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Abstract

Background Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between
protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure opti-
mal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency.
Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract
skeletal muscle dysfunctions and wasting occurring in cancer cachexia.
Methods For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received
5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior,
and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also
performed.
Results Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength
increase, an enhanced fast-to slow myofibre phenotype shift, reduced glycaemia, PGC1α up-regulation, oxidative metabolism,
and mitochondrial biogenesis. TMZ also partially restores the myofibre cross-sectional area in C26-bearing mice, while mod-
ulation of autophagy and apoptosis were excluded as mediators of TMZ effects.
Conclusions In conclusion, our data show that TMZ acts like an ‘exercise mimetic’ and is able to enhance some mechanisms
of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable
candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for
clinical use.
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Introduction

Cachexia is defined as the loss of body weight occurring in
the presence of chronic illnesses such as cancer or chronic

heart failure. Cachexia severely interferes with patient re-
sponsiveness to therapy and contributes to poor prognosis,
reducing both quality of life and survival.1–9 The loss of skel-
etal muscle mass in cachectic states is due to excessive
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catabolism of myofibrillar proteins, which might be associ-
ated to reduced protein synthesis. Both processes are medi-
ated by PI3K/AKT-dependent pathways that reduce the
expression of molecules regulating proteasomal degradation
such as atrogin-1/MAFbx and Muscle Ring Finger protein
1.10–17 Moreover, the activation of PI3K/AKT-dependent path-
ways increases protein synthesis by targeting, among other
molecules, glycogen synthase kinase-3β (GSK3β) and S6
kinase 1 phosphorylation.18–20 Muscle mass depletion in
cachexia has also been associated to altered autophagy and
impaired myogenesis.21–26

Metabolic efficiency of the myofibre is critical for main-
taining muscle physiology and function and for avoiding loss
of skeletal muscle mass.27–29 From a metabolic point of view,
skeletal muscles are composed of myofibres with different
metabolic profiles ranging from those with a prevalent
glycolitic metabolism to those predominately oxidative.
Myofibres also display different contractile properties that al-
low a classification in slow-twitch or fast-twitch fibres30–32

and that are strongly related to the isoform of myosin
heavy-chain (MyHC) that they express. In particular, myosin
ATPase type I identifies slow-twitch type I myofibres (pre-
dominately oxidative), while myosin ATPase type II identifies
type II fast-twitch myofibres (mainly glycolitic). Type I fibres
are characterized by both high mitochondrial content and
high capillary density.33 Also, other myofibrillar (e.g. Troponin
T, I, and C) and calcium-sequestering (e.g. the sarcoplasmic
reticulum calcium transport ATPase) proteins are expressed
as slow or fast isoforms, predominately occurring in type I
or II fibres, respectively. In rodents, based on the isoform of
fast MyHC expressed, type II fibres are further classified into
three subclasses; type IIa, type IIx/d, and type IIb fibres. Type
IIx/d fibres are glycolitic, whereas, compared with type I and
to type IIx/d fibres, type IIa fibres have intermediate features
and a mixed (oxidative/glycolytic) metabolism. Finally, type
IIb fibres are more fast-twitch and glycolytic than IIx/d
fibres.30,31

Mammalian skeletal muscle is a highly plastic tissue in
which myofibre physiological properties and metabolism
vary in order to optimize the response to the changing
environment. Some drugs are able to modulate cell me-
tabolism and to enhance cell metabolic efficiency.34–37 In
particular, the metabolic modulator trimetazidine (TMZ) re-
duces fatty acid oxidation by inhibiting 3-ketoacyl Co-A
thiolase and shifts ATP production from fatty acid oxida-
tion towards glucose oxidation. ATP synthesis through
fatty acid β-oxidation requires more oxygen compared
with glucose oxidation; therefore, the choice of glucose
as a substrate induces a more efficient utilization of the
oxygen available, which in turn increases metabolic effi-
ciency38,39–42 We have already demonstrated that this
drug has a hypertrophic effect on cultured myotubes and
that it improves exercise capability in patients suffering
from chronic stable angina.43,44 Based on these premises,

we investigated whether TMZ can counteract skeletal mus-
cle dysfunctions occurring in cancer cachexia by using
mice bearing the C26 colon carcinoma. In this regard,
the C26 tumour is the most widely used experimental
model in the field of cancer cachexia, which has been
shown to reasonably recapitulate the most relevant clinical
features of this syndrome.45 Our experiments revealed
that TMZ administration induces some of the benefits
achieved through exercise, possibly enhancing the mecha-
nisms of adaptation to stress.

Methods

Animals and experimental design

Balb-c male mice (5 weeks old) were used. They were
obtained from Charles River and were maintained on a
regular dark–light cycle (light from 08:00 to 20:00), with
free access to food (Piccioni) and water during the whole
experimental period, including the night before sacrifice.
Experimental animals were cared for in compliance with
the Italian Ministry of Health Guidelines (no 86609 EEC,
permit number 106/2007-B) and the Policy on Humane
Care and Use of Laboratory Animals (NIH 1996). The ani-
mals were randomized according to their body weight on
the day before the treatments and divided into four
groups, namely, controls and tumour bearers, treated or
not with TMZ (Sigma-Aldrich). Because we evidenced the
instability of TMZ powder, we always used fresh TMZ,
not older than 1 month after package opening. Sample
size has been defined on the basis of previous studies.
In particular, 6–7 mice/experimental group (depending if
healthy or tumour-bearing) have been estimated sufficient
to detect a difference of 10 in the means of each param-
eter with a SD of 8 and with 90% power, a significance
level of 95% at Student’s t-test, and a dropout rate of
10%. In more detail, the first group (Ctrl; n = 6) served
as controls and included healthy mice inoculated with ve-
hicle (saline); the second group (TMZ; n = 6) included
healthy mice receiving intraperitoneal injection of
5 mg/kg TMZ once a day for 12 consecutive days; the
third group (C26; n = 7) included tumour-bearing mice in-
oculated subcutaneously dorsally with 5 * 105 C26 carci-
noma cells; the fourth group (C26-TMZ; n = 7) was
inoculated with C26 cells and the same day started receiv-
ing TMZ intraperitoneal injection of 5 mg/kg TMZ once a
day for 12 consecutive days. Based on the most recent in-
dications suggesting that, in order to possibly treat ca-
chexia, it is necessary to act on of pre-cachexia
conditions, in the present work, we aimed to investigate
the possibility that TMZ administration could interfere
with the onset and progression of cachexia; therefore, to
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start the treatment concomitant with tumour inoculation
was the best option. Future studies could be developed
in order to understand if TMZ might have a curative ac-
tion in milder models of cancer cachexia, starting to treat
the animals when the tumour becomes palpable. Animal
weight and food intake were recorded daily. The day of
sacrifice (12 days after tumour transplantation), the ani-
mals were anesthetized by isoflurane inhalation. The blood
was collected by cardiac puncture and used to monitor
glycaemia (Glucocard G-sensor; Menarini Diagnostics). The
mice were then sacrificed by cervical dislocation and
tibialis anterior (TA) and gastrocnemius (GSN) muscles
were rapidly excised, weighed consecutively numbered
and frozen in liquid N2-cooled isopentane, and finally
stored at �80°C. When subsequent analyses are per-
formed, the operator just knows the numbers but not
the corresponding experimental groups.

