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Abstract 

Brain natriuretic peptide (BNP) modulates several biological processes by 

activating the natriuretic peptide receptor A (NPR-A). Atria and ventricles 

secrete BNP. BNP increases natriuresis, diuresis and vasodilatation, thus 

resulting in a decreased cardiac workload. 

BNP and NT-proBNP, which is the biologically inactive N-terminal portion of 

its pro-hormone, are fast and sensitive biomarkers for diagnosing heart 

failure. The plasma concentrations of both BNP and NT-proBNP also 

correlate with left ventricular function in patients with acute exacerbation of 

COPD, even without history of heart failure. Several studies have been 

conducted in vitro and in vivo, both in animals and in humans, in order to 

assess the potential role of the NPR-A activation as a novel therapeutic 

approach for treating obstructive pulmonary disorders. Unfortunately, these 

studies have yielded conflicting results.  

Nevertheless, further recent specific studies, performed in ex vivo models of 

asthma and COPD, have confirmed the bronchorelaxant effect of BNP and its 

protective role against bronchial hyperresponsiveness in human airways. 

These studies have also clarified the intimate mechanism of action of BNP, 

represented by an autocrine loop elicited by the activation of NPR-A, localized 

on bronchial epithelium, and the relaxant response of the surrounding ASM, 

that does not expresses NPR-A.  

Therefore, this review explores the teleological activities and paradoxical 

effects of BNP with regard of chronic obstructive respiratory disorders, and 
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provides an excursus on the main scientific findings that explain why BNP 

should be considered much more than a biomarker. 
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1. Background 

Natriuretic peptide (NP) hormones are small cardiovascular-derived peptides 

characterized by a 17 aminoacid ring and include atrial natriuretic peptide 

(ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) 

[1]. NPs are encoded by different genes, synthesized as prepropeptides and 

stored as high molecular mass propeptides (proANP, proBNP and proCNP). 

The cleavage of propeptide results in the formation of the daughter ANP, BNP 

and CNP, which are characterized by lower molecular mass [1].  

NPs modulate several biological effects by interacting with specific natriuretic 

peptide receptors (NPRs) including NPR-A, NPR-B and NPR-C, a family of 

homologous single-transmembrane, glycosylated receptors [2, 3]. The 

stimulation of NPR-A and NPR-B activates an intracellular particulate domain 

with guanylate cyclase (GC) activity that promotes the synthesis of cyclic 

guanosine monophosphate (cGMP) [4]. NPR-C does not modulate cGMP 

levels but inhibits adenylyl cyclase (AC) and activates phospholipase C (PLC), 

and removes NPs from the circulation. In fact NPR-C serves as a “clearance” 

receptor leading to internalization and lysosomal degradation of NPs [5, 6]. 

ANP and BNP are the biological ligands of NPR-A, whereas CNP 

preferentially binds to NPR-B. ANP and BNP both have a relatively high 

affinity for their respective receptor sub-types, although ANP is about 10 fold 

more potent than BNP [1, 7]. NPR-A is expressed in the cardiovascular 

system (cardiac atria and ventricles, aorta and peripheral vasculature), 

kidney, skin, platelets, and sympathetic fibers [1]. In both animals and man 

NPR-A has also been widely identified on a variety of pulmonary cells such as 

endothelial and smooth muscle cells of pulmonary blood vessels, type II 
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alveolar cells, and epithelial and airway smooth muscle cells in bronchi and 

bronchioles [8-12], whereas NPR-B is mainly expressed in veins as compared 

with arteries [7]. 

 

2. Cardiovascular and renal actions of NPs 

Under physiological conditions ANP is secreted from cardiac atria, BNP from 

both atria and ventricles, whereas CNP is mainly released primarily from 

nervous tissue and vascular endothelium [1]. However, in a number of 

cardiovascular disorders and conditions associated with elevated blood 

pressure or volume overload, increased gene expression of ANP may be 

detected in the left ventricle [13] in association with rapid and constant 

enhancement of BNP transcripts [14, 15].  

