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Introduction

Heart failure (HF) is growing to a modern epidemic and despite
advances in therapy, it still carries an ominous prognosis and a signifi-
cant socioeconomic burden.1 Many novel agents that emerged as
promising HF drugs failed to improve residual morbidity and mortal-
ity.2,3 Since developing and testing new agents has become increasing-
ly costly,4 the concept of repurposing existing drugs for new
indications has gained considerable importance.

Conceptually, comorbidities such as type 2 diabetes mellitus
(T2DM), obesity or chronic kidney disease, all highly prevalent in HF
populations, have shifted from being innocent bystanders to drivers
of HF. This applies especially to HF with preserved ejection fraction
(HFpEF), a phenotype that accounts for more than 50% of HF
patients and for which no effective therapy exists thus far.5,6 In par-
ticular, the prevalence of T2DM, thereby its combination with HF is
rapidly increasing, mainly due to the obesity epidemic.

Cardiovascular (CV) outcomes are addressed by an increasing
number of clinical studies in T2DM, mainly as safety endpoints for
anti-diabetic agents. Some of those drugs have beneficial CV effects
independent of their glucose-lowering action. Consequently, anti-
diabetic agents have gained interest for their potential repurposing in
HF treatment. In this context, the Translational Research Committee
of the Heart Failure Association (HFA) of the European Society of
Cardiology (ESC) organized a workshop on HF and T2DM, focusing
on the pathophysiological and therapeutic aspects of this relationship.
Here, we summarize the main points raised during this workshop,
providing an overview of current evidence and open issues.

Clinical background

Epidemiology
Patients with HF have a four-fold higher prevalence of T2DM (20%)
than patients without HF (4–6%),4,7 and this rises to 40% in T2DM
patients hospitalized for HF.8,9 T2DM worsens prognosis for patients
with HF with reduced ejection fraction (HFrEF), but even more with
HFpEF, by increasing the risk of death and hospitalization.10 Patients
with T2DM have a 75% higher risk of CV death or HF hospitalization
compared with those without T2DM.11 Furthermore, the risk to de-
velop HF is 2.5-fold increased for patients with T2DM12 and 1.7-fold
for patients with impaired glucose tolerance (IGT) or insulin resist-
ance13 compared with normal (non-diabetic) individuals, respectively.
In T2DM patients who are older than 65 years, the coexistence of HF
portends a 10-fold higher mortality risk.7 Thus, epidemiological evi-
dence implies a bidirectional association between HF and T2DM
(Figure 1), with one increasing the incidence and worsening the prog-
nosis of the respective other.14

Diabetic cardiomyopathy
Type 2 diabetes mellitus affects the heart through several mecha-
nisms. Diabetic macroangiopathy causes coronary artery disease
(CAD) and myocardial ischaemia. In addition, a distinct, ischaemia-
and hypertension-independent cardiomyopathy was defined as dia-
betic cardiomyopathy, describing the direct effects of diabetes-
associated metabolic alterations on myocardial function. Its diagnosis
requires a history of long-standing and/or poorly controlled T2DM

along with exclusion of significant coronary, hypertensive, valvular
and/or congenital heart disease as well as of familial, viral, toxic, or
infiltrative cardiomyopathy. As reviewed in more detail elsewhere,15

diabetic cardiomyopathy was initially described as a dilated, HFrEF-
like phenotype occurring in diabetic patients with microvascular
complications such as nephropathy and retinopathy. More recently,
diabetic cardiomyopathy shifted towards a rather restrictive, HFpEF-
like phenotype, occurring more commonly in obese women with
poor glycaemic control.15 However, since it is difficult to study the
cardiac phenotype of patients with diabetes without the confounding
influence of any other risk factors, the epidemiological evidence for
such diabetic cardiomyopathy requires more epidemiological, but
also basic research.

Pathophysiology

Mechanisms related to diabetic
cardiomyopathy
In HF, the coexistence of T2DM mainly aggravates left ventricular
(LV) diastolic dysfunction by increasing LV stiffness and mass, without
impairing global pump function.16,17 In diabetic patients, LV diastolic
dysfunction correlates with fasting blood glucose, HbA1c levels and
body mass index (BMI), all markers of insulin resistance.18 However,
it is currently unresolved which factors drive the development of one
or the other diabetic cardiomyopathy phenotype. The restrictive
phenotype is more prevalent in patients with T2DM and obesity,
while the dilated phenotype is more common in type 1 diabetes.15

Accordingly, hyperglycaemia, hyperinsulinaemia, and lipotoxicity may
predispose more to the restrictive phenotype, while autoimmune
processes rather favour the dilated phenotype.15 At the same time,
the diverse pathogenetic origins of myocardial dysfunction and
remodelling in HFpEF and HFrEF may also determine the develop-
ment of diabetic cardiomyopathy into either the restrictive or the
dilated phenotype, respectively (Figure 1).5,15 In HFpEF, endothelial
dysfunction of the coronary microvasculature predominates, trig-
gered by comorbidity-related inflammation, while in HFrEF, cardio-
myocyte loss caused by ischaemia or toxic agents prevails.19 In
addition, interstitial and perivascular myocardial fibrosis and
increased production of advanced glycation end products (AGEs) in-
crease collagen stiffness through cross-linking, enhancing diastolic
dysfunction in diabetic cardiomyopathy (Figure 1).20 Fibrosis, although
relevant to both phenotypes, appears more important in the dilated
form.16