Skeletal muscle function analysis

A forelimb grip strength blinded test was performed at Days 6
and 12 after tumour implantation by using a commercial dig-
ital grip strength metre (Columbus Instruments). Mice held
by the tail were gently allowed to grasp a wire grid with
the fore paws. The mice were then gently pulled by the tail
until they released their grip. The force achieved by the
mouse was recorded during three trials and averaged.

Immunofluorescence and cross-sectional area
evaluation

Myofibre CSA measurement was performed on TA. Serial
muscle sections (9 μm) were obtained from the midbelly
region of the TA muscles that had been embedded in
OCT. A CM1900 cryostat (Leica) at �20°C was used. Sec-
tions were fixed in 4% paraformaldehyde and stained with
an antilaminin (L9393) antibody and an antislow MyHC
(M8421) from Sigma-Aldrich. The Alexa Fluor 488 anti-
rabbit IgG (A11008) from Life Technologies was used as
secondary antibodies. Nuclei were visualized with the
DNA dye 40,6-diamidino-2-phenylindole, and the samples
were mounted in SlowFade Gold mounting media (Life
Technologies). The images were acquired with a Leica
TCS SP5 confocal microscope. In the stained muscle sec-
tions, automated CSA determination along the laminin-
stained border of each fibre was evaluated by using Image
J.46 Because errors in fibre border recognition might occur
(i.e. either the fibres might not be recognized or several
fibres/non-fibre regions might be interpreted as a single fi-
bre), a manual correction of myofibre border misinterpre-
tation was performed.

Histochemistry

Enzymatic staining for the succinate dehydrogenase (SDH) ac-
tivity was performed on TA cross sections. SDH incubation
media were prepared by dissolving 1 mg/ml of
nitrotetrazolium blue chloride and 27 mg/ml of sodium succi-
nate in PBS.

Quantitative real-time polymerase chain reaction

Dissociation of samples was performed with Qiagen
TissueRuptor, and RNA isolation was performed by using
TRIreagent (Sigma-Aldrich) following the manufacturer’s in-
structions. For RT-PCR, cDNA was synthesized with oligo-dT
by adding 1 μg of RNA with GoScript Reverse Transcription
System (Promega). Comparative real-time PCR was per-
formed with the SYBR-green master mix (Promega) by using
the Stratagene MX3000 (Thermo Fisher Scientific). Data were
normalized to 18S, and a calibrator was used as internal con-
trol. Resulting data were analysed by the MX3PRO (v4.10),
and fold change was determined by using the 2-ΔΔCT
method.47,48 All reactions were performed in triplicate. The
following primers were used:

18S Fw 50-CCCTGCCCTTTGTACACACC-30
Rv 50-CGATCCGAGGGCCTCACTA-30

Atrogin-1 Fw 50-ATGCACACTGGTGCAGAGAG-30
Rv 50-CCTAAGGTCCCAGACATCCA-30

MyH Fw 50-CAAGTCATCGGTGTTTGTGG-30
Rv 50-TGTCGTACTTGGGAGGGTTC-30

PDK4 Fw 50-AAAGAGGCGGTCAGTAATCC-30
Rv 50-TCCTTCCACACCTTCACCACA �30

CTP1 Fw 50-CCCATGTGCTCCTACCAGAT-30
Rv 50-CCTTGAAGAAGCGACCTTTG-30

PGC1α Fw 50-GTCAACAGCAAAAGCCACAA-30
Rv 50-TCTGGGGTCAGAGGAAGAGA-30

Desmin Fw 50-GAGGTTGTCAGCGAGGCTAC-30
Rv 50-GAAAAGTGGCTGGGTGTGAT-30

MYH7 (MyHC I) Fw 50-TGCAGCAGTTCTTCAACCAC-30
Rv 50-TCGAGGCTTCTGGAAGTTGT-30

MYH2 (MyHC IIa) Fw 50-AGTCCCAGGTCAACAAGCTG-30
Rv 50-GCATGACCAAAGGTTTCACA-30

MYH1 (MyHC IIx/d) Fw 50-AGTCCCAGGTCAACAAGCTG-30
Rv 50-CACATTTGGCTCATCTCTTGG-30

MYH4 (MyHC IIb) Fw 50-AGTCCCAGGTCAACAAGCTG-30
Rv 50-TTTCTCCTGTCACCTCTCAACA-30

TNNI-1 Fw 50-GCACTTTGAGCCCTCTTCAC-30
Rv 50-AGCATCAGGCTCTTCAGCAT-30

TNNC-1 Fw 50-GCCTGTCCTGTGAGCTGTCT-30
Rv 50-CAGCTCCTTGGTGCTGATG-30

TNNT-1 Fw 50-ATCTGTGGACCCAGCCTTAG-30
Rv 50-CTCTTCTCGCTCTGCCACC-30

GLUT-4 Fw 50-GGCATGGGTTTCCAGTATGT-30
Rv 50-GCCCCTCAGTCATTCTCATG-30

Ins R Fw 50-CTCCTGGGATTCATGCTGTT-30
Rv 50-GTCCGGCGTTCATCAGAG-30

MCP-1 Fw 50-CTTCTGGGCCTGCTGTTCA-30
Rv 50-CCAGCCTACTCATTGGGATCA-30

Vascular endothelial
growth factor

Fw 50-CTGTGCAGGCTGCTGTAACG-30

Rv 50-GTTCCCGAAACCCTGAGGAG-30
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Protein isolation and western blotting