ANP and BNP have similar pharmacological profiles since they act on the 

same NP receptor and can induce natriuresis, vasodilatation and inhibition of 

aldosterone synthesis. Furthermore, these NPs have anti-mitogenic effects on 

endothelial and vascular smooth muscle cells [16]. In the central nervous 

system both ANP and BNP induce thirst suppression, inhibition of the release 

of antidiuretic and adrenocorticotropic hormones, as well as a reduction of 

sympathetic tone. Altogether these effects contribute to the hypotensive 

properties of NPs [16]. 

The action of CNP is different compared with that of ANP and BNP since it 

acts as an autocrine/paracrine mediator in blood vessels, through the 

modulation of vascular tone and cell growth [1, 16]. Thus, CNP is less 

effective at inducing diuresis and natriuresis compared with the other NPs but 
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is more effective at modulating the autonomic control of vascular tone [17, 

18]. 

These pharmacological properties of NPs underpin why they have been 

implicated in the pathogenesis of congestive heart failure, as proposed by 

Woodard and Rosado [19]. In fact ANP and BNP increase both natriuresis 

and diuresis and induce local vasodilatation in response to cardiac failure, 

whereas CNP modulates the cardiac remodeling and inhibits the proliferation 

of vascular smooth muscle cells (VSMCs) [19]. Taken together, these actions 

of NPs lead to a reduction in blood pressure and circulatory volume, resulting 

in a decreased cardiac workload [19]. 

 

3. BNP as a biomarker 

There is a large body of evidence that the levels of BNP and the biologically 

inactive N-terminal portion of its pro-hormone, NT-proBNP, correlate well with 

the severity of heart failure [20]. Since they function as an indicator of 

increased ventricular mass and a surrogate marker for heart failure, NT-

proBNP and BNP are regarded as biomarkers, namely biological parameters 

that are objectively measured and evaluated as indicators of normal biological 

processes, pathogenic processes or pharmacological responses to a 

therapeutic intervention [21]. 

NT-proBNP has a longer plasma half-life and exists at considerably higher 

concentrations compared with BNP [22]. It is significantly more stable at room 

temperate and current laboratory assays are highly sensitive and specific. 
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Furthermore, all commercially available NT-proBNP assays utilize the same 

set of antibodies, which greatly simplifies intra-laboratory comparisons. 

When used in conjunction with other clinical information, BNP and NT-proBNP 

levels are useful in establishing or ruling out the diagnosis of heart failure in 

patients with acute dyspnea [23]. For both BNP and NT-proBNP to exclude 

acute heart failure in symptomatic patients, very low values are necessary 

[24]. For BNP, the value is approximately 20 to 30 pg/mL, while for NT-

proBNP, a cut point that has a negative predictive value of 98% to 99% is 300 

pg/mL. Values above these levels, whether or not they are below the rule in 

cut point, may be associated with heart failure. However, the International 

Collaborative Of NT-proBNP (ICON) study [25] suggested that, for the 

exclusion of acute heart failure, a general age-independent cut-point of 300 

pg/ml should be used, whereas for diagnosis of heart failure, age-dependent 

cut-points are more useful: namely NT-proBNP >450 pg/ml for patients <50 

years; >900 pg/ml for patients in between 50 and 75 years; and NT-proBNP 

>1,800 for patients >75 years. 

Since the use of BNP and NT-proBNP for the diagnosis of heart failure has 

dramatically impacted the standard of care in this pathological condition, all 

major societies recommend the use of these biomarkers for the diagnosis of 

heart failure in their clinical practice guidelines [20, 26, 27]. BNP and NT-

proBNP concentrations typically fall with therapies proven to improve mortality 

in heart failure with decreased left ventricular ejection fraction [28-30]. BNP-

guided therapies decrease mortality and reduce cardiovascular events, 

although do not decrease overall hospitalizations. 
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Adding routine BNP testing in patients with a history of asthma or chronic 

obstructive pulmonary disease (COPD) increases the detection of newly 

diagnosed or previously unrecognized chronic heart failure by approximately 

20% [31]. In any case, BNP levels are elevated in patients with pulmonary 

diseases, at least in those with concomitant right ventricular (RV) dysfunction 

and pulmonary arterial hypertension [32], although BNP levels are 

significantly lower in right heart failure due to COPD compared with right heart 

failure due to left ventricular systolic heart failure [33]. 

