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Abstract

Background: The development of acute kidney injury (AKI) in hospitalized patients is associated with adverse outcomes and
increased health care costs. Simple automated e-alerts indicating its presence do not appear to improve outcomes, perhaps because
of a lack of explicitly defined integration with a clinical response.

Objective: We sought to test this hypothesis by evaluating the impact of a digitally enabled intervention on clinical outcomes
and health care costs associated with AKI in hospitalized patients.

Methods: We developed a care pathway comprising automated AKI detection, mobile clinician notification, in-app triage, and
a protocolized specialist clinical response. We evaluated its impact by comparing data from pre- and postimplementation phases
(May 2016 to January 2017 and May to September 2017, respectively) at the intervention site and another site not receiving the
intervention. Clinical outcomes were analyzed using segmented regression analysis. The primary outcome was recovery of renal
function to ≤120% of baseline by hospital discharge. Secondary clinical outcomes were mortality within 30 days of alert,
progression of AKI stage, transfer to renal/intensive care units, hospital re-admission within 30 days of discharge, dependence
on renal replacement therapy 30 days after discharge, and hospital-wide cardiac arrest rate. Time taken for specialist review of
AKI alerts was measured. Impact on health care costs as defined by Patient-Level Information and Costing System data was
evaluated using difference-in-differences (DID) analysis.

Results: The median time to AKI alert review by a specialist was 14.0 min (interquartile range 1.0-60.0 min). There was no
impact on the primary outcome (estimated odds ratio [OR] 1.00, 95% CI 0.58-1.71; P=.99). Although the hospital-wide cardiac
arrest rate fell significantly at the intervention site (OR 0.55, 95% CI 0.38-0.76; P<.001), DID analysis with the comparator site
was not significant (OR 1.13, 95% CI 0.63-1.99; P=.69). There was no impact on other secondary clinical outcomes. Mean health
care costs per patient were reduced by £2123 (95% CI −£4024 to −£222; P=.03), not including costs of providing the technology.

Conclusions: The digitally enabled clinical intervention to detect and treat AKI in hospitalized patients reduced health care
costs and possibly reduced cardiac arrest rates. Its impact on other clinical outcomes and identification of the active components
of the pathway requires clarification through evaluation across multiple sites.
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Introduction

Background
Acute kidney injury (AKI)—a sudden decline in kidney
function—can be caused by hypovolemia, infection (including
severe sepsis), nephrotoxicity, primary renal diseases, and
urinary tract obstruction [1]. Affecting more than 18% of
hospitalized patients [2], it is associated with prolonged hospital
stay, need for acute renal replacement therapy (RRT), or
intensive care admission as well as the development of chronic
kidney disease and the need for long-term dialysis [3-5].
Although AKI may be a marker of systemic physiological
decompensation in acute illnesses (eg, sepsis, trauma, or
high-risk surgery), AKI itself might directly cause additional
deaths through, for instance, metabolic derangement or
extracellular fluid volume overload [6]. Such impacts are
expensive; AKI confers excess annual costs of £1 billion to the
English National Health Service (NHS) [7]. Similar excess
health care costs have been demonstrated in other health systems
[8].

AKI management involves the identification and treatment of
life-threatening complications and medical or surgical treatment
of underlying cause, supportive care (including RRT, where
necessary), and interventions to reduce risk of recurrence [9].
In response to poor outcomes and variations in care delivery
[10], automated AKI alerts (using standardized definitions of
its presence and severity based on increases in serum creatinine
[11]) have been delivered using messages in electronic health
record systems or through hospital pagers [12]. In England, this
approach has been applied through the embedding of an AKI
detection algorithm—The NHS Early Detection Algorithm,
NHSEDA (Multimedia Appendix 1)—in laboratory information
management systems [13]. However, evidence of the impact of
electronic alerts in improving clinical outcomes in AKI is
conflicting [14]. The greatest indications of improvement seem
to occur when such detection systems are coupled with
structured education and clinical intervention packages [15,16].
However, the delivery of such care pathways is challenging:
AKI is common and of heterogeneous etiology; it presents in
diverse settings; and it is normally, at least in its early stages,
managed by a range of nonspecialist teams.

Objectives
To address these issues, we developed a digitally enabled care
pathway for AKI patients [17]. This uses a mobile app
(Streams), which alerts a specialist response team to the presence
of AKI in real time, simultaneously providing relevant clinical
data in a user-friendly format and allowing communication of
key triage decisions among team members. Members of the
response team review patients using a care protocol that maps
to best practice guidance [9].

We have reported the clinical impact of this digitally enabled
care pathway on patients with AKI at the point of presentation

to the emergency department (ED) [18]. The limited impacts
we identified in this setting might reflect the difficulty of
mitigating harm when AKI is well established or in the context
of pathogeneses specific to community-acquired AKI. In this
paper, we assess the impact of the care pathway on clinical
outcomes for patients who develop AKI following hospital
admission and on health care costs.