Changes in intracellular Ca2þ homeostasis are another hallmark of
cardiac dysfunction in diabetes (Figure 1). Overall, the mechanisms of
dysfunctional Ca2þ handling observed in diabetic mouse models re-
semble those in HFrEF, including decreased sarcoplasmic reticulum
Ca2þ load and decreased amplitudes of cytosolic Ca2þ transients,
but also elevated intracellular sodium (Naþ).21,22 In HFrEF, severe
alterations in cytosolic Naþ and Ca2þ handling have a negative impact
on mitochondrial Ca2þ uptake, thereby the matching of ATP supply
and demand and the regeneration of the anti-oxidative capacity,
resulting in energetic deficit and oxidative stress.23 Whether dysregu-
lated cytosolic and mitochondrial Naþ and Ca2þ handling contribute
to the development of diabetic cardiomyopathy remains unclear
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..in vivo, despite recent in vitro data pointing towards such
mechanisms.21,22,24

A number of relevant mechanisms including derangement of myo-
cardial energy substrates, insulin resistance and endothelial dysfunc-
tion, resulting from a series of underlying conditions and risk factors
such as obesity, link T2DM, and myocardial dysfunction through in-
flammation, nutrient imbalance, and neurohormonal activation.25

Myocardial energy substrate
The normal heart mainly consumes free fatty acids (FFA; �70%) and
glucose (�30%) (Figure 2).26 It is, however, an ‘omnivore’ and can
adapt its choice of fuels according to their availability. This metabolic
flexibility is predominantly regulated by the ‘Randle cycle’, by which
high circulating levels of glucose decrease rates of FFA oxidation and
vice versa.27

• In HF, uptake of glucose and FFA into cardiac myocytes is
increased, while their further uptake and oxidation in mitochon-
dria is decreased (Figure 2). This leads to accumulation of metabol-
ic intermediates in the cytosol, inducing maladaptive signalling.26

• In T2DM, increased FFA levels activate peroxisome proliferator-
activated receptor (PPAR)-a, a nuclear receptor increasing tran-
scripts of FFA metabolism, shifting substrate utilization towards

FFA (Figure 3). Together with increasing insulin resistance, this min-
imizes glucose utilization and makes the heart metabolically less
flexible.26,28

The dominance of FFA utilization in diabetic hearts contributes to
energetic inefficiency. First, FFA oxidation requires 11% more O2 per
carbon unit than glucose oxidation. Second, FFA induce expression
of mitochondrial uncoupling protein (UCP) 3 through PPAR-a,29 dis-
sipating the mitochondrial proton gradient. This deteriorates ATP
production efficiency, as more O2 is required for ATP synthesis, a
process termed ‘mitochondrial uncoupling’ (Figure 3).30 A similar con-
cept emerged for UCP2 and UCP3 in HF.31

In T2DM, nutritional supply accounts for elevated FFA and glucose
plasma levels. Conversely, in HF, sympathetic activation promotes
lipolysis and release of FFA from adipose tissue into the plasma
(Figure 1). Elevated FFA plasma levels are associated with LV diastolic
dysfunction, while their lowering improves diastolic function.32–34

Drugs that interfere with FFA utilization, thereby shift substrate util-
ization towards glucose, such as trimetazidine and perhexilline,
(Figure 4), improve cardiac function in patients with ischaemic heart
disease and/or HF, respectively.35,36

Ketone bodies (mainly, D-beta-hydroxybutyrate) increase as a re-
sponse to energy depletion or starvation, providing an alternative
substrate for oxidative phosphorylation.37 Ketone bodies are not
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Figure 1 Systemic interdependence of heart failure and type 2 diabetes mellitus. In heart failure, neuroendocrine activation alters haemodynamics
and metabolism, predisposing to the development of diabetes through insulin resistance. In diabetes, hyperglycaemia induces macro- and microvascu-
lar dysfunction, and myocardial ischaemia and/or infarction bias towards systolic dysfunction (heart failure with reduced ejection fraction), while in
the absence of ischaemia, diastolic dysfunction (heart failure with preserved ejection fraction) prevails through a combination of sarcomere stiffness
and fibrosis. Inflammation is a key systemic factor that contributes to several of these processes. The specific points of intervention by glucose-lower-
ing drugs are indicated (all have in common that they lowed hyperglycaemia). AGEs, advanced glycation end products; AMP, adenosine monophos-
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..readily available from food, but produced in the liver by incomplete
oxidation of FFA released from adipose tissue in response to fast-
ing.38 The enzymes regulating ketone body metabolism are up-regu-
lated in mice and humans with end-stage HF, while those regulating
glucose and FFA metabolism are down-regulated (Figure 2).39–41

Accordingly, the failing heart oxidizes ketone bodies when metabol-
ism of other energy substrates is impaired.42 However, whether
enhanced ketone body metabolism is a cause, a consequence, a by-
stander or a compensating mechanism in HF is presently unknown.42

Furthermore, ketone bodies induce FFA uptake into adipocytes,
therefore decreasing FFA in the circulation and in turn, increasing glu-
cose uptake into myocytes, thus improving substrate provision and
possibly energy production in the heart. A dietary increase in ketone
bodies is difficult to accomplish and requires strict adherence to a
high-fat and low-carbohydrate diet, the so called ‘ketogenic diet’.
A synthetic ketone ester drink (DGVR ) that achieved 10-fold higher
circulating D-b-hydroxybutyrate levels than any dietary approach43

improved physical performance and cognitive function in rats and
humans.37,43,44 Furthermore, DGVR reduced fasting lipid, HbA1c, fast-
ing and postprandial glucose levels in T2DM patients as well as liver
fat in obese subjects (Kieran Clarke, unpublished data); however,
controlled trails are yet missing.