Elevated BNP concentrations identify significant pulmonary hypertension with 

a sensitivity of 0.85 and specificity of 0.88 and predicted mortality [34]. It has 

been shown that plasma BNP levels may be elevated in patients with COPD 

and correlate not only with pulmonary arterial pressure but also with forced 

vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and partial arterial 

oxygen pressure [35]. However, there is contrasting documentation indicating 

that plasma BNP levels are also elevated in patients with stable COPD 

without pulmonary hypertension or cor pulmonale [36]. In these patients, there 

is no significant correlation between plasma BNP level and pulmonary 

function or hypoxia, but there is a significant correlation between plasma BNP 

level and % ejection fraction and pulmonary artery systolic pressure. 

Intriguingly, they are also increased in patients with COPD with normal right 

ventricular function after exercise [37]. 

Several studies have highlighted the importance of the BNP dosage in 

detecting left ventricular dysfunction in patients with acute exacerbation of 

COPD (AECOPD), even without history of heart failure [38-40], although 

echocardiographic examinations are able to document cardiac systolic and 
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diastolic dysfunction in only a small number of patients during the AECOPD 

[41]. Whatever the case may be, the period until initial AECOPD in subjects 

with high plasma BNP level seems to be significantly shorter [36]. 

Furthermore, in patients with AECOPD, BNP levels independently predict the 

need for intensive care [42], and elevated levels of NT-proBNP are strong 

predictors of early mortality among patients admitted to hospital with acute 

exacerbations of COPD independently of other known prognostic indicators 

[43]. There may be a link between an elevated level of BNP or NT-proBNP 

and increased cardiovascular mortality in AECOPD, although the data 

currently available are not conclusive [44]. 

 

4. NPs and airway smooth muscle cell 

Several studies have revealed that airway smooth muscle (ASM) cells 

obtained from subjects with asthma display mechanical and phenotypical 

differences from that of ASM obtained from non-asthmatic subjects.  ASM 

cells obtained from subjects with asthma showed a marked increase in force 

generation, capacity of shortening, degree of shortening and sensitivity to 

agonists [45, 46]. Moreover, hypertrophy of ASM in patients with severe 

asthma has been associated with a 5-fold greater positivity for markers of 

proliferating than ASM obtained from healthy subjects [47]. However, other 

studies failed to document mechanical differences between ASM derived from 

asthmatic and non-asthmatic donors [48, 49]. An increased amount of 

expression of contractile cytoskeletal proteins that characterizes the 

contractile phenotype have also been described [50], as have phenotypic 

differences in the sensitivity to proliferative and apoptotic stimuli for ASM [51]. 
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Studies on the expression of components of the contractile cytoskeletal have 

also been observed in ASM obtained by endobronchial biopsy from subjects 

with asthma, demonstrated as an increased mRNA expression of myocitic 

markers, including myosin light chain kinase and total smooth muscle myosin 

heavy chain, when compared to ASM obtained from non-asthmatic donors 

[52, 53]. The increased expression of specific smooth muscle markers has 

been linked to increased bronchial smooth muscle mass and ASM cell 

functional differences observed in asthmatic patients [54]. Most of the 

information concerning the effects of BNP on ASM cell proliferation has been 

obtained from in vitro models. For example, BNP inhibited angiotensin II-

induced smooth muscle cell proliferation, likely mediated by a decreased 

calcium influx, reduced ROS production and Akt signal transduction [55]. 