Methods

The Hospital Sites
The digital pathway was implemented at the Royal Free Hospital
(RFH), a large (839 beds including a 34-bed intensive treatment
unit [ITU]) hospital in north London, United Kingdom. It
provides acute and emergency care as well as a range of
specialist, regional inpatient services (eg, hepatology, HIV and
infectious disease, amyloidosis, and vascular surgery) and has
a large inpatient nephrology and renal transplant service.

For the purposes of our evaluation, we used a comparator site
managed by the same health care provider organization (Royal
Free London NHS Foundation Trust, RFLFT) in which the
intervention was not implemented. Barnet General Hospital
(BGH) is an acute general hospital with 459 beds. It has a 21-bed
ITU that can provide acute RRT and a liaison nephrology
service. Tertiary, specialist services are not provided on this
site. A number of parallel improvement initiatives were ongoing
at the comparator site during the study period, including a sepsis
improvement project and an active deteriorating patients
improvement program.

Implementation
Blood tests, including serum creatinine, are routinely undertaken
on hospitalized inpatients across all wards as directed by the
treating clinicians. Historically, at both sites, blood tests would
be reviewed in batches by the clinicians who ordered them.
Results suggesting AKI would be telephoned to relevant wards
by laboratory staff. Referral for nephrology assessment would
be undertaken at the discretion of the clinical teams and using
hospital pagers and phones. Cases would be prioritized and
treated by the nephrology teams through assessment of referral
information and results on desktop computers and through
bedside review. The Patient at Risk and Resuscitation Team
(PARRT) provides support to ward teams for patients deemed
at risk of deterioration or who trigger existing, physiology-based
early warning systems.

The digitally enabled AKI care pathway and the technical
architecture of the Streams app have been described in detail
previously [17], and the pre-existing and novel care pathways
are shown in Multimedia Appendix 1. Members of the response
team undertook training before implementation. Following
implementation, Streams continuously applied the NHSEDA
to creatinine results for all inpatients. Using iPhones (Apple
Inc), the nephrology team was alerted to all potential cases of
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AKI, with their AKI stage and whether metabolic complications
such as hyperkalemia were present. A curated dataset was
provided, which included patients’ demographic characteristics,
previously coded diagnoses, and relevant results. Filters
excluded children, critical care and chronic dialysis patients,
and those already under the care of the nephrology inpatient
team from producing alerts. Cases were triaged in-app and,
when clinical review was warranted, a best-practice care
protocol was delivered (Multimedia Appendix 1). This was
annotated and entered into the patient’s notes alongside an
advisory sticker for key nursing actions (Multimedia Appendix
1). Recovery could be monitored in-app, and repeat AKI alerts
were sent if AKI had not recovered after 48 hours or if AKI
severity stage increased. Nephrology members received all AKI
alerts, and PARRT members received alerts only for patients
with stages 2 and 3 AKI. All team members could communicate
in-app; triage responses and the outcome of clinical reviews
were visible in the app to other team members. Implementation
of the care pathway at the RFH used existing RFH PARRT and
nephrology staff and did not result in expansion in staff numbers.
A diagram outlining the pre- and postintervention care pathways
is provided in Multimedia Appendix 1.

Data Collection
At both sites, data from RFLFT hospital databases and those
supporting Streams app relating to the intervention period (May
to September 2017) were compared with those from a
predeployment phase (May 2016 to January 2017). Data relating
to patients in whom an AKI alert was generated on presentation
to the hospital ED are reported elsewhere [18], and such patients
were excluded from the analyses reported here.

Data collected and their sources are detailed in Table 1. The
time frame to alert viewing was determined using data recorded
by the Streams app. The presence of individual comorbidities
and overall patient-specific Charlson comorbidity index score
(which categorizes comorbidities based on the International
Classification of Diseases diagnosis codes) were derived as per
the method by Thygesen et al [19]. Patients were sorted into
national quintiles of deprivation (quintile 1, least; quintile 5,
most deprived) using Indices of Multiple Deprivation (IMD)—a
measure combining 7 domains (income, employment, living
environment, health, education skills and training deprivation
and disability, barriers to housing and services, and crime) into

a single deprivation score for a small area—by cross-referencing
patients’ postcodes with the UK Government’s Indices of
Deprivation 2015 dataset [20].

For the economic analysis, we used Payment Level Information
and Costing System (PLICS) data supplied by the RFLFT.
PLICS is a clinical costing system where costs are derived for
each patient spell (ie, admission) by tracing resources used by
an individual patient in diagnosis and treatment and calculating
the expenditure on those resources using the actual costs
incurred by the provider. PLICS has the advantage of including
staffing costs and infrastructure absorbed costs. In our study,
the PLICS data for hospitalized patients with AKI included the
following components: total length of stay (including the length
of stay in intensive care unit), pathology and radiology
examinations, total theater time, theater cutting time, inpatient
dialysis, and overhead costs. These data were analyzed at the
spell level. We also obtained data on the costs associated with
selected individual components of a spell, which we analyzed
separately (ie, length of stay, pathology and radiology
examinations, theater total time, and theater cutting time).
However, individual cost components were based on tariffs and
not fully absorbed costs. Furthermore, we could not obtain
individual costs of inpatient dialysis. The final dataset used in
the economic analysis comprised total and component-specific
spell-level costs at the RFH and BGH, before and after the
digitally enabled care pathway was introduced at the RFH.