Insulin resistance in heart failure
Insulin resistance, the impaired ability of cells to take up glucose from
the bloodstream in response to insulin, is associated with increased
lipolysis, hepatic lipogenesis, and hepatic gluconeogenesis (Figure 1),
thus increasing substrate supply to the heart.45 However, myocardial
substrate overload decreases substrate oxidation, leading to meta-
bolic maladaptation and myocardial dysfunction through lipo- and
glucotoxicity (Figure 3).46 In this context, myocardial insulin resistance
may even be an adaptive mechanism to ameliorate substrate over-
load,46,47 possibly explaining (at least to some extent) the adverse
CV effects of tight glycaemic control with insulin and of some
insulin-sensitizing agents such as the group of thiazolidinediones
(TZD).46,48–51

Endothelial function
Diabetes is associated with endothelial dysfunction (Figure 1), disturb-
ing endothelial-cardiomyocyte communication and vascular func-
tion.5,52 Intensified glucose control reduced diabetic microvascular
complications but has less impact on macrovascular complications
and HF in T2DM patients, indicating direct HF protective effects of
anti-diabetic drugs on endothelial function independent of their
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Figure 2 Cardiac metabolic alterations in heart failure. In heart failure, increased uptake of free fatty acids and glucose into the cytosol is uncoupled
from mitochondrial uptake and oxidation of free fatty acid and pyruvate, respectively. This provokes accumulation of metabolic intermediates in the
cytosol which can trigger lipo- and glucotoxicity. Instead, utilization of ketone bodies is increased in heart failure. Impaired overall substrate oxidation
reduces Krebs cycle (TCA) activity, oxidizing electron donors NADH and FADH2 for the electron transport chain (ETC). This reduces metabolic
flux through creatine kinase (CK), thereby the phosphocreatine (PCr) to ATP ratio. b-Ox., b-oxidation; CPT-1/2, carnitine palmitoyltransferase type
1/2; FA-CoA, fatty acyl-coenzyme A; FACS, fatty acyl-coenzyme A synthetase; FAT/CD36, fatty acid translocase; GLUT 1/4, glucose transporters 1/
4; G6P, glucose-6-phosphate; PDH, pyruvate dehydrogenase complex; PPP, pentose phosphate pathway; Polyol P., Polyol pathway; TAG, triacylgly-
cerol; UDPGlcNac, UDP-glycnacylation. Red arrows (#") indicate the changes in heart failure.

4246 C. Maack et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article-abstract/39/48/4243/5123540 by St G
eorge's U

niversity of London user on 19 Septem
ber 2019

Deleted Text: ``
Deleted Text: ''. 
Deleted Text: ,


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..glycaemic effects.53 A common mechanism of several anti-diabetic
drugs is activation of phosphatidyl-inositol 3-kinase (PI3K), which
controls the activity of endothelial nitric oxide synthase (eNOS)
(Figure 4).

The drugs: anti-diabetic agents
and the heart—mechanisms and
evidence

Metformin
Metformin is the first-line drug for the treatment of T2DM, although
its mechanisms of action have not yet been fully elucidated.54

Metformin inhibits respiratory chain enzymes (complex I) in
mitochondria, hence decreasing ATP production with a parallel in-
crease in AMP (Figure 4).55 This inhibits glucose synthesis from pyru-
vate, thereby reducing hepatocytes gluconeogenesis (Figure 1).
Furthermore, increased AMP stimulates AMP-activated protein kin-
ase (AMPK), which inhibits acetyl-CoA carboxylase, malonyl-CoA,
lipid and cholesterol synthesis (Figure 1).54

In addition to its metabolic actions, metformin protects against
myocardial ischaemia/reperfusion injury in animal models, limiting in-
farct size and attenuating post-ischaemic myocardial remodelling, irre-
spective of the presence of diabetes.56 These effects are mediated by
AMPK and eNOS (Figure 4), adenosine release and prevention of

mitochondrial permeability transition pore opening during reperfu-
sion.57 Metformin also prevented HF progression in dogs through
AMPK activation (Figure 4).58 Furthermore, metformin improves endo-
thelial function in vivo by reducing superoxide production and increas-
ing NO bioavailability (Figure 4). It also exerts anti-inflammatory effects
in mammals independent of AMPK,59 while attenuating myocardial fi-
brosis.60 Interestingly, the anti-inflammatory action of metformin in
humans was independent of the presence of T2DM.