Tissue samples from GSN and TA muscles were homogenized
by using a GentleMACS Dissociator (Miltenyi Biotec) and
lysed in ice cold Cosper and Leinwand Myosin Extraction
Buffer (300 mM NaCl, 0.1 M NaH2PO4, 0.05 M Na2HPO4,
0.01 M Na4P2O7, 1 mM MgCl2, 10 mM EDTA, and 1 mM
DTT pH 6.5) or in lysis buffer (10 mM Tris/HCl, pH 7.4,
5 mM EDTA, 5 mM EGTA, 1% Triton X-100, 130 mM NaCl,
0.1% SDS, and 0.1% sodium deoxycholate) supplemented
with a protease inhibitor cocktail (Roche) and a phosphatase
inhibitor cocktail (Sigma-Aldrich). A clear supernatant was ob-
tained by centrifugation of lysates at 13 000 g for 20 min at
4°C. Protein concentration in the supernatant was deter-
mined by Bradford protein assay (Bio-Rad). Aliquots of total
cell lysates were then separated by SDS-PAGE by using
Miniprotean precast gels (BioRad), and proteins were trans-
ferred to nitrocellulose membranes (BioRad) or to
polyvinylidene difluoride membranes (BioRad). Membranes
were blocked 1 h at RT at 4°C with 5% non-fat milk in
Tris-buffered saline with 0.05% Tween 20 and then probed
by using the following antibodies directed against: Atrogin-1
(AP2041; ECMBiosciences), Laminin (L9393; Sigma-Aldrich),
MyHC (MF20 recognizing all isoforms of skeletal muscle myo-
sin heavy chain; Developmental Studies Hybridoma Bank at
the University of Iowa), slow MyHC (M8421; Sigma-Aldrich),
fast MyHC (M4276; Sigma-Aldrich), Desmin (D1033; Sigma-
Aldrich), α-tubulin (T5168; Sigma-Aldrich), pAkt (9271; Cell
Signalling), Tom20 (sc-11415; Santa Cruz Biotechnology),
TFAM (sc-23588; Santa Cruz Biotechnology) pFoxo 3A
(9466S; Cell Signalling), PGC1α (AB3242; Millipore), βchain-
ATP Synthase (MAB3494; Millipore), NDGR1 (3217; Cell Sig-
nalling), p-GSK3β (ser9) (ab75814; Abcam), p-RPS6 (2215S;
Cell Signalling), p-p38MAPK (9216; Cell Signalling), VE
cadherin (ab91064, Abcam), p-NFATc2 (ab200819, Abcam),
and pACC (05-673 Millipore). The appropriate secondary
horseradish peroxidase-conjugated antibodies from Jackson
Immunoresearch were used in blocking solution for 1 h at
room temperature. Immunoreactive bands were visualized
by SuperSignal West Pico Chemioluminescent substrate kit
(Pierce). Equal loading of samples was confirmed by α-tubulin
(T5168; Sigma-Aldrich) or actin (A3853; Sigma-Aldrich) nor-
malized and quantified by densitometry by using the
ImageQuant TL software from GE Healthcare Life Sciences.
The first WB was performed by an operator who was not
aware of the group assignment, then in order to properly
present data, samples were divided in the experimental
groups and re-probed.

Cell culture and RNA extraction

Murine C2C12 skeletal myoblasts were grown at 37°C in 5%
CO2 in an air-humidified chamber in high-glucose DMEM

(Gibco) with glutamax, supplemented with 20% foetal bovine
serum and 1% penicillin/streptomycin (Euro-Clone).49 As the
cells approached confluency, the growth medium was re-
placed with a differentiation medium: DMEM supplemented
with 2% horse serum and 1% penicillin/streptomycin. The
medium was changed every second day. On Day 4 of differen-
tiation, myotubes were treated with TMZ (10 μM) and RNA
was isolated with an RNeasy Micro Kit (Qiagen Instrumenta-
tion Laboratory, Milan, Italy), according to the manufac-
turer’s instructions.

Assessment of ΔΨm

ΔΨm was measured by using tetramethylrhodamine ethyl es-
ter (TMRE, Molecular Probes) as previously reported.50 Mu-
rine C2C12 skeletal myoblasts treated or not with TMZ
(10 μM) were incubated at 37°C for 15 min in media contain-
ing TMRE (50 nM). As a control for ΔΨm dissipation, cells
were treated with 10 μM carbonyl cyanide
p-(trifluoromethoxy) phenylhydrazone. Cells were then
rinsed in fresh medium and detached from the dish. TMRE
fluorescence was detected by flow cytometry on a
FACScalibur flow cytometer (Becton-Dickinson).

Ex vivomeasurement of skeletal muscle contractile
properties

The contractile properties of both EDL and Soleus muscles
excised from 3-month-old C57/BL6 mice were measured
ex vivo as previously described.51 The muscle to be tested
was vertically mounted in an oxygenated and temperature
controlled chamber containing Krebs-Ringer bicarbonate
buffer. One end of the muscle was linked to a fixed clamp
while the other was connected to the lever arm of an
actuator/transducer (Aurora Scientific Inc. 300B). The iso-
lated muscle was electrically stimulated, by means of
two platinum electrodes, with 3 single 0.1 ms pulses and
with 2 pulse trains at tetanic frequency (180 Hz for the
EDL and 80 Hz for the Soleus). From the single pulse stim-
ulations, we measured the twitch force and the kinetics
parameters, namely, the time to peak, the half relaxation
time, and the force derivative during both the contractile
and the relaxation phases, while through the stimulation at
the tetanic frequency, we measured the muscle maximum
force and the resistance to isotonic fatigue. All the forces
were then normalized with reference to the muscle cross
sectional area52 to obtain the specific force values. Within
this technique, we tested both the systemic and the direct
effects of TMZ on skeletal muscles. In the first case, the an-
imals were treated with 5 mg/kg TMZ once a day for 12 days.
In the second case, each muscle was incubated in Krebs-
Ringer bicarbonate buffer containing TMZ for 15 min before
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being stimulated. Two different TMZ concentrations were
tested: 10 and 100 μM.

Statistical analysis

All experiments were performed at least three times, unless
otherwise indicated. Data are presented as mean ± standard
error of the mean. Statistical differences between groups
were verified by Student’s t-test (2-tailed). *p < 0.05 was
considered significant. For contractile properties measure-
ments, differences in the mean of muscles incubated
ex vivo with TMZ were assessed with one-way ANOVA
followed by Tukey’s multiple comparisons test.

Results

The metabolic reprogramming triggered by
trimetazidine leads to grip strength increase in mice

Mice bearing the C26 colon carcinoma and healthy animals
(controls; Ctrl) were treated with the metabolic modulator
TMZ for 12 days. Grip strength was measured following 6
and 12 days of TMZ administration (Figure 1). In both Ctrl
and C26-bearing mice, a significant increase in grasping
strength was recorded after 6 days of TMZ treatment
(Figure 1A); at day 12, this increase was persistent in Ctrl,
but no more detectable in C26 hosts (Figure 1B). In line with
our previous results obtained on C2C12 myotubes,43 blood
glucose was reduced and the expression of the glucose recep-
tor Glut 4 was increased in TMZ-treated Ctrl mice but not in
the C26 hosts (Figures 1C and S1). The expression of Glut 4
increased also in C2C12 myotubes treated with TMZ
(Figure S1).

Trimetazidine partially restores myofibre
cross-sectional area in C26-bearing mice

Based on our previous results showing that TMZ reduces
myotube atrophy induced by TNFα and serum deprivation,43

we investigated the effect of this metabolic modulator on
cancer-inducedmuscle wasting. The C26 tumour becomes pal-
pable 5–6 days after implantation; the mice start losing weight
at day 9 and are sacrificed at day 12, when the final body
weight reaches about 75–80% of Ctrl animals (Figure 2A).
TMZ did not prevent the decrease in body weight occurring
in the C26-bearingmice (Figure 2A), nor did TMZ treatment re-
verse the decrease in TA, GSN weight, and adipose tissue mass
recorded at 12 days after tumour implantation (Figure 2B and
C). Moreover, tumour growth was not affected by TMZ
(Figure 2D).