Evaluation of Impacts
The primary outcome was recovery of renal function (return to
a serum creatinine concentration within 120% of the baseline,
as defined by the NHSEDA) before hospital discharge. Table
1 describes the predefined secondary endpoints. At both sites,
NHSEDA was used to identify potential AKI cases. Because
the NHSEDA can produce false positives [22], 2 authors (AC
and CL) clinically validated all AKI alerts produced from all
periods at both hospital sites. Only clinician-confirmed episodes
of AKI were included in the analysis. In this paper, we report
the outcomes of inpatients producing AKI alerts outside of the
ED during the predeployment and deployment phases (Figure
1). The impact of the care pathway on cardiac arrests rate was
measured on a hospital level, as it was not possible to ascertain
which cardiac arrests occurred among patients with AKI.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e13147 | p. 3http://www.jmir.org/2019/7/e13147/
(page number not for citation purposes)

Connell et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Definitions of each outcome and sources of data collected.

Source of dataDefinitionData category and measure

Sociodemographic characteristics

HL7a data aggregated within the Streams data
processor

Age in years at the time of alertAge

HL7 data aggregated within the Streams data
processor

Gender codes used in the NHSb Data Dictionary
[21]

Gender

HL7 data aggregated within the Streams data
processor

Ethnicity category codes used in the NHS Data
Dictionary [21]

Ethnicity

HL7 data aggregated within the Streams data
processor

Presence of individual Charlson index comorbidi-
ties and overall Charlson score

Comorbid disease

Ministry of Housing, Communities and Local
Government database

Index of Multiple DeprivationDeprivation

Clinical outcomes

HL7 data aggregated within the Streams data
processor

Return to <120% index creatinine (as defined

by NHSEDAc) by the time of hospital discharge

Recovery of renal function

HL7 data aggregated within the Streams data
processor

The time from AKId alert to recovery of renal
function (<120% index creatinine)

Time to recovery of renal function

HL7 data aggregated within the Streams data
processor

Death in 30 days following AKI alertMortality

HL7 data aggregated within the Streams data
processor

Movement between AKI severity classes follow-
ing AKI alert and before hospital discharge

Progression of AKI stage

HL7 data aggregated within the Streams data
processor

Admission to acute kidney unit/high dependency
unit/intensive treatment unit during index admis-
sion

Admission to high acuity or specialist renal
inpatient bed

RFHe Nephrology Clinical Information Manage-
ment System

Use of hemofiltration/hemodiafiltra-
tion/hemodialysis/peritoneal dialysis in 30 days
following hospital discharge date

Requirement long-term renal replacement
therapy

HL7 data aggregated within the Streams data
processor

Time from AKI alert to hospital dischargeLength of stay

HL7 data aggregated within the Streams data
processor

Re-admission to hospital in 30 days following
index admission discharge date

Re-admission to hospital

Trust-wide metric

Trust critical care nursing team logsNumber of cardiac arrests per 1000 bed daysCardiac arrest rate

Economic measures

Payment Level Information and Costing System
data and Payment by Results/local tariffs at the
trust

Cost per patient per hospital spellCosts per patient

Process of care

Data aggregated within the Streams data proces-
sor

Time from alert generation to alert viewing by
a clinician

Time to alert review

aHealth Level 7 (HL7) messages are used to transfer information between different health care information technology systems.
bNHS: National Health Service.
cNHSEDA: NHS Early Detection Algorithm.
dAKI: acute kidney injury.
eRFH: Royal Free Hospital.
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Figure 1. Defining the final evaluation sample. AKI: acute kidney injury; ITU: intensive treatment unit.

Statistical Analysis
All data were pseudonymized before transfer to the University
College London (UCL) for analysis. Analyses were performed
using R, version 3.4.3 (R core team) [23], and Stata MP version
14 (StataCorp) [24]. Segmented regression analysis estimated
the intervention effect on the primary outcome (return to a serum
creatinine concentration within 120% of the baseline, as defined
by the NHSEDA) and 5 secondary outcome measures: mortality
within 30 days of alert, progression of AKI stage, transfer to
renal/intensive care units during admission, re-admission within
30 days of discharge, and dependence on RRT 30 days after
discharge. Outcomes were measured as weekly proportions.
We used binomial regression models with a logit link predicting
the weekly rate of each outcome. Codes 1 and 0 were applied
to the period after and before the intervention, respectively. The
intervention and comparator sites were coded 1 and 0,
respectively. The variable time denoted the week number (1
denoting the first week of the intervention period, and negative
numbers denoting weeks in the preintervention period). The
statistical model used was:

logit(y) = β0 + β1int + β2time + β3site + β4int x time
+ β5int x site + β6time x site β7int x time x site (1)

where the proportion of interest is denoted by y, the variables
intervention, time, and site by int, time, and site, respectively
(as defined previously), and the coefficients to be estimated by
β0,...,. In addition, 2 coefficients evaluated the evidence for the
intervention causing a step change in outcome: the effect of
intervention estimates the step change in outcome at the start
of the intervention period at the RFH. The interaction
site×intervention estimates the difference-in-differences (DID)
in the step change between the intervention and comparator
hospital sites. We also evaluated evidence for a change in

temporal trend in the outcome because of the intervention: the
time×intervention interaction estimates the difference in
temporal outcome trend between the intervention and
preintervention periods at the RFL; the 3-way
time×site×intervention interaction estimates the DID in the
trend between the intervention and comparator sites.

For all models, we inspected the autocorrelation function (up
to lag 15). No significant autocorrelation was detected in any
model. At the point of protocol publication, it was not
anticipated that we would be able to collect patient-level data
relating to sociodemographic characteristics and comorbid
disease.

To examine the robustness of our primary outcome analysis,
we used binary logistic regression to perform a sensitivity
analysis: the same model mentioned previously was used, except
that (1) the outcome was defined at the patient level and (2)
patient-level characteristics (age, sex, ethnicity category, index
of multiple deprivation, AKI alert level, the presence of
complications at the time of alert, and the presence of individual
Charlson score comorbidities) were included as covariates to
adjust for any differences in casemix between sites and within
sites over time.

The Wilcoxon rank-sum test was used to analyze the time to
creatinine recovery (where this occurred by hospital discharge).
To allow for the effects of in-hospital death on this outcome,
the effect of the intervention on the length of hospital stay was
estimated by competing risk analysis [25]. To determine the
effect of the intervention on the time to recognition of AKI, a
survival analysis was performed. The Wilcoxon rank-sum and
chi-square tests were used to analyze sociodemographic
variables as appropriate.
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A total of 500 alerts were selected randomly from all periods,
and all sites were reviewed a second time to assess the reliability
of case validation. Intra- and interrater reliability was determined
using Cohen’s kappa coefficient (Multimedia Appendix 1).

The number of cardiac arrests was recorded monthly at both
hospital sites. Data relating to those which occurred in the
hospitals’ ED, cardiac catheterization laboratory, intensive care
unit, coronary care unit or in patients who had a formal not for
resuscitation order signed were not included in the monthly
counts recorded at the hospital level. Poisson regression models
with a log link and an offset variable adjusting for the number
of admissions per month were used to estimate the intervention
effect on this outcome. As data were collected monthly, there
was a relative paucity of postintervention data points so that
estimating the effect of the intervention on outcome trend was
not possible. The statistical model was:

log(number of cardiac arrests) = β0 + β1int + β2site
+ β3int x site + log(number of admissions) (2)

Economic analyses used generalized linear models (GLMs) to
estimate DID, where costs were defined at the spell level, and
patient-level characteristics (age, sex, ethnicity category, IMD,
the presence of complications at the time of alert, and the
presence of individual Charlson score comorbidities, such as
diabetes mellitus or congestive cardiac failure) were included
as covariates so as to allow adjustment for any differences in
casemix between sites and within sites over time. A GLM was
specified using a gamma family and log link to account for data
skewness. The model used was:

log(cost) = β0 + β1age + β2sex + β3ethnicity + β4imd
+ β5comp + β6CharlsonScore + β7time + β8site +
β9time × site (3)

where time was defined in relation to the intervention. May to
September 2016 was considered preintervention (t1), and May
to September 2017 was considered postintervention (t3). For
robustness checks, we also carried out a secondary analysis,
where the preintervention period was May 2016 to January
2017. The coefficient β9 is the coefficient of interest, measuring
the between-site DID, comparing the change over time at the
RFH to the change over time at the BGH. We present predictive
margins showing adjusted mean costs per spell at the RFH and
BGH before and after the intervention was introduced at the

RFH. We adjusted for clustering at the patient level to account
for the possibility that patients may have had multiple spells.

Ethical Approval
The digitally enabled care pathway constituted a new standard
service at the RFH. The UCL Joint Research Office reviewed
the study protocol and judged that the project fell under the
remit of service evaluation as per guidance from the NHS Health
Research Authority [26]. As such, no patient consent was
required. The evaluation was registered with the RFH Audit
Lead and Medical Director. An independent data monitoring
committee (which included a patient member) reviewed all
analyses before preparation for publication. A full list of
committee members is provided in Multimedia Appendix 1.