In one randomized controlled trial (RCT), metformin reduced
mortality and CV morbidity in T2DM patients,61 and positive out-
comes confirmed by cohort studies and meta-analyses.62,63 While no
prospective RCT with metformin in patients with T2DM and preva-
lent HF is available, a series of case–control- or cohort studies, sys-
tematic reviews and one meta-analysis showed that metformin
(mono- or add-on-therapy) resulted in lower all-cause mortality, HF
readmission and lower rates of lactic acidosis in diabetic patients with
HF.64–69 Accordingly, metformin is recommended as first line therapy
for the management of diabetes mellitus (DM) in patients with HF by
the current ESC Guidelines (class IIa, level of evidence C).70

Reducing infarct size and preventing post-ischaemic myocardial
dysfunction and remodelling could be a potential beneficial mechan-
ism of metformin in diabetic patients that provides some ground for
drug repurposing in non-diabetic individuals. However, with the ex-
ception of one retrospective analysis,71 coexistent metformin ther-
apy was not associated with reduced infarct size or improved LV
systolic or diastolic function in T2DM patients with ST-elevation
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..myocardial infarction (STEMI).72–74 Although a prospective trial in
diabetic and non-diabetic patients with STEMI is missing, short-term
metformin pre-treatment did not limit myocardial injury in non-
diabetic patients undergoing coronary artery bypass grafting.75 Lastly,
the anti-inflammatory properties of metformin in non-diabetic HF
could provide additional grounds for investigating the drug’s repur-
posing in non-diabetic individuals, given the recent CANTOS trial
establishing proof-of-concept of inflammation as a target in CV
disease.76

Glitazones (Thiazolidinediones)
Glitazones, or TZD, are insulin-sensitizing agents that activate the nu-
clear receptor PPAR-c, a transcription factor that regulates multiple
genes implicated in several metabolic pathways related to insulin sen-
sitivity. These drugs improve glucose metabolism by increasing insulin
sensitivity (Figures 1 and 4), thereby reducing hyperglycaemia and
hyperinsulinaemia. The main effect of TZD is to shift FFA towards
adipose tissue and away from other tissues, hence inducing a ‘lipid-
steal’ effect that, in turn, improves glucose utilization. In addition,
PPAR-c agonists restore other metabolic derangements in insulin re-
sistance and obesity by attenuating macrophage pro-inflammatory
cytokine expression, adipocyte differentiation, and adipokine expres-
sion in adipocytes.77,78 Furthermore, PPAR-c activation abrogates
vasoconstriction and atherogenic effects of angiotensin II and
improves eNOS-dependent vasodilation (Figures 1 and 4).79 Its activa-
tion may also exert anti-remodelling effects by inhibiting glucose-
induced induction of TGFb1 and TGFb1-mediated fibronectin ex-
pression.80,81 PPARy activation with pioglitazone may improve dia-
stolic function,82 and a recent meta-analysis suggests that TZD may
protect against atrial fibrillation.83 Furthermore, TZD exert beneficial
effects on endothelial function, as rosiglitazone AMPK-dependently
stimulates NO synthesis (Figure 4), and glitazones improve endothe-
lial function in non-diabetic individuals with CAD.84 However, PPAR-
c agonism also confers some adverse effects, as it causes Naþ and
fluid retention and oedema, body weight increase and bone fractures
(Figure 1).

Meta-analyses of TZD studies suggested that rosiglitazone con-
ferred an increased risk of myocardial infarction and HF, with or with-
out an increased risk of CV death.50,51,85–87 The latter was not
replicated by the RECORD trial in T2DM patients without a history
of HF,88 but HF occurrence did increase with rosiglitazone, leading
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Main findings for metformin in T2DM

and HF
• Metformin is a first-line therapy for glycaemic control in

T2DM patients, particularly those with HF.
• Retrospective and cohort studies suggest reduced

mortality and CV morbidity in DM patients with or without

HF.
• Clinical data do not support protection against ischaemia–

reperfusion injury despite positive preclinical studies.

Open questions for metformin in T2DM

and HF
• What are the mechanisms supporting a beneficial effect in

T2DM with HF?
• How does metformin compare with newer anti-diabetic

agents in T2DM with HF?
• Does metformin during coronary reperfusion prevent HF in

STEMI patients?
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the European Medicines Agency to recommend suspension of the
drug’s license in 2010. In the PROactive trial in patients with T2DM
and CAD, ischaemic stroke or peripheral arterial disease but not HF,
pioglitazone actually reduced the composite endpoint of all-cause
death, non-fatal myocardial infarction and non-fatal stroke.84 Here,
the drug increased the risk of episodes of HF worsening, but the de-
crease in the composite endpoint was maintained in severe HF
patients.84,89 The differential clinical outcome of rosiglitazone and
pioglitazone may reflect their aforementioned differential effects on
lipid metabolism. In a meta-analysis, pioglitazone even increased the
risk of HF, without, however, an increase in the composite endpoint
of death, myocardial infarction or stroke.49,87 These findings lead to
the concept that HF worsening was a class effect of TZD.90 In this
context, the ESC Guidelines for HF state that TZD are contraindi-
cated for the treatment of T2DM in patients with HF (class III, level of
evidence A).70

Fluid retention by TZD is central in the pathophysiology of drug-
induced hospitalizations for HF worsening, as the prevalence of oe-
dema with TZD increases. Combined action of PPAR-c activation in
kidneys and the vasculature, including increased Naþ and water re-
tention in distal tubules, arterial vasodilatation, and increased vascular
volume capacity and capillary permeability may underlie these clinical
observations.79 In this context, the observed effect of the drug might
have been simple fluid retention and not true HF in the PROactive
trial.84,91 On the other hand, since insulin resistance may actually be
an adaptive mechanism of the failing heart to resist substrate over-
load, insulin sensitization by TZD may be detrimental by increasing
fuel supply.46

The clinical side effects of full PPARy agonism sparked interest in
partial PPARy agonists. INT131 is the most advanced member of this
novel class of selective PPARy modulators (SPPARM), which may pro-
vide similar glucose-lowering potential but less fluid retention. INT131
is currently evaluated in phase I and II clinical studies in diabetes.

