusters of results had to exceed the average AUCMTPC of supra-

critical clusters for the null distribution. Clusters were required to be formed by a minimum of

three consecutive network thresholds. Within-group correlations with cognitive (executive

function, episodic memory, processing speed, working memory, MMSE) and disease severity

indices (FSRP, pack years smoked, exacerbation frequency, FEV1% pred., FVC % pred., PO2,

PCO2 and SGRQ) were tested for the AUCtotal analyses using partial Spearman’s Rho correla-

tions in SPSS version 24 (IBM Corp, 2015). Correlation results were Bonferroni corrected for

the number of statistical comparisons made per cognitive function or disease severity measure.

Age and sex were included as covariates of no interest in all statistical models, hereafter

referred to as confounders. Additionally, estimated pre-morbid IQ was included in any within-

group correlative model testing relationships with cognition, and total intracranial volume in

all analyses using the streamline length-adjusted weighting strategy as this method did not
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already include a correction for head size. Pack years smoking history and anxiety and depres-

sion (HADS—total) were strongly related to group membership, therefore, it was not possible

to control for these confounders in the statistical models. Subjects with missing cognitive or

disease severity data, were excluded ‘pairwise’ from correlation analyses.

Results

Macrostructural brain measures

COPD patients had significantly greater normalised WMH volumes, Median (IQR) = 0.85

(1.41)% than controls = 0.40 (0.43)%, (F(1,49) = 5.34, p = 0.025). There were no group differ-

ences in total intracranial volume (COPD patients, average±SD = 1440±99, controls = 1427

±81, F(1,24) = 2.619, p = 0.112. These results have been reported elsewhere [11].

Global network analysis

The structural brain networks of all 30 patients with COPD and 23 control subjects showed

‘small-world’ topological properties (unweighted and weighted small-worldness>>1) across

all network thresholds for both the streamline length-adjusted weighting strategy and the vol-

ume-adjusted weighting strategy (see S1 and S2 Figs). A ‘small-world’ network configuration

is characterised by high clustering of local connections with a few long-range connections

mediating a short path length and is thought to provide the optimal balance between modular

specialisation and distributed information processing [20,31,45].

Between-group comparisons of global unweighted and weighted network metrics for the

streamline length-adjusted weighting strategy made using the total AUCtotal method are

shown in Table 3. Table 4 shows the equivalent results for the comparisons made point-by-
point along each metric curve.

Table 3. Group comparison of global network metrics–total area under the metric curve (AUCtotal).

Unweighted Network

Metrics

Controls COPD F (df1, df2) p

Degree 154.89 (33.43) 122.76 (57.07) 8.9532 (1,48) 0.0442b�

Global Efficiency (x 10−2) 5.88 ± 0.08 5.91 ± 0.11 1.1641 (1,48) 1.0001b

Local Efficiency (x 10−2) 8.30 ± 0.31 8.15 ± 0.36 1.5261 (1,48) 1.0001b

Betweenness Centrality 23.00 ± 1.59 22.93 ± 5.16 0.0201 (1,48) 1.0001b

Small-worldness (x 10−1) 5.53 (1.10) 5.69 (1.36) 0.0173 (1,48) 0.8963b

Weighted Network Metrics

Degree 36.31 ± 4.74 30.78 ± 5.89 9.5841 (1,48) 0.0331b�

Global Efficiency (x 10−3) 6.33 ± 1.27 6.48 ± 1.44 1.1771 (1,48) 1.0001b

Local Efficiency (x 10−3) 7.99 ± 1.61 7.91 ± 1.81 0.4311 (1,48) 1.0001b

Betweenness Centrality 45.06 (7.63) 45.53 (7.54) 0.4792 (1,48) 1.0002b

Small-worldness (x 10−1) 6.03 (1.29) 6.34 (1.60) 0.2243 (1,48) 0.4743b

Group comparison of global network measures using the total area under the metric curves. Age, sex and total intracranial volume were included as confounders in all

analyses. Group means ± standard deviations are presented for Gaussian data, and medians (interquartile ranges) for non-Gaussian data.
1Gaussian and
2log10-transformed to Gaussian data were assessed using parametric ANCOVAs and non-Gaussian data by
3non-parametric permutation ANCOVAs (10000 permutations). F-statistics (F), degrees of freedom (df) and p-values (p) are displayed.
bBonferroni corrected p-values.