Results

Alerts produced for hospitalized patients during the intervention
period were reviewed by a member of the specialist response
team in a median time of 14.0 min (interquartile range [IQR]
1.0-60.0 min). At the intervention site, clinical validation of the
4392 and 2254 AKI alerts during predeployment (May 2016 to
January 2017) and postdeployment (May to September 2017)
phases, respectively, yielded 1760 and 919 inpatient AKI
episodes in each phase. Of these, 56.5% (994/1960) and 52.2%
(480/919), respectively, were located outside the ED. In the
predeployment and postdeployment phases at the
nonintervention site, clinical validation of the 2866 and 1364
alerts, respectively, yielded 1669 and 772 inpatient AKI
episodes, with 39.2% (654/1669) and 45.3% (350/772) being
located outside the ED.

Table 2 summarizes the sociodemographic and clinical
characteristics of patients producing AKI alerts at both sites
and periods. RFH inpatients were younger (median 72 vs 82
years, P<.001), less likely to be white (P<.001), and less
deprived (P<.001) than at BGH. RFH patients had significantly
less comorbidity (median [IQR] Charlson score 5.0 [3.0-8.0]
vs 5.0 [4.0-8.0], P<.001). The proportion of patients with
pre-existing renal disease was also lower (31.5% vs 37.2%,
P<.001). Comparing the pre- and postintervention cohorts, there
were some significant differences within the comparator site.
At BGH, patients in the postintervention period had significantly
more severe AKI (P=.01) and a higher burden of comorbid
(P<.001) and renal disease (45.1% vs 32.9%, P<.001) than
patients in the preintervention period.
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Table 2. Sociodemographic and clinical characteristics of patients producing acute kidney injury alerts.

P valueHospital site/periodVariable

All RFH vs
all BGH

BGH pre vs
BGH post

RFH pre vs
RFH post

BGHbRFHa

PostPrePostdPrec

———f350654480994AKIe alerts, n

.32.01.102Alert severity, n (%)

281 (80.3)571 (87.3)411 (85.6)809 (81.4)AKI1 

47 (13.4)60 (9.2)44 (9.2)127 (12.8)AKI2

22 (6.3)23 (3.5)25 (5.2)58 (5.8)AKI3

.30.48.74186 (53.1)331 (50.6)257 (53.5)541 (54.4)Male, n (%)

<.001.81.1482.00 (73.25-
88.75)

82.00 (73.00-
88.00)

7.00 (57.00-
83.00)

73.00 (58.00-
84.00)

Age (years), median (interquartile range)

<.001.32.09Ethnicity, n (%)

274 (78.3)512 (78.3)281 (58.5)625 (62.9)White 

12 (3.4)29 (4.4)34 (7.1)76 (7.7)Black or Black British

25 (7.1)60 (9.2)52 (10.8)110 (11.1)Asian or Asian British

4 (1.1)3 (0.5)2 (0.42)10 (1.0)Mixed

35 (10.0)50 (7.7)111 (23.1)173 (17.4)Other ethnic groups

<.001.83.87Index of Multiple Deprivation, n (%)

25 (7.1)42 (6.42)84 (17.5)184 (18.5)Quintile 1 (least deprived) 

60 (17.1)132 (20.2)130 (27.1)216 (21.7)Quintile 2

111 (31.7)183 (28.0)89 (18.5)233 (23.4)Quintile 3

99 (28.3)186 (28.4)111 (23.1)224 (22.5)Quintile 4

53 (15.1)108 (16.5)46 (9.6)97 (9.8)Quintile 5 (most deprived)

2 (0.6)3 (0.5)20 (4.2)40 (4.0)Unknown

<.001<.001.49Charlson Score, n (%)

7 (2.0)10 (1.5)49 (10.2)114 (11.5)0 

9 (2.6)25 (3.8)11 (2.3)51 (5.13)1

13 (3.7)29 (4.4)54 (11.2)63 (6.3)2

21 (6.0)78 (11.9)43 (9.0)107 (1.8)3

59 (16.9)150 (22.9)63 (13.1)169 (17.0)4

241 (68.9)362 (55.4)260 (54.2)490 (49.3)≥5

<.001<.001.23158 (45.1)215 (32.9)162 (33.8)303 (30.5)Pre-existing renal disease present, n (%)

aRFH: Royal Free Hospital.
bBGH: Barnet General Hospital.
cPre: May 2016 to January 2017.
dPost: May 2017 to September 2017.
eAKI: acute kidney injury.
fNot applicable.
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Table 3. Descriptive statistics of total cost per spell producing acute kidney injury alerts.

Barnet General Hospital (£)Royal Free Hospital (£)Statistics

PostPrePostbPrea

7108.88 (11,512.95)7391.16 (14,346.27)10,154.92 (19,582.30)12,015.24 (22,732.78)Mean (SD)

3774.003712.504954.005640.50Median

199.00160.00207.00166.001st centile

1153.501424.002079.002391.5025th centile

8897.008466.0010,567.0013,208.5075th centile

45,614.0051,991.0090,138.00111,245.0099th centile

aPre: May 2016 to January 2017.
bPost: May 2017 to September 2017.

Table 3 provides descriptive statistics of total costs per spell at
each site before and after the intervention. Multimedia Appendix
1 shows the positively skewed distribution of these costs.