Incretin-based therapies: Glucagon-like
peptide-1 receptor agonists and
dipeptidyl peptidase-4 inhibitors
Glucagon-like peptide-1 receptor agonists

Incretins, i.e. glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) are intestinal hormones released in
response to food intake and inflammatory stimuli.92,93 Activation of
the GLP-1 receptor impacts the pancreas, stomach, and brain to ac-
commodate food ingestion, including decreased gastric motility and
appetite. Dipeptidyl peptidase-4 (DPP-4) breaks GLP-1 down to the
inactive GLP-1 metabolite (9-36 amide).

Glucagon-like peptide-1 receptor agonists lower blood glucose by
increasing insulin and decreasing glucagon release (Figure 1), while fur-
ther decreasing body weight in T2DM patients.94–96 In animal models,
GLP-1 receptor agonists reduced infarct size and improved cardiac
function after ischaemia/reperfusion through pro-survival pathways
such as PI3K, Akt, and ERK1/2 (Figure 4)97,98 and attenuated post-
ischaemic LV remodelling by activating AMPK/eNOS/cGMP/PKG
pathways.98,99 They also improved LV function in non-ischaemic HF
models, such as anthracycline-induced cardiotoxicity, potentially by
increasing myocardial glucose uptake.99,100 In another preclinical
model, GLP-1 lowered blood pressure by atrial natriuretic peptide
release, which was, however, not recapitulated in humans.101 GLP-1
and GLP-1 receptor agonists may also improve endothelial function
by PI3K-induced eNOS activation (Figures 1 and 4).102

Some trials on GLP-1 receptor agonists yielded beneficial CV out-
comes. The long-lasting and structurally related GLP-1-agonists lira-
glutide or semaglutide reduced CV death, non-fatal myocardial
infarction or non-fatal stroke in high-risk T2DM patients, as shown by
the LEADER and SUSTAIN-6 trials, respectively.95,96 In contrast, the
short-acting lixisenatide (ELIXA) and the long-acting exenatide
(EXSCEL) GLP-1 receptor agonists had neutral CV effects.103,104

The mechanisms for this differential response remain elu-
sive.95,96,104,105 The beneficial CV outcomes provided by liraglutide
and semaglutide occurred in high-risk T2DM patients with a history
of CAD, ischaemic stroke, peripheral arterial disease, HF or kidney
disease and therefore concern mostly secondary prevention.95,96

None of the GLP-1 receptor agonists improved HF outcomes in
these populations, but rather increased heart rate by approximately
3 b.p.m.95,96,103,104 In addition, in the FIGHT and LIVE studies in
patients with HFrEF with or without T2DM, liraglutide increased ad-
verse CV events compared with placebo.106,107 Safety concerns
were also raised for vildagliptin, but no increase in adverse CV events
was confirmed by subsequent retrospective studies or meta-analy-
ses.108,109 Ongoing RCTs with long-acting GLP-1 receptor agonists
dulaglutide (REWIND, NCT01394952) and albiglutide (HARMONY
outcomes, NCT0246551; both expected to report 2019) will pro-
vide further insights into their potential effect on CV outcome in
high-risk patients with DM.

Interestingly, the first-in-class angiotensin receptor neprilysin in-
hibitor (ARNI) sacubitril/valsartan also lowered HbA1c in patients
with HFrEF and T2DM.110 This effect may be mediated by GLP-1 en-
hancement through decreased metabolization by neutral endopep-
tidase, the target of sacubitril.110–112 However, the change in HbA1c
and the composite primary outcome did not correlate in the seminal
PARADIGM-HF trial.110

Main findings for glitazones in T2DM

and HF
• PPARy activation confers benefits in metabolic signalling, vas-

cular function, inflammation, fibrosis, and diastolic function

in the diabetic heart.
• PPARy activation by glitazones may cause fluid retention and

worsening in HF.
• Glitazones are not recommended in patients with pre-exist-

ing HF.
• Pioglitazone reduces all-cause death, non-fatal myocardial in-

farction and non-fatal stroke, a benefit maintained in

patients who experienced HF worsening.

Open questions for glitazones in T2DM

and HF
• What is the exact pathophysiology of glitazone-induced HF

worsening (fluid retention, insulin sensitization with cardiac

substrate overload)?
• What is the value of partial PPARy activation, including the

novel SPPARMs causing less fluid retention in diabetic HF?
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Dipeptidyl peptidase-4 inhibitors

Dipeptidyl peptidase-4 inhibitors lower blood glucose by increasing
insulin and decreasing glucagon release (Figure 1) without decreasing
body weight in T2DM patients.94–96 In diabetic mice, DPP-4 inhibition
improved cardiac contractility after myocardial infarction and
improved LV diastolic function,113,114 although another study failed
to confirm those beneficial effects.115