�significant at p<0.05.

https://doi.org/10.1371/journal.pone.0223297.t003
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Results for the streamline length-adjusted weighting strategy were broadly analogous

between the AUCtotal and point-by-point analysis approaches, with both showing that COPD

patients had significantly reduced average weighted and unweighted degree compared to con-

trols (see Tables 3 and 4). This indicates that COPD patients’ brain networks contained fewer

edges and that edges were generally weaker i.e. composed of fewer streamlines. However, the

point-by-point approach also showed that, whilst patients with COPD had significantly

reduced average weighted degree across all network thresholds, differences in average

unweighted degree were confined to low edge weighting thresholds. These findings suggest

that the brain networks of COPD patients contain fewer weak network edges but a similar

number of strong edges to those present in controls (Fig 2 and Table 4). Use of the volume-

adjusted weighting strategy removed the significance of the group differences in the AUCtotal

of average weighted and unweighted degree, although a trend remained, F(1,49) = 7.722, p =
0.080 and F(1,49) = 8.016, p = 0.067, respectively (see S1 Table), however, both remained sig-

nificant using the point-by-point approach (tmax(49) = 3.653, p = 0.005 and tmax(49) = 2.822, p
= 0.018, respectively, see S2 Table).

There were no other significant group differences for the remaining weighted or

unweighted global network metrics, including: global efficiency, local efficiency, betweenness

centrality or small-worldness, regardless of the edge weighting strategy used (Tables 3 and 4

and S1 and S2 and S1 and S2 Figs).

Nodal network analysis

The spatial pattern of trends in the weighted nodal metrics for the streamline length-adjusted

weighting strategy using the AUCtotal method can be viewed in Fig 3. An equivalent figure for

the unweighted metric results and for the volume-adjusted weighting strategy can be found in

the S3 and S4 Figs. There was a general trend for patients with COPD to have numerically

lower weighted and unweighted nodal degree (71/90 and 70/90 of nodes, respectively), and

numerically higher weighted nodal efficiency (72/90 nodes). However, the only significant dif-

ference occurred for the nodal unweighted degree in the right hemispheric superior temporal

Table 4. Group comparison of global network metrics–‘point-by-point’ along the metric curve.

Peak statistics Cluster

Unweighted Network Metrics tmax (df) pFWE τ AUCMTPC AUCcrit MTPCsig

Degree 3.706 (48) 0.004 17.427 15.408 5.384 Y

Global Efficiency -2.272 (48) 0.348 0.110 - 0.002 N

Local Efficiency 2.203 (48) 0.369 0.059 - 0.003 N

Betweenness Centrality -1.787 (48) 0.648 0.017 - 0.003 N

Small-worldness -1.817 (48) 0.660 0.021 - 0.003 N

Weighted Network Metrics

Degree 3.216 (48) 0.006 0.169 0.128 0.040 Y

Global Efficiency -2.335 (48) 0.098 0.017 - 0.014 N

Local Efficiency -1.779 (48) 0.420 0.021 - 0.009 N

Betweenness Centrality -1.775 (48) 0.581 0.017 - 0.004 N

Small-worldness -1.970 (48) 0.526 0.165 - 0.004 N

Point-by-point group comparison of global network measures. Age, sex and total intracranial volume were included as confounders in all analyses. For the maximum

statistical difference (Peak), the t-statistic (tmax), degrees of freedom (df), permutation-based family-wise error corrected p-value (pFWE) and the network threshold at

which this difference occurs (τ) are reported under the heading ‘Peak statistics’. Additionally, the size of supra-critical clusters (AUCMTPC), the critical threshold for

these clusters (AUCcrit) and the significance (MTPCsig), Y = yes, N = no are reported under the heading ‘Cluster’.

https://doi.org/10.1371/journal.pone.0223297.t004
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gyrus, with COPD patients having lower unweighted degree than controls (t(48) = -3.961,

p = 0.016). This result did not survive correction for end-node volume. No nodal group differ-

ences were found using the MTPC method.

Correlations with cognitive function and disease severity

There were no significant partial spearman’s rho correlations for weighted or unweighted

global network measures and disease severity or cognitive function for either subject group,

regardless of the edge weighting strategy used (Tables 5 and S4–S6).

Discussion

This study used deterministic tractography and structural network analysis to investigate

cross-sectionally whether there are any differences in the pattern of white matter connectivity

between people with COPD and control subjects. Both subject groups’ networks had the

expected ‘small-world’ topology, with high clustering of local connections and short path

length. Globally, COPD patients’ networks were found to have reduced white matter connec-

tivity both in terms of the number of network edges and the strength of these edges (the

adjusted number of constituent tractography streamlines). Analysis on a point-by-point basis

indicated that the strength of network edges was reduced across all levels of network density,

whereas the difference in the number of edges only occurred at low edge weighting thresholds.