Clinical Outcomes
Estimates from the models predicting clinical outcomes are
reported in Tables 4-7, as far as they relate to the research
hypotheses. All estimated model coefficients are reported in
Multimedia Appendix 1.

Table 4. Results of segmented regression analyses for renal recovery and mortality.

MortalityRenal recoveryVariable/interaction term

OR (95% CI)P valueBetaORa (95% CI)P valueBeta

1.18 (0.55-2.52).67.171.00 (0.58-1.71).99.00Interventionb

1.07 (0.36-3.15).91.061.24 (0.53-2.92).62.22Site×interventionc

1.00 (0.96-1.05).89.000.99 (0.96-1.03).61−.01Time×interventiond

0.97 (0.91-1.04).44−.030.97 (0.92-1.03).29−.03Time×site×interventione

aOR: odds ratio.
bThe coefficient intervention provides an estimate of the difference in outcome between the intervention period and the preintervention period at RFH.
cThe 2-way interaction site×intervention provides an estimate of the difference-in-difference between the 2 hospital sites.
dThe 2-way interaction time×intervention provides an estimate of the difference in outcome trend over time in the intervention period compared with
the preintervention period at RFH.
eThe 3-way interaction time×site×intervention provides an estimate of the difference-in-difference in the trend between the sites.

Table 5. Results of segmented regression analyses for progression of acute kidney injury stage and admission to intensive treatment unit/renal unit.

Admission to intensive treatment unit/renal unitProgression of acute kidney injury stageVariable/interaction term

OR (95% CI)P valueBetaORa (95% CI)P valueBeta

1.50 (0.57-4.00).42.401.96 (0.86-4.47).11.67Interventionb

0.31 (0.05-1.68).18−1.180.49 (0.14-1.71).27−.71Site×interventionc

1.02 (0.96-1.08).55.020.99 (0.93-1.04).60−.01Time×interventiond

1.08 (0.97-1.20).19.071.04 (0.96-1.13).32.04Time×site×interventione

aOR: odds ratio.
bThe coefficient intervention provides an estimate of the difference in outcome between the intervention period and the preintervention period at RFH.
cThe 2-way interaction site×intervention provides an estimate of the difference-in-difference between the 2 hospital sites.
dThe 2-way interaction time×intervention provides an estimate of the difference in outcome trend over time in the intervention period compared with
the preintervention period at RFH.
eThe 3-way interaction time×site×intervention provides an estimate of the difference-in-difference in the trend between the sites.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e13147 | p. 8http://www.jmir.org/2019/7/e13147/
(page number not for citation purposes)

Connell et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Results of segmented regression analyses for hospital re-admission and renal replacement therapy use.

Renal replacement therapy use at 30 daysRe-admission at 30 daysVariable/interaction term

OR (95% CI)P valueBetaORa (95% CI)P valueBeta

0.04 (0.00-0.62).03−3.321.22 (0.65-2.29).54.20Interventionb

0.35 (0-infinity).99−1.040.86 (0.31-2.39).77−.16Site×interventionc

1.00 (0.83-1.23).98.000.97 (0.93-1.02).23−.03Time×interventiond

0.00 (0-infinity).99−17.621.01 (0.94-1.08).84.01Time×site×interventione

aOR: odds ratio.
bThe coefficient intervention provides an estimate of the difference in outcome between the intervention period and the preintervention period at RFH.
cThe 2-way interaction site×intervention provides an estimate of the difference-in-difference between the 2 hospital sites.
dThe 2-way interaction time×intervention provides an estimate of the difference in outcome trend over time in the intervention period compared with
the preintervention period at RFH.
eThe 3-way interaction time×site×intervention provides an estimate of the difference-in-difference in the trend between the sites.

Table 7. Results of segmented regression analysis for hospital cardiac arrest rate

Cardiac arrestsVariable/interaction term

OR (95% CI)P valueBeta

0.55 (0.38-0.76)<.001−.60Interventiona

1.13 (0.63-1.99).69.12Site×interventionb

aThe coefficient intervention provides an estimate of the difference in outcome between the intervention period and the preintervention period at RFH.
bThe 2-way interaction site×intervention provides an estimate of the difference-in-difference between the 2 hospital sites.

Primary Outcome
We found no evidence for a step change in renal recovery rate
(return to a serum creatinine concentration within 120% of the
baseline) following the intervention at the RFH. The estimated
odds ratio (OR) for the intervention step change was 1.00 (95%
CI 0.58-1.71). There was also no evidence for a significant
difference in step change of recovery rate between RFH and
BGH (estimated OR 1.24, 95% CI 0.53-2.92; P=.62).