Figure 1 Trimetazidine (TMZ) increases grip strength in control and C26
mice. (A) Forelimb voluntary grasping strength was measured in healthy
Balb-c mice (Ctrl) and C26 tumour-bearing Balb-c mice (C26) that were ei-
ther PBS-injected (Untr) or TMZ-injected. Force measurement was per-
formed after 6 days and (B) after 12 days of consecutive TMZ
treatment by using a grip strength metre. The force achieved by each
mouse was recorded for three trials and averaged. Data are reported
as a percentage of the untreated control and as the mean ± SEM. n = 6
animals for Ctrl-Untr and for Ctrl-TMZ and n = 7 animals for C26-Untr
and C26-TMZ were tested in each of two independent experiments.
*p ≤ 0.05, **p ≤ 0.01 by Student’s t-test. (C) Blood glucose concentration
measured before sacrifice in untreated control mice (Ctrl-Untr), TMZ-
treated control mice (Ctrl-TMZ), untreated C26 tumour-bearing mice
(C26-Untr), and TMZ-treated C26 mice (C26-TMZ). Blood was collected
by cardiac puncture from anaesthetized animals. Data were presented
as percentage of untreated control and as the mean ± SEM. n = 6 animals
for Ctrl-Untr and Ctrl-TMZ and n = 7 animals for C26-Untr and C26-TMZ
were tested in each of two independent experiments. *p ≤ 0.05 by Stu-
dent’s t-test.
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Conversely, TMZ partially protects myofibre CSA (Figure 3A
and C; C26 vs. C26-TMZ) from the reduction associated to
cancer (Figure 3A and B; Ctrl vs. C26). This is also reflected

by the median value of CSA in the C26 hosts treated with
TMZ, which was significantly higher compared with that of
the untreated C26 bearers (Figure 3C; red vs. black bar). Of

Figure 2 Effect of trimetazidine (TMZ) administration on body and muscle weight. (A) Average body weight, expressed as percent changes with re-
spect to initial body weight of each group; untreated control mice (Ctrl-Untr), TMZ-treated control mice (Ctrl-TMZ), untreated C26 tumour-bearing
mice (C26-Untr), and TMZ-treated C26 mice (C26-TMZ). (B) Average weight of gastrocnemius (GSN) and tibialis anterior (TA) muscles or (C) average
of adipose tissue (abdominal and epididymal) measured after sacrifice (day 12) in Ctrl and C26 tumour-bearing mice both untreated and TMZ-treated.
Data are reported as a percentage of the untreated control weight and as the mean ± SEM. n = 6 animals for Untr-Ctrl and TMZ-Ctrl and n = 7 animals
for Untr-C26 and TMZ-C26 were tested in each of two independent experiments. (D) Average weight of the tumour mass measured after sacrifice (Day
12) in C26 tumour-bearing mice both untreated and TMZ-treated. Data are reported as a percentage of the untreated C26 weight and as the
mean ± SEM. n = 7 animals for Untr-C26 and TMZ-C26 were tested in each of two independent experiments.

Metabolic modulation in cancer cachexia 959

Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 954–973
DOI: 10.1002/jcsm.12226



Figure 3 CSA reduction typically occurring in C26 mice is partially counteracted by trimetazidine (TMZ) administration. (A) Representative images ob-
tained after immunofluorescence staining of TA muscle cross-cryosections for the detection of laminin (green) and performed on untreated control
mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Scale bar: 100 μm. Measurement
of CSA after treatments is shown in the histogram (right) where the means ± SEM (reported as percentage of untreated control) are shown. Calcula-
tions were performed, evaluating a total of at least 25 000 myofibres from 10 Ctrl-Untr mice, 10 Ctrl-TMZ mice, 12 C26 mice, and 12 C26-TMZ mice
from two independent experiments. *p ≤ 0.05, ***p ≤ 0.005 by Student’s t-test. (B) Frequency histogram showing the distribution of myofibre CSA
measured on the transversal cryosections of the TA muscles from untreated control (Ctrl) and C26 tumour-bearing mice (C26) analysed in (A). CSA
of at least 25 000 myofibres from 10 control untreated mice and from 12 C26 mice, from two independent experiments, was measured. (C) Frequency
histogram showing the distribution of myofibre CSA measured on the transversal sections of the TA muscles from C26 tumour-bearing mice (C26) and
TMZ-treated C26 mice (C26-TMZ) analysed in (A) and (B). CSA of at least 25 000 myofibres from 12 C26 mice and 12 C26-TMZ mice, from two inde-
pendent experiments, was measured. The median values are shown as a grey (Ctrl; 1244), black (C26; 904), or red (C26-TMZ; 1002) bars.
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note, TMZ did not influence CSA in healthy mice (Figures 3A
and S2; Ctrl vs. TMZ).

Trimetazidine triggers the activation of pathways
involved in the maintenance of muscle mass

In order to evaluate the effect of TMZ treatment in the skel-
etal muscle also at the molecular level, we analysed the ex-
pression of genes associated to muscle mass maintenance
such as those coding for myofibrillar proteins, namely, Des-
min and MyHC. In the present study, we found that Desmin
and MyHC mRNA levels increase in both the TA and the
GSN of TMZ-treated C26 hosts compared with the untreated
mice (Figure 4A). Because the two muscles were comparable,
we performed further analysis, throughout this study, on one
muscle type only.

Trimetazidine effects on the proteasomal degradative path-
way were evaluated by measuring the transcript levels of the
atrogenes Muscle Ring Finger protein 1 and atrogin-1. While
the former tends to decrease (although not significantly) upon
TMZ treatment in muscles of C26-bearing mice (Figure 4A),
the latter does not significantly change (data not shown).

Finally, we also measured the levels of muscle Carnitine
palmitoyl transferase 1 transcript, a transporter of fatty acid
into mitochondria, which we used as a marker of TMZ effec-
tiveness. We observed that the muscle Carnitine palmitoyl
transferase 1 mRNA resulted up-regulated in TMZ-treated an-
imals, possibly as a compensative response to the reduction
of free fatty acid β-oxidation (Figure 4A).

Consistent with the data obtained for mRNAs, we found
that, also at the protein level, the decrease of Desmin in mus-
cle of C26-bearing mice is partially counteracted by TMZ
treatment (Figure 4B). Accordingly, the protein levels of
atrogin-1 increase in C26 hosts vs. Ctrl (likely contributing
to the loss of muscle mass) while they are significantly re-
duced upon TMZ treatment (Figure 4B). In the attempt to
shed some light on the signalling leading to myofibrillar pro-
tein up-regulation triggered by TMZ, we analysed some mem-
bers of the PI3K/AKT-mediated molecular pathways, known
to act on both protein degradation and synthesis. Along with
atrogin-1 decrease, we found an increase in ribosomal pro-
tein S6 (RPS6)-phosphorylation (Figure 4B), this indicating ac-
tivation of the mammalian target of rapamycin complex 1
target S6 kinase (S6 kinase 1) and suggesting that protein syn-
thesis is enhanced. We have found that TMZ treatment also
enhances GSK3-β phosphorylation in Ctrl mice (Figure 4B).
Such an enhancement cannot be observed in the C26 hosts;
however, in these animals, pGSK3-β levels are higher than
in Ctrl, so the possibility that a further increase is not achiev-
able should be considered (Figure 4B and Penna et al.19). All
these results suggest that the PI3K/AKT pathway is involved
in the effects evoked by TMZ and indicate the activation of
mechanisms counteracting muscle mass loss.