 

5. Expression of NPRs in human bronchi 

RT- and qRT-PCR both documented that human bronchial tissue expresses 

significant levels of NPR-A transcripts, whereas the gene expression of NPR-

B and NPR-C were scarce or even not detectable [8]. As evidenced by 

immunohistochemistry, NPR-A was localized at the level of bronchial 

epithelium and inflammatory cells of lamina propria, whereas NPR-A was 

barely detected in ASM and absent on the surface of goblet cells [8]. NPR-A 

transcripts were also detected on BEAS-2B cells, an immortalized human 

bronchial epithelial cell line that has been widely used to study the effect of 

BNP on human bronchi and ASM [8, 56, 57]. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 11 

Neither the passive sensitization of human bronchi, an ex vivo model that 

closely mimics important characteristics of BHR in asthmatic patients [8, 56, 

58-60], did not modify the NPR-A gene expression [8], nor the stimulation with 

methacholine or histamine altered the NPR-A levels [8]. NPR-A transcripts 

were increased after BNP treatment in both non-sensitized and passively 

sensitized bronchi, whereas the selective antagonism of M2 muscarinic 

receptors by methoctramine prevented the receptor over-expression, 

suggesting that antagonizing M2 muscarinic receptors may act as a negative 

feedback loop in the NPR-A transcriptional pathway [8].  

 

6. NPR-A activation and airways: past and recent knowledge  

NPR-A is expressed in the airways of several animal species [9-11] and 

administration of exogenous ANP induced relaxation of ASM of rats, guinea 

pigs and cows in vitro [61-63]. Unfortunately, only a few studies have 

investigated the ability of ANP to induce relaxation of human ASM in vitro, and 

the limited data available in the literature have proposed conflicting 

conclusions, with some studies documenting weak relaxation [64] and others 

showing no significant relaxant effect [65]. In any case, ANP seemed to have 

a protective effect on propranolol-induced bronchoconstriction in allergic 

guinea pigs in vivo [66]. ANP reduce airway resistance in normal subjects 

[67]. Further studies have demonstrated that ANP may induce bronchodilation 

and prevent bronchial hyperresponsiveness (BHR) in asthmatic patients when 

given intravenously or by inhalation, and have also demonstrated the ability of 

ANP to modify the bronchoconstriction in response to inhaled histamine or 

nebulized water in man [68-74]. 
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Studies carried out in laboratory animals have also demonstrated that BNP 

may relax tracheal smooth muscle in vitro and prevent ovalbumin-induced 

bronchoconstriction and microvascular leakage in vivo [75, 76]. Nevertheless, 

until some years ago specific research on the ability of BNP to relax human 

ASM were still lacking in the literature. However, it has been documented that 

the administration of nesiritide, a human recombinant BNP, induces 

bronchodilation in patients with asthma and that PL-3994, a novel NPR-A 

agonist resistant to neutral endopeptidase, relaxes the tone of human 

precision-cut lung slices (PCLS) pre-contracted with carbachol [77, 78]. 

Combined, these evidences (Table 1) would suggest that the activation of 

NPR-A might modulate bronchial tone in patients suffering from chronic 

obstructive pulmonary disorders. 

 

7. Influence of BNP on the contractile tone of human ASM: current 

knowledge 

BNP was ineffective at relaxing medium isolated human bronchi pre-

contracted with carbachol, and produced a weak relaxant response of 

passively sensitized airways pre-contracted with histamine (≃60% vs. 

maximal relaxation induced by papaverine) [58]. This modest effectiveness of 

BNP may be correlated with the absence of NPR-A at the level of ASM. 

Moreover, the modest effect of BNP on isolated human bronchi [58] is in 

contrast with the ability of nesiritide to produce considerable bronchodilation in 

patients with asthma [78]. This discrepancy may be explained by the fact that 

BNP probably does not act as a direct bronchodilator on ASM [56]. It has also 
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been suggested that the ability of BNP to improve lung function in vivo may be 

related to other effects, such as the reduction of airway microvascular leakage 

and plasma exudation into the airway [79, 80]. 