The model did not estimate a statistically significant change in
the trend of renal recovery rates at RFH (estimated OR 0.99,

95% CI 0.96-1.03; P=.61), indicating that the trend in the
intervention period at RFH was not significantly different to
that in the preintervention period. There was also no significant
difference in the trend change between sites (estimated OR 0.97,
95% CI 0.92-1.03; P=.29). The data and model predictions are
illustrated in Figure 2. Model estimates from the sensitivity
analysis controlling for differences in casemix did not differ
substantially from the primary analysis model estimates
(Multimedia Appendix 1), and none of the 4 examined estimated
ORs were statistically significantly different from 1.
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Figure 2. Weekly recovery rate at Royal Free Hospital (RFH) and Barnet General Hospital (BGH) before and after implementation of the care pathway.
Individual data points reflect the rate of each outcome for a single week. Solid lines indicate fitted values from the modeling functions.

Secondary Clinical Outcomes
We found evidence for a reduction (step change) in the rate of
cardiac arrest following the intervention at RFH (estimated OR
0.55, 95% CI 0.38-0.76; P<.001). However, we found no
statistically significant difference in the step change between
sites (OR 1.13, 95% CI 0.63-1.99; P=.69). The data and model
predictions are shown in Figure 3.

We also found evidence for a reduction (step change) in the
rates of RRT use at 30 days at the intervention site (estimated
OR 0.04, 95% CI 0.00-0.62, P=.04). However, because RRT
was a rare event, estimates for this outcome were not reliable
(Tables 4-7 and Multimedia Appendix 1). For all other

secondary outcomes, models did not provide statistically
significant evidence for an impact of the intervention. The data
and model predictions are shown in Multimedia Appendix 1.

We found no evidence for an effect of the intervention on time
to renal recovery. At RFH, the median (IQR) time to renal
recovery was 3.00 days (1.00-15.00 days) before and 4.00 days
(1.00-12.00 days) after the introduction of the intervention
(P=.61). At BGH, the median (IQR) time to renal recovery was
3.00 (1.00-13.00) and 3.00 (1.00-7.00) days, respectively
(P=.100). Using competing risk analysis, a significant increase
in length of stay was demonstrated at both RFH (P=.046) and
BGH (P=.03) after implementation of the care pathway
(Multimedia Appendix 1).
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Figure 3. Cardiac arrests at Royal Free Hospital (RFH) and Barnet General Hospital (BGH). Individual data points reflect the rate of cardiac arrest per
thousand admissions for a single month. Solid lines indicate fitted values from the modeling functions.

Economic Outcomes
There was a significant reduction in adjusted mean costs per
spell over time at the RFH but not at the BGH (Tables 8-10).
There was a significant reduction in mean costs per spell at the
RFH in the postimplementation period compared with the
preintervention period over and above the (nonsignificant)

change seen at the BGH: the DID was −£2123 per spell (95%
CI=−£4024 to −£222, P=.03). For the specified secondary
analysis including all periods, the DID was −£1631 per spell
(95% CI=−£3218 to −£44, P=.04). No significant differences
were noted in the analyses of the cost components (Multimedia
Appendix 1).

Table 8. Results of economic analysis: Royal Free Hospital.

P valueDifference (£)Postintervention (£)Preintervention (£)Time period

95% CIMean95% CIMean95% CIMean

.003−3843.90 to −802.41−2323.158840.91 to 10,865.829853.3710,996.53 to 13,356.5012,176.52Periods t1a and t3b only

.002−3283.53 to −738.56−2011.058755.45 to 10,767.729761.5910,936.03 to 12,609.2311,772.63All periods

at1: May to September 2016.
bt3: May to September 2017.

Table 9. Results of economic analysis: Barnet General Hospital.

P valueDifference (£)Postintervention (£)Preintervention (£)Time period

95% CIMean95% CIMean95% CIMean

.74−1370.27 to 969.04−200.626461.82 to 8152.717307.276589.77 to 8425.997507.88Periods t1a and t3b only

.45−1358.56 to 598.19−380.196413.81 to 8073.357243.587007.67 to 8239.867623.76All periods

at1: May to September 2016.
bt3: May to September 2017.
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Table 10. Results of economic analysis: difference-in-difference analysis of Royal Free Hospital and Barnet General Hospital.

P value95% CIMeanTime period

.03−4023.37 to −221.70−2122.54Periods t1a and t3b only (£)

.04−3217.50 to −44.22−1630.86All periods (£)

at1: May to September 2016.
bt3: May to September 2017.

Discussion

Principal Findings
The digitally enabled care pathway for the management of AKI
in a large, acute hospital with a complex casemix resulted in no
significant impact on the primary outcome of renal recovery or
any of the other secondary clinical outcomes measured but was
associated with a significant reduction in adjusted mean costs
per patient admission. We did not include the costs of providing
the technology, and therefore, it is not possible to judge whether
or not it would be cost saving overall. Our results suggest that
the digitally enabled care pathway would be cost saving,
provided provision of the technology costs less than around
£1600 per patient spell. The causes of the cost savings are
unclear but are likely to be multifactorial, and further research
to investigate these would be useful. The most important cost
components contributing to this reduction (detailed in
Multimedia Appendix 1) were length of stay and theater cutting
time (which might itself be expected to play a role among
patients requiring surgical intervention for AKI). There was a
statistically significant reduction in the need for RRT at 30 days
post-AKI; however, our model was not sufficiently reliable,
given the low observed event rate of this outcome. The reduction
in cardiac arrest rate needs to be viewed with caution because
of the large number of hypothesis tests we conducted for our 6
prespecified secondary outcomes, and because this was a
hospital-wide measure, this may have been influenced by other
concurrently implemented initiatives. Furthermore, cardiac
arrest rates also reduced at the comparator site. It is possible
that both the RFH digital pathway and BGH’s quality
improvement initiative were effective to some extent through
different mechanisms.