A shift towards a slow-twitch phenotype is
triggered by trimetazidine

Total MyHC protein levels in TMZ-treated C26-bearing mice
(Figure 5A) did not reflect the strong increase in MyHC gene
expression (Figure 4A). Therefore, we decided to investigate
if TMZ treatment was able to influence specific MyHC iso-
forms, which are differentially associated with myofibres hav-
ing specific metabolic assessments. TMZ being a metabolic
modulator, we set out to study the influence that this drug
exerts on the metabolic features of the skeletal muscle,
which is known to adaptively change in response to environ-
mental alterations. Our analysis revealed that, in both GSN
and TA muscles, TMZ resulted in increased slow MyHC pro-
tein levels, whereas fast MyHC and total MyHC did not ap-
pear to vary significantly (Figure 5A); no effect was found in
healthy animals (data not shown). Similarly, TMZ triggers a ro-
bust increase of the slow MyHC transcript levels (Figure 5B).
Interestingly, we have found that NFAT2c, whose transcrip-
tional activity includes slow gene expression,53,54 becomes
dephosphorylated—this indicating activation and nuclear
translocation—following TMZ treatment (Figure 5C).

The up-regulation of the slow MyHC isoform triggered by
TMZ suggests a metabolic shift, from glycolytic to oxidative,
within the myofibre, but also that the number of type I fibres
could be increased. To assess this last hypothesis, we per-
formed an immunofluorescence analysis on TA muscle cryo-
sections, which indicated that the number of type I
myofibres expressing the slow MyHC isoform (red in
Figure 5D) tends to increase, though not significantly, in
C26-TMZ animals.

Three isoforms of fast MyHC have been described in ro-
dents; type IIa, type IIx/d, and type IIb. We analysed these fast
transcripts in TA and we observed that, in line with the in-
creased expression of slow MyHC, their levels decrease in
C26 hosts upon TMZ treatment (Figure 6A). A fibre-type
conversion towards a more slow-twitch phenotype might also
occur within type II fibres (e.g. from type IIb or type IIx/d
towards type IIa) similarly to what happens upon exercise
(reviewed by Gundersen54 and Lira55). For this reason, a more
specific histological analysis will be part of further investiga-
tions. Lastly, we checked the expression levels of the slow iso-
forms of Troponin T, I, and C, some of which tend to increase,
though not significantly, in TMZ-treated C26 animals (Figure 6B).
In sum, these data support our hypothesis of a fast-to-slow twitch
phenotype shift induced by TMZ in skeletal muscle.

Trimetazidine promotes mitochondrial biogenesis,
oxidative metabolism, and angiogenesis

Slow fibres are characterized by a high reliance on oxidative
metabolism; therefore, an increase in slow fibre proportion
following TMZ administration should imply an enhanced
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Figure 4 Trimetazidine (TMZ) triggers muscle mass maintaining pathways. (A) The mRNA levels of myosin heavy-chain (MyHC), Desmin, Atrogin-1, and
CPT1 were evaluated by quantitative real-time PCR and were normalized to 18S used as internal control in tibialis anterior (TA) muscles of untreated
control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Data display the percent-
age of mRNAs relative to control, which was arbitrarily set as 100. Data shown are the mean ± SEM from three experiments each performed in
triplicate. p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.005 by Student’s t-test. (B) Gastrocnemius (GSN) and TA extracts from untreated control mice (Ctrl),
TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ) were assayed for Desmin, Atrogin-1,
p-RPS6, and p-GSK3β (ser9) protein levels. Protein levels of representative 3 out of 6–7 mice are shown. α-Tubulin was used as loading control. Density
of immunoreactive bands was calculated by using the ImageQuant TL software from GE Healthcare Life Sciences normalized for α-tubulin. Each value
indicates the mean ± SEM (reported as percentage of Ctrl) of the densitometric analysis on three independent immunoblots. *p ≤ 0.05 and **p ≤ 0.01
by Student’s t-test.
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Figure 5 Slow myosin heavy-chain (MyHC) isoform is overexpressed upon trimetazidine (TMZ) treatment. (A) Gastrocnemius (GSN) extracts from un-
treated control mice (Ctrl), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ) were assayed for total MyHC, slow MyHC, and fast
MyHC protein levels. Protein levels of representative 3–4 out of 6–7 mice are shown. Actin was used as loading control. Density of immunoreactive
bands was calculated by using the ImageQuant TL software from GE Healthcare Life Sciences normalized for actin. Each value indicates the mean ± SEM
(reported as percentage of Ctrl) of the densitometric analysis on three independent immunoblots. ***p ≤ 0.001 by Student’s t-test. (B) The mRNA
levels of the slow MyHC transcript codified by gene MyH7 were evaluated by quantitative real-time PCR and were normalized to 18S, used as internal
control in TA muscles of untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice
(C26-TMZ). Data display the fold-change mRNAs relative to control, which was arbitrarily set as 100. Data shown are the mean ± SE. from three ex-
periments each performed in triplicate. Statistical analysis by Student’s t-test indicated a significant difference where indicated (*p ≤ 0.05,
**p ≤ 0.01, and ***p ≤ 0.005). (C) GSN extracts from untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice
(C26), and TMZ-treated C26 mice (C26-TMZ) were assayed for pNFATc2. Protein levels of representative 3 out of 6–7 mice are shown. α-Tubulin
was used as loading control. Density of immunoreactive bands was calculated by using the ImageQuant TL software from GE Healthcare Life Sciences
normalized for α-tubulin. Each value indicates the mean ± SEM (reported as percentage of Ctrl) of the densitometric analysis on three independent
immunoblots. ***p ≤ 0.001 by Student’s t-test. (D) Representative images obtained after immunofluorescence staining of tibialis anterior (TA) muscle
cross-cryosections for the detection of the slow MyHC isoform (red) and laminin (green) from untreated control mice (Ctrl), TMZ-treated control mice
(TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Scale bar: 50 μm. Percentage of the number of slow MyHC-positive
myofibre normalized per section area is shown in the histogram (right), where the means ± SEM are reported. Calculations were performed on all
TA cryosections from 10 Ctrl-Untr mice, 10 Ctrl-TMZ mice, 12 C26 mice, and 12 C26-TMZ mice from two independent experiments.
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oxidative metabolism. To test this hypothesis, we assessed if
TMZ might impact on mitochondrial biogenesis by measuring
the expression of the master regulator of mitochondrial bio-
genesis PGC1α.56,57 We observed that PGC1α mRNA was
up-regulated upon TMZ treatment in both GSN and TA mus-
cles of the C26 hosts (Figure 7A). Accordingly, PGC1α expres-
sion is higher in TMZ-treated C26 hosts vs. the untreated
ones, also at the protein level (Figure 7B). PGC1α activation
might be achieved by the phosphorylation and activation of
the metabolic sensor AMPK.58 Due to technical problems in
detecting pAMPK, we evaluated the phosphorylation of the
acetyl CoA carboxylase, one of the main targets of AMPK,
and we found that pACC increases upon TMZ treatment in
C26-bearing mice (Figure 7C), indicating an increased activa-
tion of AMPK, which is consistent with PGC1α up-regulation.
The increase of mitochondrial biogenesis was further investi-
gated by evaluating the expression of the mitochondrial pro-
tein Tom20, the mitochondrial transcription factor A (TFAM),
and the β-subunit of the catalytic portion of mitochondrial