This suggests that whilst both strong and weak network edges were impaired, only weak edges

were disconnected entirely. In contrast, there were no significant group differences in the

topological organisation of the networks (i.e. no difference in network integration, segregation,

nodal influence or small-worldness), this suggests that there is sufficient redundancy to accom-

modate a reduction in connectivity without compromising the organisational efficiency of the

overall network structure. These results appear to have been driven by subtle (and largely sub-

significant) group differences across the majority of network nodes. Adjusting for differences

in end-node volume (volume-adjusted weighting strategy) removed the significance of group

differences in average unweighted and weighted degree when measured as the total area under

Fig 2. Group comparison of unweighted degree (A) and weighted degree (B) made point-by-point along the metric curve. Group average

metric curves are plotted on the left axes. Red = COPD, Blue = Controls. Shaded error bars represent the standard error of the mean. T-statistics

(black) are plotted on the right axis. Two-tailed critical thresholds (Tcrit) are indicated by dashed grey lines. �significant at PFWE<0.05 after MTPC

correction for multiplicity.

https://doi.org/10.1371/journal.pone.0223297.g002
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the metric curves, however, they remained significant when using the point-by-point approach.

This suggests that even if local cerebral atrophy contributed to these group differences it is

unlikely to be fully responsible for them. There were no other notable differences between the

results from the two weighting strategies. No significant relationships were found between

global network metrics and measures of cognitive function or disease severity, so it cannot be

determined whether or not loss of connectivity was responsible for cognitive dysfunction in

this cohort.

To our knowledge this is the first study to use structural network analysis to examine white

matter connectivity in people with COPD. However, the finding of reductions in white matter

connectivity in COPD compared to controls are consistent with reports of widespread tract-

based increases in diffusivity and decreases in anisotropy, found both in this and other COPD

cohorts [10,12,13], suggestive of a deterioration in the white matter in COPD. Such diffusion

abnormalities are consistent with those found in other chronic diseases with a high prevalence

of mild cognitive impairment, including diabetes, hypertension and chronic kidney disease

e.g. [16,46–50]. A previous study of the present cohort found increases in functional connec-

tivity, encompassing all resting-state networks except the visual network [10]. It is plausible

Fig 3. Circular representation of network connections in all subjects and between-group differences in weighted

nodal network metrics. Network nodes are arranged around the outermost circle and assigned a unique colour.

Nodes are split by hemisphere (right hemisphere on the right) and grouped within the macroscopic subdivisions

defined in [32] (Frontal, Central, Insula, Limbic, Temporal, Parietal, Occipital, Subcortical). Within these subdivisions

nodes are arranged by structural laterality. S3 Table summarises the node name abbreviations. The inner four circles

show red-blue t-statistic heatmaps for the sub-significant between-group AUCtotal trends in nodal weighted metrics for

the contrast COPD>Controls. Connections represent the edges present in any subject. The thickness and darkness of

connections indicates the average edge weight for the streamline length-adjusted weighting strategy.

https://doi.org/10.1371/journal.pone.0223297.g003
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that this increase in functional connectivity reflects an over-recruitment of the surviving net-

work structure in order to compensate for the loss of white matter connectivity.

Since no relationships were found with clinical disease severity measures in this study, it is

difficult to draw any mechanistic conclusions about the pathophysiological causes of this net-

work disruption. However, a number of conventional anatomical MR imaging markers of

cerebral SVD, including small subcortical infarcts, WMHs, cerebral microbleeds and brain

atrophy (including generalised atrophy, ventriculomegaly, hippocampal atrophy and focal

atrophy) [51] have been identified in COPD [8–10,13,52–54] or found to be associated with

reduced lung function [55–58]. Furthermore, cardiovascular risk factors which are thought to

predispose development of arteriolosclerosis (otherwise known as age-related cardiovascular

risk-factor-related SVD) are also commonly found in COPD—most notably elderly age, diabe-

tes, hypertension and smoking [51,59,60]. Additionally, COPD itself is an independent risk

factor for cardiovascular disease [61]. Consequently, it has been hypothesised that SVD is

responsible for the neuropathology and cognitive impairment found in COPD [8,9,11,62].