In contrast to GLP-1 receptor agonists and despite the beneficial
vascular effects of DPP-4 inhibitors in pre-clinical116 and clinical stud-
ies,117 RCTs with DPP-4 inhibitors were neutral regarding major ad-
verse CV events at glucose equipoise.105,118,119 In the SAVOR-TIMI
53 trial, saxagliptin even increased the risk for HF hospitalization by
27% in patients with a history of CAD, ischaemic stroke, peripheral
artery disease or CV risk factors.119 This was, however, neither the
case for alogliptin in T2DM patients with a recent acute coronary
syndrome (EXAMINE) nor with sitaglipitin in T2DM patients with a
history of CAD, ischaemic stroke or peripheral artery disease
(TECOS).105,120 A meta-analysis of RCTs revealed a non-significant
14% increased HF risk with DPP-4 inhibition, but with large hetero-
geneity between different substances.121 Nevertheless, the FDA
added a HF warning for this class of drugs. Ongoing RCTs with lina-
gliptin (CARMELINA and CAROLINA expected to report 2018
and 2019) will provide more evidences on safety of DPP-4 inhibitors
in HF.

Sodium glucose co-transporter 2
inhibitors
The sodium glucose co-transporter 2 (SGLT2) is located in the prox-
imal renal tubule and accounts for 90% of glucose reabsorption.122

The remaining urinary glucose is reabsorbed by SGLT1, which is also
expressed in the intestine and the heart. Inhibition of SGLT2 by
empagliflozin, dapagliflozin, ertugliflozin, or canagliflozin (with the lat-
ter also featuring some SGLT1-inhibitory capacity) increases urinary
glucose excretion, thereby urine volume.123 The concept of SGLT2-
inhibition is different from other glucose-lowering strategies since
glucose is removed from the ‘system’, thereby reducing total body
and cellular glucose toxicity independent of insulin. The mode of

action of SGLT2-inhibitors has metabolic and haemodynamic
consequences.

Metabolic consequences

Besides reducing fasting and postprandial blood glucose levels,
SGLT2-inhibitors decrease uric acid but increase glucagon, FFA, and
ketone body (beta-hydroxybutyrate) levels (Figure 1). In addition,
SGLT2 inhibition increases endogenous glucose production, which
partly compensates glucose excretion, preventing hypogly-
caemia.124,125 Through early diuretic and longer-term metabolic
effects, SGLT2-inhibitors reduce body weight.123,126 In addition,
SGLT2 inhibitors affect cardiac metabolism by changing myocardial
substrate supply and by altering myocardial energy demand.125

Substrate supply: SGLT2 inhibitors decrease glucose and increase
FFA and ketone bodies (Figure 4), thereby shifting myocardial sub-
strate supply.125,127 In DM patients, SGLT2 inhibitors up-regulate ke-
tone body levels and oxidation; ketone bodies may represent a more
efficient metabolic substrate than lipids (but not glucose) as they lib-
erate more energy per carbon unit (the ‘thrifty substrate hypothesis’;
Figure 4).128 Furthermore, empagliflozin increases BCAA catabolism
in T2DM,129 which is diminished in HF. Whether these actions are
translated into clinically meaningful effects on the myocardium is
presently unclear.130

Mitochondrial function: While the natriuretic effect of empagliflozin
occurs only transiently at the onset of therapy,131 empagliflozin
reduced [Naþ]i in cardiac myocytes, presumably by inhibiting the
Naþ/Hþ exchanger (NHE).132 This may increase mitochondrial Ca2þ

by slowing mitochondrial Naþ/Ca2þ exchange.132 In mitochondria,
Ca2þ is required to match ATP supply to demand and regenerate the
antioxidative capacity through Krebs cycle activation.23 In DM and
HF, [Naþ]i is elevated and causes energetic mismatch and oxidative
stress.21,23 Therefore, empagliflozin may exert beneficial effects by
preventing energetic mismatch and oxidative stress in cardiac myo-
cytes by lowering [Naþ]i (the ‘Naþ hypothesis’),24 which may also
have consequences for preventing arrhythmias.133

Haemodynamic consequences

In the kidney, empagliflozin lowers intra-glomerular pressure through
the ‘tubulo-glomerular feedback’ mechanism: due to increased Naþ

concentrations at the macula densa, afferent arteriole vasoconstric-
tion lowers glomerular pressure, thereby reducing albuminuria and
conferring renal protection.134,135 The diuretic effect lowers blood
pressure and the heart rate-blood pressure product as determinants
of myocardial O2 consumption,136,137 thereby unloading the heart.
Furthermore, this ameliorates arterial stiffness, decreases the aortic
and carotid augmentation index as well as LV mass.138 Finally, anti-
inflammatory and anti-oxidative properties were observed.139

In the EMPA-REG OUTCOME trial, empagliflozin reduced the
composite primary endpoint of CV death, nonfatal myocardial in-
farction, and nonfatal stroke in type 2 DM patients with CV dis-
ease.126 This effect was driven by a 38% reduction in CV death,
while empagliflozin also reduced all-cause death and HF hospital-
izations. In particular, the risk of HF hospitalization was lowered
by 35%, and this reduction reached 40% in patients with estimated
glomerular filtration rate (eGFR) between 30 and 60 mL/min/
1.73 m2 at baseline. The early separation of the curves in favour of

Main findings for Incretin-based thera-

pies in T2DM and HF
• Incretin-based therapies do not increase the risk of major ad-

verse CV events (MACE).
• In LEADER and SUSTAIN-6, GLP-1 receptor agonists reduced

MACE.