The bronchodilator effect of BNP has also been investigated in human small 

airways by using PCLS preparations and it has been compared with the effect 

elicited by PL-3994 [77]. In contrast to what has been observed in human 

isolated human bronchi [58], BNP was able to induce a relaxant response of 

bronchioles pre-contracted with carbachol (≃50% vs. maximal relaxation 

induced by salbutamol) [77]. Furthermore, although PL-3994 induced a potent 

and concentration-dependent relaxation of PCLS preparations, its 

effectiveness was modest (≃30% vs. maximal relaxation induced by 

salbutamol) and was less effective when compared with BNP [77]. 

Further studies have investigated why BNP appears to be more effective as a 

bronchoprotective agent than as a direct bronchodilator. Thus, recent studies 

have demonstrated that BNP shifts rightward the contraction-response curve 

induced by histamine in passively sensitized bronchi (potency reduced by ≃1 

logarithms) and inhibits the contractile tone induced by carbachol in non-

sensitized airway (maximal effect reduced by ≃70%), compared with BNP-

untreated bronchi [8]. Intriguingly, in these experimental settings [8] the 

removal of epithelial cells from the bronchial lumen completely abolished the 

relaxant effects of BNP, suggesting that epithelium integrity is crucial for the 

modulatory role of BNP on the tone of human ASM.  
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Although in vitro studies carried out by using human isolated airways are 

useful to investigate the effect of drugs on airway tone, this experimental 

approach has certain limitations. For example, one cannot rule out the 

potential influence of cell types other than ASM in regulating bronchial tone.  

Indeed, in an attempt to identify the downstream mechanisms regarding the 

BNP-mediated relaxation of human ASM, the functional evidence obtained 

from in vitro experiments with isolated human bronchi have been 

supplemented by other types of in vitro laboratory studies using BEAS-2B 

cells and cultured human ASM cells [56]. Whilst BNP was unable to modulate 

per se the contractile response of asthmatic ASM cells, incubation with the 

supernatant from BEAS-2B cells pre-treated with BNP was effective in 

inhibiting the contractile response to histamine, reducing the contractile 

potency more than 1.5 logarithms [56]. Furthermore, the indirect relaxant 

effect of BNP in asthmatic ASM cells was comparable with that elicited by 

salbutamol [56].  

The pharmacological characterization of BNP in modulating the human ASM 

contractility is reported in Table 2.  

The relative activation of myosin light chain kinase (MLCK) and myosin light 

chain phosphatase (MLCP), a trimeric enzyme with a catalytic subunit called 

myosin phosphatase target subunit 1 (MYPT1) regulates ASM tone. The 

phorphorylation of MYPT1 makes MLCP inactive, resulting in a sustained 

myogenic tone [81]. Recently, it has been demonstrated that ASM cells, 

collected from asthmatic donors and incubated with the medium of BEAS-2B 

cells pre-treated with BNP, over-expressed the gene and protein levels of 

unphosphorylated and active form of MYPT1, whereas the phosphorylated 
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and inactive pMYPT1Thr696 form was inhibited [56]. These findings provide an 

important piece of information concerning the functional antagonistic effect of 

BNP to protect against stimulation of ASM cells with histamine [8]. 

Since asthmatic ASM cells may directly alter their microenvironment by 

producing extracellular matrix proteins, pro-inflammatory mediators and 

adhesion receptors [82], further studies have been performed in human 

asthmatic ASM to elucidate the molecular and intracellular gene pathways 

involved in response to BNP challenge. Interestingly, although BNP indirectly 

modulated the activation of myosin light chain (MLC) by inhibiting the MLC 

phosphorylation (MLC-P) and the consequent interaction with actin, recent 

results have demonstrated that the BNP-induced relaxation of ASM did not 

depend upon immediate changes of expression of alpha-smooth muscle actin 

isoform (α-SMA). In fact, both immunofluorescence and western blotting 

analysis documented an analogous distribution and expression of α-SMA in 

asthmatic ASM cells incubated with the supernatant of BEAS-2B cells treated 

with BNP, compared with untreated cells [57]. On the other hand, the 

supernatant of BNP-treated BEAS-2B cells induced a rapid down-regulation of 

both calcium homeostasis-associated and epidermal growth factor receptor 

(EGFR) gene levels in asthmatic ASM cells [57]. 