Previous network studies of SVD have reported reductions in the density and strength of

network edges [21,63] consistent with those found in the present study. However, they also

report more profound alterations to network topology not present in this study, such as reduc-

tions in network integration and segregation [21,62,63]. These topological changes have been

found to mediate the relationship between DTI measures of white matter deterioration and

cognitive impairment (executive function and processing speed) [21]. Therefore, the lack of

substantial disruption in network topology in the present cohort may account for the mildness

Table 5. Within-group correlations between global weighted network metrics and cognitive and disease severity measures.

Weighted Global Network Metrics

Degree Global Efficiency Local Efficiency Betweenness Centrality Small-worldness

Controls (N = 23) rho (df) p rho (df) p rho (df) p rho (df) p rho (df) p
Executive Function 0.561 (18) 0.100b -0.007 (18) 1.000b -0.078 (18) 1.000b 0.265 (18) 1.000b 0.176 (18) 1.000b

Episodic Memory 0.003 (18) 1.000b -0.085 (18) 1.000b 0.079 (18) 1.000b -0.367 (18) 1.000b 0.510 (18) 0.220b

Processing Speed 0.337 (18) 1.000b -0.049 (18) 1.000b -0.080 (18) 1.000b -0.133 (18) 1.000b 0.410 (18) 0.720b

Working Memory 0.452 (18) 0.460b -0.071 (18) 1.000b -0.108 (18) 1.000b 0.019 (18) 1.000b 0.156 (18) 1.000b

MMSE 0.054 (18) 1.000b -0.283 (18) 1.000b -0.078 (18) 1.000b -0.012 (18) 1.000b 0.194 (18) 1.000b

COPD (N = 30)

Executive Function -0.238 (25) 1.000b 0.225 (25) 1.000b 0.105 (25) 1.000b -0.170 (25) 1.000b -0.245 (25) 1.000b

Episodic Memory -0.006 (25) 1.000b -0.330 (25) 0.930b -0.390 (25) 0.440b -0.366 (25) 0.600b -0.110 (25) 1.000b

Processing Speed -0.138 (25) 1.000b -0.101 (25) 1.000b -0.112 (25) 1.000b -0.149 (25) 1.000b -0.107 (25) 1.000b

Working Memory 0.025 (25) 1.000b 0.065 (25) 1.000b 0.005 (25) 1.000b -0.237 (25) 1.000b -0.237 (25) 1.000b

MMSE 0.049 (25) 1.000b 0.108 (25) 1.000b 0.233 (25) 1.000b 0.015 (25) 1.000b 0.291 (25) 1.000b

FSRP -0.081 (26) 1.000b -0.018 (26) 1.000b -0.043 (26) 1.000b 0.157 (26) 1.000b 0.098 (26) 1.000b

Pack Years -0.067 (26) 1.000b 0.098 (26) 1.000b 0.186 (26) 1.000b -0.047 (26) 1.000b -0.095 (26) 1.000b

Exacerbation Frequency 0.033 (26) 1.000b -0.278 (26) 1.000b -0.224 (26) 1.000b -0.110 (26) 1.000b 0.318 (26) 1.000b

FEV1 (% pred.) 0.139 (26) 1.000b -0.446 (26) 0.200b -0.403 (26) 0.370b -0.045 (26) 1.000b 0.093 (26) 1.000b

FVC (% pred.) 0.144 (26) 1.000b -0.311 (26) 1.000b -0.199 (26) 1.000b -0.275 (26) 1.000b 0.368 (26) 0.590b

PO2 -0.135 (26) 1.000b -0.074 (26) 1.000b -0.045 (26) 1.000b -0.075 (26) 1.000b -0.012 (26) 1.000b

PCO2 0.092 (26) 1.000b 0.353 (26) 0.650b 0.250 (26) 1.000b 0.146 (26) 1.000b -0.032 (26) 1.000b

SGRQ 0.068 (26) 1.000b 0.223 (26) 1.000b 0.239 (26) 1.000b 0.082 (26) 1.000b -0.010 (26) 1.000b

Age, sex and total intracranial volume were entered as confounders in all analyses. Additionally, estimated pre-morbid IQ was included in correlations involving

cognitive function. Spearman’s correlation coefficients (rho), and p-values (p) are displayed.
bBonferroni corrected p-values.

https://doi.org/10.1371/journal.pone.0223297.t005
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of their cognitive impairment (only one patient met the MMSE criteria for severe cognitive

impairment) as their brain networks are able to accommodate a loss of connections without

compromising the overall efficiency of the network. Nevertheless this loss of connections is

likely to increase the vulnerability of the networks to future damage and increase the risk of

further cognitive decline. The potential utility of brain MR features as early prognostic markers

of cognitive decline and dementia onset have been demonstrated in other diseases [64–67].