ATP synthase, which, as expected, resulted definitively in-
creased in TMZ-treated animals compared with the untreated
ones (Figure 7B and C). Interestingly, PGC1α, Tom20, and
TFAM protein levels decrease because of the disease (PGC1α;
Ctrl vs. C26 p ≤ 0.01, Tom20; Ctrl vs. C26 p ≤ 0.01 and TFAM;
Ctrl vs. C26 p ≤ 0.05) and such a reduction is partially rescued
by TMZ (Figure 7B). Of note, mitochondrial biogenesis is con-
trolled by several mechanisms, some of which may be inde-
pendent on PGC1α; this explains the up-regulation of
Tom20 and TFAM not associated to PGC1α increase in TMZ-
treated Ctrl mice. Because PGC1α is a transcriptional co-
activator, we also measured its protein levels in the nuclear
fractions of GSN muscles, confirming the expression pattern
observed in total lysates (data not shown).

As discussed in the succeeding texts, all our data suggest
that the effects of TMZ administration to C26-bearing parallel
those triggered by endurance exercise, as reported in the lit-
erature.59,60 It has also been reported that exercise-induced
mitochondrial biogenesis is largely controlled via

Figure 6 Fast myosin heavy-chain (MyHC) isoforms are down-regulated upon trimetazidine (TMZ) treatment. (A) The mRNA levels of fast MyHC type
IIa codified by gene MYH2, fast MyHC type IIx/d codified by gene MYH1, and fast MyHC type IIb codified by gene MYH4 were evaluated by quantitative
real-time PCR and were normalized to 18S, used as internal control in TA muscles of untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26
tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Data display the percentage of mRNAs relative to control, which was arbitrarily set
as 100. Data shown are the mean ± SEM from three experiments each performed in triplicate. *p ≤ 0.05 and **p ≤ 0.01 by Student’s t-test. (B) The
mRNA levels of the slow isoforms of Troponin T, I, and C (TNN T, I, and C) were evaluated by quantitative real-time PCR and were normalized to 18S,
used as internal control in GSN muscles of untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-
treated C26 mice (C26-TMZ). Data display the percentage of mRNAs relative to control, which was arbitrarily set as 100. Data shown are the
mean ± SEM from three experiments, each performed in triplicate.
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Figure 7 Trimetazidine (TMZ) promotes PGC-1α overexpression and mitochondrial biogenesis. (A) The mRNA levels of PGC-1α were evaluated by
quantitative real-time PCR and were normalized to 18S, used as internal control in tibialis anterior (TA) and gastrocnemius (GSN) muscles of untreated
control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Data display the percent-
age of mRNAs relative to control (Ctrl), which is arbitrarily set as 100. Data shown are the mean ± SEM from three experiments each performed in
triplicate. *p ≤ 0.05 and **p ≤ 0.01 by Student’s t-test. (B) GSN extracts from untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tu-
mour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ) were assayed for PGC-1α, Tom20, and TFAM and (C) for pACC, vascular endothelial
cadherin, and β-ATPsynthase (β-ATPase) protein levels. Protein levels of representative 3–4 out of 6–7 mice are shown. α-Tubulin was used as loading
control. Density of immunoreactive bands was calculated by using the ImageQuant TL software from GE Healthcare Life Sciences normalized for α-tu-
bulin. Each value indicates the mean ± SEM (reported as percentage of Ctrl) of the densitometric analysis on three independent immunoblots.
*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 by Student’s t-test. (D) GSN extracts from tumour-bearing mice (C26) and TMZ-treated C26 mice (C26-
TMZ) were assayed for p-p38MAPK and p38MAPK protein levels. Protein levels of representative 3 out of 6 mice are shown. α-Tubulin was used as
loading control. Density of immunoreactive bands was calculated by using the ImageQuant TL software from GE Healthcare Life Sciences normalized
for α-tubulin. Each value indicates the mean ± SEM (reported as percentage of Ctrl) of the densitometric analysis on three independent immunoblots.
**p ≤ 0.01 by Student’s t-test. (E) The mRNA levels of vascular endothelial growth factor were evaluated by quantitative real-time PCR and were nor-
malized to 18S, used as internal control in TA and GSN muscles of untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing
mice (C26), and TMZ-treated C26 mice (C26-TMZ). Data display the percentage of mRNAs relative to control (Ctrl), which is arbitrarily set as 100. Data
shown are the mean ± SEM from three experiments each performed in triplicate. *p ≤ 0.05 by Student’s t-test.
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PGC1α.61,62,59 To gain further insights into this similarity, we
evaluated if the phosphorylation of p38MAPK, characteriz-
ing exercise and ex vivo muscle contraction,63,64 is also
activated by TMZ in C26 animals, and we found that the
levels of p-p38MAPK are enhanced by TMZ in the C26
hosts (Figure 7C).

It is also known that exercise, as well as PGC1α overexpres-
sion, is able to trigger angiogenesis. As a further similarity
among the effect of TMZ and exercise, we interestingly found
that TMZ induces an increase of the vascular endothelial
cadherin (Figure 7C) and, in line with this, we also revealed
increased levels of the vascular endothelial growth factor—
which is indeed a transcriptional target of PGC1α65—in skele-
tal muscle of TMZ-treated C26 mice (Figure 7E).

The experiments reported in the preceding texts show that
TMZ triggers an increased mitochondrial biogenesis, likely
reflecting an improved energy metabolism. To investigate
this point, we evaluated the activity of the oxidative mito-
chondrial enzyme SDH in muscle cryosections. The percent-
age of oxidative fibres stained for SDH activity significantly
increased in the C26 hosts upon TMZ treatment, while no dif-
ference was detected in TMZ-treated Ctrl mice (Figure 8; his-
togram on the left). The specific analysis of regions
characterized by mixed glycolytic and oxidative fibres showed
a trend towards an increased percentage of SDH-positive fi-
bres also in TMZ-treated Ctrl mice (Figure 8; histogram on
the right).

Finally, we measured the mitochondrial membrane poten-
tial (ΔΨm) in C2C12 myoblasts treated or not with TMZ;
TMRE staining revealed an increase of ΔΨm triggered by
TMZ, suggesting an increased mitochondria metabolism (Fig
S3).