 

8. The mechanism of action of BNP in human bronchi: from 

teleological activity to paradoxical effect 

The prevalent localization of NPR-A at the level of respiratory epithelium, and 

the absence of this receptor on ASM, suggests that the bronchoprotective role 
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elicited by BNP in both medium and small airways is indirect and potentially 

mediated by some autocrine mechanism. In addition, the results concerning 

the influence of BNP on the contractile tone of human ASM suggest that this 

NP may have a noteworthy teleological effect at the level of human respiratory 

system. Nevertheless, the specific mechanisms of action and the intimate 

pathways modulated by BNP via the activation of epithelial NPR-A have been 

only recently elucidated.   

As in the case of epithelium removal, the selective antagonism of M2 

muscarinic receptor by methoctramine and the selective inhibition of inducible 

nitric oxide synthase (iNOS) by aminoguanidine completely abolished the 

bronchoprotective effect of BNP in human isolated bronchi and asthmatic 

ASM cells [8, 56]. BNP indirectly enhanced the gene transcripts and the 

protein expression of iNOS in epithelium-intact bronchi and asthmatic ASM 

cells, but not in epithelium-denuded airways and human bronchial epithelial 

cells [8, 56]. In addition, inhibiting the vesicular release of endogenous 

acetylcholine from bronchial epithelial cells by quinine, an organic cation 

transporters (OCT) inhibitor [83, 84], also reduced the bronchoprotective 

effect of BNP in a concentration dependent manner [8].  

These evidences indicated that the integrity of bronchial epithelial cells, the 

activation of M2 muscarinic receptor and the activity of iNOS synthase are 

necessary conditions to allow the BNP-mediated effect on lung function.  

Further experiments demonstrated that BNP enhances the acetylcholine 

release from both epithelium-intact bronchi and BEAS-2B cells, but not from 

epithelium-denuded airways [8]. Therefore, we supposed that the 

acetylcholine itself, released from the respiratory non-neural cholinergic 
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system, might play a crucial role in the pathway that links the activation of 

epithelial NPR-A by BNP and the ASM relaxant response.  

This hypothesis has been confirmed by results obtained from experiments 

carried out by stimulating isolated bronchi and asthmatic ASM cells with very 

low concentrations of exogenous acetylcholine, in order to mimic the 

endogenous release of acetylcholine from non-neural cells [83, 84]. 

Paradoxically, we have evidenced that acetylcholine administered at pico-

nanomolar concentrations induced a modest but significant relaxation of both 

human isolated bronchi (≃30% vs. maximal relaxation induced by 

papaverine) and asthmatic ASM cells (≃20% vs. maximal relaxation induced 

by papaverine) pre-contracted by histamine whereas, as expected, at higher 

concentrations acetylcholine induced contractile response [83, 84]. Moreover, 

very low concentrations of acetylcholine enhanced the NO levels in both 

epithelium-intact and epithelium-denuded bronchi, an effect that was 

abolished by methoctramine and aminoguanidine [8]. The direct exposure of 

asthmatic ASM cells and BEAS-2B cells to BNP did not modulate the NO 

levels [8, 56], whereas the supernatant of BEAS-2B cells treated with BNP 

significantly increased the NO levels of asthmatic ASM cells, an effect that, 

also in this case, was abolished by methoctramine and aminoguanidine [56]. 