For instance, a prospective study showed that longitudinal change in MR measures, including

increase in WMHs and worsening of white matter tissue microstructure (measured using

DTI) were predictive of conversion to dementia in SVD, despite there being no detectable

change on neuropsychological testing [66]. Furthermore, longitudinal decline in white matter

connectivity was found to mediate many of the relationships between progression of conven-

tional brain MR and DTI markers of SVD and conversion to dementia [67]. Future investiga-

tion of longitudinal change in white matter connectivity in COPD may help predict which

patients are at greater risk of developing cognitive impairment and dementia, enabling person-

alised treatment and support.

The lack of direct relationships between cognitive and network measures in the present

study is perhaps surprising, given that a number of other studies have reported relationships

between disruption of large-scale structural brain networks and reduced cognitive function

e.g. [21,63, 68,69]. This may reflect the relatively small cohort size in this study and/or the mild

severity of the COPD (moderate-severe airflow obstruction without significant hypoxaemia or

hypercapnia) in this study. Brain reserve capacity [70] and cognitive reserve [71] have been

proposed to explain similar disparities in brain pathology and functional outcome [71,72].

These related concepts suggest that an individual’s trajectory of cognitive decline is moderated

by factors, such as the amount of physical substrate available (e.g. brain size, number of neu-

rons) and how effectively they can utilise their brain networks (e.g. cognitive efficiency and

flexibility) [72]; this may affect their resilience to accumulating pathology. In this study esti-

mated pre-morbid IQ and total intracranial volume were included as covariates in statistical

analyses as surrogates for cognitive reserve [73] and brain reserve e.g. [74]. However, it is pos-

sible that residual effects remained. A number of disease-related factors and co-morbidities

including anxiety and depression [75,76], disturbed sleep [76,77] and reduced physical activity

[78,79] may also be contributing to functional impairment without commensurate effects on

white matter structure. Further research is required to elucidate the relationship between dis-

ease-related factors, changes in white matter connectivity and cognitive impairment in COPD.

Limitations

The main limitation of this study was that it was not possible to adequately control for smok-

ing history, hypertension or anxiety and depression in the between-group analysis due to the

strong dependence of number of pack years smoked and total HADS score on group-member-

ship, and the lack of available blood pressure data. Consequently, it was not possible to exclude

these disease factors as being responsible for the network disruption. This is particularly signif-

icant as previous studies have reported DTI and/or structural and functional network abnor-

malities to occur with these conditions e.g. [16,80–82]. No formal power calculation was

performed prior to data acquisition. The sample size is relatively small, although comparable

in size to other studies that have reported group differences in MR imaging measures in

COPD [10,13,53,83], limiting the generalisability of these findings to other COPD cohorts.

This study used composite measures of cognition to test for correlations with network mea-

sures. This is a common approach used e.g. [21,63,84], however, it is possible that individual

neuropsychological sub-tests would have been more sensitive to network disruption.
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Diffusion MR remains the only non-invasive in vivo method for investigating white matter

connectivity. With deterministic tractography the uncertainty of the principal direction of dif-

fusion in areas of low FA (e.g. in WMHs) or complex fibre anatomy (e.g. the crossing, bending,

and kissing fibres prevalent in the optic radiation, callosal fibres, pyramidic tracts [85]) lead to

errors which accumulate along the length of the tractography streamline. The present study

aimed to reduce these effects by only seeding the deterministic tractography algorithm within

areas with a well-defined principal diffusion direction (FA�0.2) [21] and by using super-reso-

lution seeding to reduce partial-volume effects [36]. Application of probabilistic tractography

(e.g. [86]) and/or a correction for cerebrospinal fluid contamination may improve tracking

through areas of low FA [87,88] such as the WMHs present in this cohort and areas of partial-

voluming with cerebrospinal fluid. However, probabilistic tractography is more computation-

ally demanding and has an elevated risk of producing false-positive connections [89]. Con-

strained spherical deconvolution [90,91] based tractography could also be used to overcome

some of these effects, but has limited applicability to the present data which used relatively few

diffusion directions at b = 1000s mm-2 [92].