Autophagy and apoptosis are not altered by
trimetazidine in C26-bearing mice

Because we have found an effect of TMZ on autophagy
in vitro,43 we investigated the occurrence of autophagy and
apoptosis in muscles upon metabolic modulation by TMZ.
We evaluated both LC3 and p62 protein levels (Figure 9A),
and we found that LC3-I decreases and LC3-II increases in
C26 hosts (Ctrl vs. C26 p ≤ 0.01 for both LC3-I and LC3-II), in-
dicating an increased autophagy in cancer cachexia, as previ-
ously reported.66 However, we found no significant variation
of LC3-I and LC3-II levels associated with TMZ treatment; this
demonstrates that, in contrast to our previous in vitro data,
TMZ does not interfere with autophagy in vivo. This hypoth-
esis is further supported by the observation that TMZ did
not influence p62 expression levels in C26-bearing mice, de-
spite p62 up-regulation found in Ctrl mice. To monitor apo-
ptosis, we analysed both Caspase-3 and PARP cleavage67 in
GSN lysates but observed no influence of TMZ in C26-bearing
mice (Figure 9B).

Skeletal muscle is a direct in vivo target of
trimetazidine

Finally, in order to study the specific effect of TMZ on skeletal
muscle and to exclude the occurrence of an indirect role me-
diated by the known beneficial action of TMZ on cardiac func-
tion, we performed an ex vivo analysis on isolated hind limb
muscles exposed to TMZ (see section). Despite no significant
effect being detected in the Soleus (data not shown), we ob-
served a direct dose-dependent effect of TMZ on the fast EDL
muscle (Figure 10). TMZ triggered a change of the EDL con-
traction kinetics inducing a shift towards a slow-twitch con-
tractile phenotype, with the kinetics being significantly
slower in the EDL treated with 100 μM TMZ compared with
untreated EDL muscles (Figure 10A and B; df/df and �df/dt).
The contraction rate of treated muscles was about 32% lower
in comparison with the untreated ones (Figure 10A; df/df), and
the relaxation rate was almost halved (Figure 10A; �df/df).
This change towards a slow contractile phenotype was also
found in the EDL excised from mice systemically treated with
TMZ as shown in Figure 10B (df/df and �df/dt). This kinetic
slowdown is partly explained by the decreased twitch force
generated following both TMZ treatment of excised muscles
and systemic TMZ treatment (Table 1; Ftw_sp), although the
specific tetanic force and the resistance to fatigue did not
significantly change upon TMZ treatment (Table 1; F0_sp and
Tfat). However, also considering the reduced twitch force,
TMZ has a neat effect on the decrease of relaxation time
(Figure 10A; �df/df) and on the kinetic slowdown. These ex-
periments confirm that TMZ has the ability to directly act
on skeletal muscle and to modify its contractile kinetics.

Discussion

The present study highlights the ability of the metabolic mod-
ulator TMZ to stimulate adaptive mechanisms in the skeletal
muscle. We mainly found that, similarly to the effect ob-
served in aged mice,68 TMZ triggers a significant increase in
grasping strength in C26 hosts and healthy mice, which is a
more relevant achievement than the increase in muscle mass
not associated to strength increase. In addition, in agreement
with our previous data obtained in vitro,43 we found that
TMZ partially protects from the reduction of myofibre CSA
occurring in cachectic mice. Such a protection relies on the
activation of pathways known to increase protein synthesis
and to reduce protein degradation, therefore enhancing skel-
etal muscle plasticity aimed at counteracting muscle wasting.

Moreover, our study revealed that, in the skeletal muscle
of the C26 hosts, TMZ induces a fast-to-slow shift of meta-
bolic and contractile myofibre properties, closely resembling
that triggered by endurance exercise.54,69 In particular, TMZ
favours a shift towards a slow-twitch/oxidative metabolism
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in both GSN and TA, which are predominantly fast-twitch
muscles mainly containing glycolytic fibres. Accordingly, fast
EDL muscles incubated ex vivo in the presence of TMZ as-
sume a contractile response that resembles that of slow mus-
cles. Interestingly, three-dimensional muscles engineered by
using primary myoblasts isolated from predominantly fast

TA and slow Soleus adopt the myosin isoform profile and
the contractile and metabolic properties of their parent mus-
cle (respectively fast and slow).70,33,71,31 We observed that
the isoform profile of the predominantly fast TA before
TMZ treatment (low levels of slow MyHC and high levels of
fast MyHC IIb and IIx/d) was similar to that of the engineered

Figure 8 Succinate dehydrogenase (SDH) activity is higher in trimetazidine (TMZ)-treated C26 mice. Histochemical enzymatic staining for SDH activity
was determined as general index of oxidative potential and was performed on TA cross sections. Dark staining indicates muscle fibres positive for SDH
activity in untreated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ). Scale
bar: 50 μm. Percentages of the number of SDH-positive myofibres normalized per section area and performed on the all muscle section are shown in
the histogram on the left, and percentages of the number of SDH-positive myofibres normalized per total number of fibres and performed only on
regions with mixed metabolism are shown in the right histogram. The means ± SEM are reported. Calculations were performed on all tibialis anterior
(TA) cryosections from 10 Ctrl-Untr mice, 10 Ctrl-TMZ mice, 12 C26 mice, and 12 C26-TMZ mice from two independent experiments.
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TA, while after TMZ treatment, it resembled that of the slow
Soleus construct. Moreover, the fast MyHC IIa and the slow
isoforms of the three Troponin subunits (TNN-T, I, and C)
do not vary much between TA and Soleus constructs; like-
wise, they do not change very much upon TMZ treatment.33

All these analogies support our finding that TMZ is able to
mediate a fast-to-slow shift of myofibre contractile proteins.
Typically, fast fibres are more susceptible to atrophy than
slow ones, while the latter are more resistant to stress
stimuli.72 We therefore hypothesize that the fast-to-slow

Figure 9 Autophagy and apoptosis remains unaltered upon trimetazidine (TMZ) administration in vivo. (A) Gastrocnemius (GSN) extracts from un-
treated control mice (Ctrl), TMZ-treated control mice (TMZ), C26 tumour-bearing mice (C26), and TMZ-treated C26 mice (C26-TMZ) were assayed
for LC3-I to LC3-II conversion, p62, and (B) cleaved Caspase-3 and PARP protein levels. Protein levels of representative 3–4 out of 6–7 mice are shown.
α-Tubulin was used as loading control. Density of immunoreactive bands was calculated by using the ImageQuant TL software from GE Healthcare Life
Sciences normalized for α-tubulin. Each value indicates the mean ± SEM (reported as percentage of Ctrl) of the densitometric analysis on three inde-
pendent immunoblots. *p ≤ 0.05 and **p ≤ 0.01 by Student’s t-test.
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shift triggered by TMZ in cachectic animals might support an
adaptive attempt to face the adverse conditions caused by
tumour growth.

Because MyHC isoforms are involved in determining the
rate of muscle contraction in vivo, our ex vivo data (indicating
a TMZ-induced switch towards a slowing contractility) are in
accordance with the increased slow MyHC content and oxida-
tive metabolism we have found in vivo upon TMZ injection.
However, TMZ ability to modify the contractile properties of
the EDL upon 20 min of ex vivo incubation indicates that, be-
sides the transcriptional and/or translational regulation of
both specific contractile and mitochondrial proteins, this met-
abolic modulator also exerts rapid effects, possibly due to
ionic (e.g. Ca2+) flux modulations. Consistent with this hy-
pothesis is the observation that TMZ rapidly increases ΔΨm
in myoblasts. ΔΨm is closely related to Ca2+ and other ion
fluxes, able to influence myofibre contractile properties. This
point deserves further investigation, however.