There are several possible explanations for the lack of impact
on renal recovery. First, this may reflect existing high standards
of AKI care before implementation: 30-day mortality for
preintervention patients at RFH was 14.9% compared with
18.1% nationally [27]. It is possible that our intervention may
have delivered more benefit in hospitals with worse outcomes.
Second, AKI arising during inpatient admission has been shown
to have worse outcomes than that arising at emergency
presentation [28]. This may be because AKI arising during
hospital treatment may be harder to modify. Third, AKI
detection using NHSEDA depends on an elevation of serum
creatinine, the detection of which may lag many hours or even
days after the time of renal insult [29]. In consequence, renal
injury may be less modifiable by this stage, even using a rapid
system of detection such as that described. Finally, it is possible
that the Streams app may have had a greater impact were it to
have been implemented as part of a different care

pathway—perhaps, one that involved general physicians as well
as specialty care.

An explanation for the possible effect of the intervention on
rates of cardiac arrest emerged from qualitative data provided
in our parallel paper [30]. Here, users suggested the care
pathway not only enhanced early access to specialist care for
deteriorating patients but also informed treatment escalation
plans. The latter included institution of ceilings of care and do
not resuscitate orders with patients and relatives. Both would
be expected to contribute to a reduction in the recorded
unexpected cardiac arrest rate.

Comparison With Prior Work
Our data are consistent with recent reports of the benefits of
e-alerting systems for AKI for patients and the wider health
system. We have reported on the impact of the digitally enabled
care pathway on processes of care and clinical outcomes for
patients with AKI at the point of presentation to the ED.
Implementation of the digitally enabled care pathway for these
patients was associated with significant improvement in the
reliability of AKI recognition, a reduction in time to recognize
and adjust potentially nephrotoxic medications [18]. Our
qualitative analysis [30] found that care pathway improved
access to patient information and expedited early specialist care.
Our results concur with other research findings: a recent study
from Korea [31] suggested that e-alerting for inpatients improves
AKI recognition and the number of patients receiving specialist
review [31]. Moreover, 2 single-site quality improvement
projects combining AKI alerts with care bundles and targeted
staff education also improved recognition of AKI and the quality
of inpatient care [32,33]. In addition, a large multicenter
sequential period analysis of an alerting system warning
clinicians of the possible presence of AKI next to the display
of serum creatinine results resulted in a small but sustained
decrease in in-hospital mortality, dialysis use, and length of stay
[34]. However, similar to our research, it is unclear which
components of these pathways influenced these outcomes. A
number of mixed-methods analyses of e-alerting systems for
AKI are still underway; results from the qualitative segments
of the AKORDD [35] and TACKLING [36] studies are awaited.

Strengths and Limitations
Our evaluation had a number of strengths. First, this is, to our
knowledge, the first study to define the economic impact of
implementing a digital innovation for AKI on health systems.
Second, we clinically validated all NHSEDA AKI alerts before
analysis and validated this process. Third, our inclusion of a
comparator site follows best practice [37], ensuring transparency
in the drawing of conclusions about the active components of
our intervention.
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Our evaluation also had several limitations. First, longer time
frames and the inclusion of multiple intervention and comparator
sites would have helped overcome the effect of differences in
casemix in the pre- and postintervention period (identified in
our single comparator site) and may have helped to clarify any
added value of the integration of our digital innovation into the
care pathway. This would also have allowed us to investigate
the impact on specific patient subgroups and better understand
if outcomes differed between different AKI stages. It is possible,
for instance, that established severe AKI is far less responsive
to intervention than the early disease. It is important that such
issues are prospectively addressed in future studies. Longer
time frames would also have allowed us to control for any
seasonal changes in outcome, which are known to occur [38]
and should be borne in mind in the design of future studies. It
was not possible to collect cost data relating to the innovation
of the intervention site, which should be included in any future

cost-benefit analyses. Finally, although time to in-app AKI
recognition and virtual review by a specialist was very rapid
(median 14.0 min), comparable data from the preimplementation
phase could not be collected as this process is integral to the
Streams app.

Conclusions
The digitally enabled AKI care pathway reduced inpatient health
care costs and may also help reduce hospital-wide cardiac arrest
rates: this result requires reanalysis in larger, multisite studies.
Growing support for greater digitalization of health systems
offers the opportunity to improve the quality and safety of care
and to reduce its cost. However, prospective evaluation of the
clinical and cost impacts of digital innovations within the context
in which they are delivered will be key in delivering maximum
utility for patients and health systems.
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