Conclusions

This study has provided a cross-sectional analysis of differences in white matter connectivity

between COPD patients with mild-moderate airflow obstruction and age and sex-matched

controls. Compared to controls, COPD patients had under-connected structural networks

comprising fewer and weaker network connections, but with their topological organisation

conserved. It was not possible to remove the confounding effects of smoking history and

hypertension, so it could not be determined whether this was COPD-related effect per se, or

whether it was the result of COPD patients having greater cardiovascular risk.
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nitive and disease severity measures for the streamline length-adjusted weighting strategy.

Age, sex and total intracranial volume were entered as confounder in all analyses. Additionally,

estimated pre-morbid IQ was included in correlations involving cognitive function. Spear-

man’s correlation coefficients (rho), degrees of freedom (df) and p-values (p) are displayed.
bBonferroni corrected p-values. =

(DOCX)

S5 Table. Within-group correlations between global weighted network metrics and cogni-

tive and disease severity measures for the volume-adjusted weighting strategy. Age and sex

were entered as confounders in all analyses. Additionally, estimated pre-morbid IQ was

included in correlations involving cognitive function. Spearman’s correlation coefficients

(rho), degrees of freedom (df) and p-values (p) are displayed. bBonferroni corrected p-values.

(DOCX)

S6 Table. Within-group correlations between global unweighted network metrics and cog-

nitive and disease severity measures for the volume-adjusted weighting strategy. Age and

sex were entered as confounders in all analyses. Additionally, estimated pre-morbid IQ was

included in correlations involving cognitive function. Spearman’s correlation coefficients

(rho), degrees of freedom (df) and p-values (p) are displayed. bBonferroni corrected p-values.

(DOCX)

S1 Fig. Group comparison of unweighted (left column) and weighted (right column) global

network metrics made point-by-point along the metric curve for the streamline length-

adjusted weighting strategy. Group average metric curves for unweighted and weighted

global network metrics are plotted on the left axes. Red = COPD patients, Blue = Controls.

Shaded error bars represent the standard error of the mean. T-statistics (black) are plotted on

the right axis. Two-tailed critical thresholds (Tcrit) are indicated by dashed grey lines.

(PDF)

S2 Fig. Group comparison of unweighted (left column) and weighted (right column) global

network metrics made point-by-point along the metric curve for the volume-adjusted

weighting strategy. Group average metric curves for unweighted and weighted global network

metrics are plotted on the left axes. Red = COPD patients, Blue = Controls. Shaded error bars

represent the standard error of the mean. T-statistics (black) are plotted on the right axis.

Two-tailed critical thresholds (Tcrit) are indicated by dashed grey lines. �significant at

PFWE<0.05 after MTPC correction for multiplicity.

(PDF)

S3 Fig. Circular representation of network connections in all subjects and between-group

differences in unweighted nodal network metrics for the streamline length-adjusted

weighting strategy. Network nodes are arranged around the outermost circle and assigned a

unique colour. Nodes are split by hemisphere (right hemisphere on the right) and grouped

within the macroscopic subdivisions defined in [32] (Frontal, Central, Insula, Limbic, Tempo-

ral, Parietal, Occipital, Subcortical). Within these subdivisions nodes are arranged by struc-

tural laterality. S3 Table summarises the node name abbreviations. The inner four circles show

red-blue t-statistic heatmaps for between-group AUCtotal differences in nodal unweighted met-

rics for the contrast COPD patients>controls. Connections represent the edges present in any

subject. The thickness and darkness of connections indicates the average edge weight for the

streamline length-adjusted weighting strategy. Significant results are outlined in black.

(TIF)
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S4 Fig. Circular representation of network connections in all subjects and between-group

differences in nodal network metrics for the volume-adjusted weighting strategy. Network

nodes are arranged around the outermost circle and assigned a unique colour. Nodes are split

by hemisphere (right hemisphere on the right) and grouped within the macroscopic subdivi-

sions defined in [32] (Frontal, Central, Insula, Limbic, Temporal, Parietal, Occipital, Subcorti-

cal). Within these subdivisions nodes are arranged by structural laterality. S3 Table summarises

the node name abbreviations. The inner four circles show red-blue t-statistic heatmaps for the

sub-significant between-group AUCtotal trends in nodal unweighted metrics for the contrast

COPD patients>controls. Connections represent the edges present in any subject. The thick-

ness and darkness of connections indicates the average edge weight for the volume-adjusted

weighting strategy.

(TIF)

S1 File. Study data.

(XLSX)
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