Figure 10 Twitch response properties of control and trimetazidine (TMZ)-treated EDL. Shown are the mean ± SEM of the dF/dt and the�dF/dt for EDL
muscles treated ex vivo with TMZ (A) and for EDL muscles systemically treated with TMZ (B). *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. n ≥ 4 for each
group.

Table 1 Mean ± SEM of the twitch specific force Ftw_sp, the maximum
specific force F0_sp, and the fatigue time Tfat for muscles treated ex vivo
with trimetazidine (TMZ) and for muscles of animals systemically treated
with TMZ. n ≥ 4 for each group

CTR TMZ 10 μM TMZ 100 μM TMZ systemic

Ftw_sp 24.7 ± 1.39 21.1 ± 1.29 16.9 ± 1.36*** 17.4 ± 1.93*
F0_sp 134.2 ± 9.41122.5 ± 15.03109.6 ± 5.24 102.9 ± 17.20
Tfat 21.7 ± 1.45 23.1 ± 1.12 24.7 ± 1.18 23.0 ± 1.37

*p ≤ 0.05.
***p ≤ 0.001.
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In line with the fast-to-slow shift of the contractile appara-
tus exerted by TMZ, we also found that PGC-1α, a major me-
diator of the phenotypic adaptation induced by exercise,
becomes overexpressed upon TMZ administration. Notably,
PGC-1α is mainly expressed in slow muscles and plays a key
role in slow fibre specification.56,57,61,62,59 Moreover,
PGC-1α effects include the promotion of mitochondrial
oxidative metabolism on which slow fibres mostly rely.
Accordingly, we found an increase of both mitochondrial
content and SDH activity in the skeletal muscle of TMZ-
treated C26 hosts Finally, PGC-1α overexpression has been
shown to exert anti-atrophic effects73 and to increase
glucose-uptake, consistently with the results we report in
TMZ-treated mice.

On the whole, the effects of TMZ administration to C26-
bearing mice share several features with endurance exercise,
such as increased muscle strength, fast-to-slow phenotype
shift, PGC1α overexpression, increased capillarity density,
and oxidative metabolism up-regulation.59,74 In this regard,
previous data obtained in our laboratories show that, sim-
ilarly to TMZ, endurance exercise can improve muscle
strength without modifying muscle mass in mice bearing
the Lewis lung tumour. Such an improvement is associated
with increased oxidative metabolism, as suggested by
restoration of mitochondrial morphology and SDH activity.75

For these reasons, we propose that TMZ might act as an
‘exercise mimetic’, in line with our recent findings showing
that TMZ improves exercise capacity in ageing.68 Other
metabolic remodelling agents such as GW1516 and AICAR
have been reported to mimic some of the effects of
exercise aimed at achieving the best metabolic energy
efficiency.76–78

Trimetazidine administration to tumour-bearing mice
resembles endurance exercise also at the molecular level.
Contraction and exercise have been shown to activate
MAPK-dependent signal transduction pathways.79,64 In par-
ticular, p-p38MAPK phosphorylates and activates PGC1α as
well as some PGC1α-related transcription factors (e.g. ATF2
and MEF2).55 Of interest, p38MAPK phosphorylation has
been reported during ex vivo muscle contraction,63,64 likely
contributing to mediate changes in muscle gene expression
in response to exercise. In the present study, we show in-
creased levels of phosphorylated p38MAPK in TMZ-treated
C26-bearing mice, which is in line with the increased PGC1α
expression and corroborates once more the analogies
between TMZ treatment and exercise effects on skeletal
muscle.

For the sake of correctness, we must acknowledge some
limitations in the execution of the present study; an exercise
group was not included, based on the fact that there are sev-
eral data reporting the effects of exercise in the skeletal mus-
cle59 and that we previously published results showing that at
least some of the modulations induced by exercise in mice
bearing the LLC also occur in TMZ-treated C26 hosts.75

Moreover, simply for technical reasons, we did not have the
possibility to evaluate total physical activity in treated and
untreated animals, as well as to perform mitochondrial
respirometry on fresh muscles, which would have signifi-
cantly improved the conclusions of this study. Finally, the
C26 tumour is very aggressive; however, the possibility that
some TMZ effects are lost because of tumour aggressive-
ness—including the absence of an effect on muscle wasting
—cannot be ruled out. Consistent with this hypothesis is the
observation that TMZ-induced grip strength improvement,
evident after 6 days of treatment, is lost afterwards (12 days
after tumour transplantation), when mice health status is
severely compromised. Strikingly, a recent report by Fukawa
and collaborators80 strongly supports our data; the authors
showed that excessive fatty acid oxidation occurring in cancer
cachexia induces muscle atrophy and that pharmacological
blockade of fatty acid oxidation by etomoxir can increase mus-
cle mass in animal models. Differently from our study, the
authors used stable cachexia animal models in which cachexia
is induced after several weeks of cancer cell inoculation.

In conclusion, our data show that TMZ administration
partially counteracts the reduction of myofibre CSA typical
of cachectic mice and induces some of the benefits achieved
through exercise, including fast-to-slow myofibre phenotype
shift, PGC1α up-regulation, oxidative metabolism, and angio-
genesis enhancement and grip strength increase. Adaptation
to exercise training also includes increased expression of key
metabolic genes and increased sensitivity to insulin.81

Consistently, here, we found that TMZ reduces glycaemia.
Improvement of glucose utilization, reduction of glycaemia
as well as of glaciated haemoglobin by TMZ have also been
observed in humans in diabetic patients,82,83 which makes
this drug potentially useful also for the treatment of diabetes.
The effects of TMZ observed in the presence of a highly
aggressive challenge (the C26 tumour) further support the
relevance of these results and suggest a possible reposi-
tioning of this drug in milder skeletal muscle atrophy condi-
tions where it could be included in a multimodal
therapeutic approach. Moreover, the ‘exercise-like effects’
of TMZ may suggest the use of TMZ in contexts in which ex-
ercise is beneficial but not applicable, such as in case of bed
rest and immobilization, hospitalization due to orthopaedic
surgery, regenerative impairment, sarcopenic obesity, or age-
ing.60,84 Such an opportunity is more and more likely because
TMZ has already been approved for the clinical use. More-
over, TMZ has a high safety profile compared with the severe
hepatotoxicity reported for the etomoxir recently used to
demonstrate that free fatty acid oxidation could be targeted
to prevent cancer-induced cachexia.80 Although recapitulat-
ing the complexity of all the molecular effects with a single
‘exercise pill’ is unlikely to be achieved,85 pharmacotherapies
that replicate at least some exercise-induced effects could be
useful when there is a physiologically low response of muscle
to exercise or when exercising is not possible.
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