Open questions for incretin-based

therapies in T2DM and HF
• Do incretin-based therapies prevent macrovascular events?
• Are incretin-based therapies efficient in T2DM with HF?
• What are the mechanisms of CV mortality reduction by

long-acting GLP-1 receptor agonist liraglutide, and how can

this affect patient selection?
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empagliflozin and the unexpected action on HF hospitalizations
suggest that the favourable effects of empagliflozin are mainly due
to a reduction in HF-associated events. Although only 10% of
patients in EMPA-REG had a history of HF at baseline, the benefi-
cial effects on HF hospitalizations and CV death were consistent
in patients with or without HF.140 Since mortality and hospitaliza-
tion rates in the placebo group of the EMPA-REG OUTCOME
trial were comparable to the rates in trials on patients with
HFpEF,141 it may be speculated that a higher fraction of patients
than the 10% had undiagnosed HF, and in particular, HFpEF.
However, it seems plausible that by its mode of action, empagliflo-
zin may also provide benefit in HFrEF patients, although this view
was recently challenged.142 Empagliflozin slowed the progression
of kidney disease and related events, including incident albumin-
uria, and incident or worsening nephropathy.143

Canagliflozin also reduced the primary endpoint of CV death, non-
fatal myocardial infarction and nonfatal stroke in patients with T2DM
at high CV risk vs. placebo in the CANVAS trial program, and—
comparable to empagliflozin—also HF hospitalization.144 However, it
did not reduce all-cause mortality, but increased the risk for amputa-
tion and bone fracture. The EMPA-REG OUTCOME trial, however,
did not confirm such findings.145

Ongoing large studies evaluate the CV efficacy of dapagliflozin
(DECLARE; expected to report 2018) and ertugliflozin (VERTIS CV;
expected to report 2020) in patients with diabetes in a primary and
secondary prevention setting. The effects on HF outcomes may be
considered a class effect of SGLT2-inhibitors. Several new studies are
underway, including two new trials with empagliflozin in HFrEF and
HFpEF (EMPEROR-Reduced/Preserved) and one trial with dapagliflo-
zin in HFrEF (DAPA-HF).146 Those trials will provide evidence on
whether SGLT2-inhibitors may improve outcome in HF patients with
or without DM.

....................................................................................................................................................................................................................

Table 1 Effects of anti-diabetic agents on combined cardiovascular and heart failure endpoints according to key
randomized trials (hazards ratio and 95% confidence intervals or percent of events in active treatment vs. placebo and
P values)

Drug class Agent (trial) Composite CV endpoints Heart failure endpoints

Biguanides Metformin CV death, MI, HF, stroke Not reported

(Meta-analysis; 35 trials)90 0.94 (0.82–1.07)

Glitazones (thiazolidinediones) Pioglitazone Death, MI, stroke Any HF event

(PROactive; n = 5238)119 0.84 (0.72–0.98) 11% vs. 8% (P < 0.0001)

Rosiglitazone CV death or hospital HF death or hospital

(RECORD; n = 4447)118 0.99 (0.85–1.16) 2.10 (1.35–3.27)

GLP-1 receptor agonists Lixisenatide CV death, MI, UA, stroke HF hospital

(ELIXA; n = 6068)136 1.02 (0.89–1.17) 0.96 (0.75–1.23)

Liraglutide CV death, MI, stroke HF hospital

(LEADER; n = 9340)127 0.87 (0.78–0.97) 0.87 (0.73–1.05)

Semaglutide CV death, MI, stroke HF hospital

(SUSTAIN-6; n = 3297)126 0.74 (0.58–0.95) 1.11 (0.77–1.61)

Exenatide CV death, MI, stroke HF hospital

(EXSCEL; n = 14752)137 0.91 (0.83–1.00) 0.94 (0.78–1.13)

DDP-4 inhibitors Alogliptin CV death, MI, stroke Not reported

(EXAMINE; n = 5380)120 0.96 (<_1.16)

Saxagliptin CV death, MI, stroke HF hospital

(SAVOR-TIMI 53; n = 16492)119 1.00 (0.89–1.12) 1.27 (1.07–1.51)

Sitagliptin CV death, MI, UA, stroke HF hospital

(TECOS; n = 14671)105 0.98 (0.88–1.09) 1.00 (0.83–1.20)

SGLT2 inhibitors Empagliflozin CV death, MI, stroke HF hospital

(EMPA-REG; n = 7020)126 0.86 (0.74–0.99) 0.65 (0.50–0.85)

Canagliflozin CV death, MI, stroke HF hospital

(CANVAS; n = 10142)144 0.86 (0.75–0.97) 0.67 (0.52–0.87)

CV, cardiovascular; DDP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; HF, heart failure; MI, myocardial infarction; SGLT2, sodium glucose co-transporter 2; UA, un-
stable angina.

Main findings for SGLT2-inhibitors in

T2DM and HF
• In EMPA-REG OUTCOME, empagliflozin reduced CV death

and HF hospitalizations.
• The favourable effect of empagliflozin occurred in patients

with and without HF history.
• Patients with renal impairment benefited from empagliflozin.
• In CANVAS, canagliflozin also reduced HF hospitalization,

suggesting a class-effect.
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Open issues and perspectives for
future research

Knowledge on the CV safety of anti-diabetic drugs and in particular,
their potential benefits for patients with HF is increasing (Table 1).
The treatment of patients with HF and T2DM still remains challenging
as many issues regarding the properties of anti-diabetic drugs in HF
remain unresolved (Table 2). However, the recent benefits with GLP-
1 receptor agonists and SGLT2-inhibitors re-spurred enthusiasm.

Defining whether the favourable effects of specific anti-diabetic
agents are preserved in patients with HF in the absence of T2DM is
the next logical step towards the concept of drug repurposing
(Figure 5). In this context, SGLT2-inhibitor trials designed to prove
their efficiency rather than safety in patients with HF with or without
T2DM are currently underway.

Understanding the pathophysiology of CV alterations in HF and
T2DM is important. Key open questions include the relevance of in-
sulin resistance in the failing heart (adaptive vs. maladaptive),47 the im-
pact of substrate switch in response to SGLT2-inhibition, the role of
SGLT2-inhibitors on cardiac Naþ metabolism and many others.
Selection of proper preclinical models that reflect a specific HF
phenotype is crucial as experimental results obtained by different
models may not be comparable.

The CV effects of several anti-diabetic agents are not fully
resolved. As patient populations recruited in large clinical trials are
quite heterogeneous, this may prevent the detection of potential
benefits. Identifying subpopulations of responding patients may be
useful in guiding the design of future clinical trials.147

An important and yet under-investigated issue is the differential ef-
ficacy of anti-diabetic drugs in men and women. In two meta-
analyses, diabetes was associated with a less favourable CV risk pro-
file and a higher risk of death from CAD in females compared with
males,148,149 while women also display a reduced response to low-
dose aspirin.150,151 Emerging evidence suggests that treatment with

....................................................................................................................................................................................................................

Table 2 Open issues and gaps of evidence regarding the co-treatment of diabetes mellitus and heart failure

Open issue Gaps in evidence

Insulin resistance and the fail-

ing heart

Role of insulin resistance as an adaptive mechanism in heart failure

Beneficial metabolic effects

of ketone bodies

Myocardial glucose uptake and energy production in the presence of increased circulating ketone levels

Role of ketone metabolism in heart failure

Clinical trials of the synthetic ketone ester Delta-GVR in diabetic and non-diabetic patients with heart failure

Pleiotropic effects of

metformin

Prospective evidence on ischaemia/reperfusion injury in non-diabetic patients

Clinical effects of anti-inflammatory action

Detrimental effects of

glitazones

Pathophysiology of glitazone-induced heart failure

Differentiation between glitazone-induced heart failure and fluid retention

Potential detrimental effects of insulin sensitization in the failing heart

Evaluation of selective PPAR-gamma modulators to improve clinical efficacy and decrease side effects

Cardiovascular effects of

incretin-based therapies

Effect of insulin increase in the failing heart

Relevance of the GLP-1 receptor agonism in cardioprotection; signalling pathways of GLP-1 metabolite (9–36 amide)

Cardiovascular outcomes of liraglutide and semaglutide in primary prevention setting (diabetic patients without cardio-

vascular disease)

Cardiovascular outcomes of liraglutide and semaglutide in non-diabetic patients

Effects of GLP-1 receptor agonists left ventricular diastolic function

Effects of GLP-1 receptor agonists on vascular endpoints (central pressures, arterial stiffness, endothelial function) and

ventriculo-arterial coupling

Cardioprotective effect of

SGLT2 inhibitors

Effects of SGLT2 on myocardial substrate utilization, energy production and energy demand

Cardiovascular outcomes of gliflozins in primary prevention setting (T2DM patients without cardiovascular disease)

Cardiovascular outcomes of gliflozins in non-diabetic patients

Heart failure phenotype Effects of antidiabetic agents specifically on HFrEF and HFpEF

GLP-1, glucagon-like peptide-1; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; PPAR, peroxisome proliferator-acti-
vated receptors; SGLT2, sodium glucose co-transporter 2.

Open questions for SGLT2-inhibitors in

T2DM and HF
• What are the underlying mechanisms explaining the benefi-

cial effect of SGLT2 inhibitors on HF hospitalization and CV

mortality?
• Is the protective effect of SGLT2 inhibitors on HF restricted

to patients with T2DM or does it also apply to non-diabetic

HF patients?
• Which subgroup of T2DM patients has the greatest benefit

from SGLT2-inhibitors?
• Is the benefit maintained in T2DM patients without CV

comorbidities or high CV risk?
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..glitazones may lower bone density, increasing the risk of fractures in
diabetic women.

Therapy of T2DM often involves combination of anti-diabetic
agents, but the additive or synergistic effects of combined drugs in HF
remains to be investigated. For instance, metformin alone or in com-
bination with sulfonylurea reduced CV morbidity and mortality com-
pared with sulfonylurea monotherapy in T2DM with HF in a
retrospective study,152 but this was not confirmed in a systemic re-
view of observational studies.67

Finally, the selection of endpoints remains a crucial issue that was
lately debated. ‘Hard’ endpoints, required for regulatory reasons, are
suitable for large safety trials of anti-diabetic agents in broad CV pop-
ulations, but impose large sample sizes and huge expenditures.
Clinically relevant ‘soft’ or surrogate (patient-oriented) endpoints re-
quire smaller samples and considerably less costs and may be used in
focused efficacy trials in selected subpopulations.
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