 

9. BNP: clinical considerations 

BNP and NT-proBNP are fast and sensitive biomarkers for diagnosing heart 

failure. In patients with COPD, the plasma concentrations of both BNP and 

NT-proBNP increase proportionally to the severity of right ventricular diastolic 
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dysfunction. For this reason we strongly suggest the addition of routine BNP 

testing in patients with a history of COPD increases the detection of newly 

diagnosed or previously unrecognized heart failure. Furthermore, BNP testing 

could represent advance in the management of patients with AECOPD 

because potentially it allows treatment monitoring. Interestingly, BNP levels 

can fall not only when patients are treated with diuretics, inotropes, and 

vasopressors. We documented that β2-agonists are able to induce a rapid 

reduction in BNP levels in patients admitted to emergency department for 

AECOPD [85]. It is not easy to explain why β2-agonists decrease BNP levels. 

The most plausible hypothesis is that they are able to influence the pulmonary 

hemodynamics. Alternatively, we can suggest that β2-agonists are able to 

cause an attenuation of air trapping, leading to a reduction of intrathoracic 

pressure, including pressure on the whole heart, and, consequently, to an 

improvement of right ventricular overload and left ventricular diastolic 

dysfunction. 

The big issue is that, in our opinion, BNP is not only a biomarker. The BNP 

Consensus Panel 2004 already highlighted that the rapidly evolving spectrum 

of therapeutic benefit and the emerging realm of additional therapeutic 

potential positions BNP as an increasingly important treatment option in the 

management of a growing number of cardiovascular conditions [86]. Our 

findings, which support a teleological role for elevated BNP concentrations, at 

least in patients with COPD in whom BNP might be part of a response aimed 

at mitigating the effects of the disease [87], suggest that this concept can also 

be applied to patients with COPD, in which BNP might be part of a response 

aimed at mitigating the effects of the disease. 
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In order to test this hypothesis it would be of interest to evaluate the effect of 

BNP administration in patients with COPD.  Nesiritide is the recombinant form 

of human BNP and has been tested in patients with acute heart failure and it 

is approved for the treatment of acute decompensated congestive heart 

failure although its use is not associated with a change in mortality or re-

hospitalizations. To date nesiritide has never been tested in patients with 

COPD in whom it may have, based on the above-mentioned assumptions, a 

beneficial effect on airway responsiveness. 

 

10. Conclusions 

The findings of recent studies carried out by our research group [8, 56-58] 

have permitted to clarify the pathway leading to the bronchorelaxant effect 

induced by BNP (Figure 1). 

BNP binds to NPR-A expressed at the level of airway epithelium with 

consequent vesicular release of very low concentrations of acetylcholine from 

bronchial epithelial cells, such as ciliated cells and neuroendocrine cells [8, 

83, 84]. Although there is less acetylcholine released from the airway 

epithelium compared with that from neurons [83, 84], it seems to be sufficient 

to activate prevalently postsynaptic M2 muscarinic receptors localized on the 

surface of surrounding ASM cells. The stimulation of M2 muscarinic receptor 

modulates the gene and protein expression of iNOS, that increases the NO 

levels in ASM and activates the NO/cGMP signaling. The NO/cGMP signaling 

is a proved pathway involved in the relaxation of ASM, which results in 

bronchodilation [88]. In fact the NO-mediated relaxation of ASM is controlled 
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by the activation of a soluble pool of GC that enhances the cGMP levels [56]. 

Thus, bronchial epithelium regulates the BNP-induced relaxant activity by an 

autocrine loop inducing the activation of the NO/cGMP pathway at the level of 

ASM. The NO/cGMP signaling stimulates specific protein kinases that, in turn, 

activate a number of targets such as MYPT1 [56]. MYPT1 fine tunes the 

MLCP activity with consequents ASM relaxation. In addition, the NO/cGMP 

pathway activated by BNP may prevent the BHR through a rapid modulation 

of calcium homeostasis and EGFR signaling in ASM, leading to the inhibition 

of MLCK activity [57, 89]. 

Concluding, the integrity of airway epithelium and its cooperation with ASM is 

crucial for the bronchorelaxant activity of BNP, suggesting for a teleological 

influence of this NP against the BHR and airway obstruction in asthma and 

COPD.  

 

11. Expert opinion 

BNP may represent an alternative therapeutic option for the treatment of 

chronic obstructive pulmonary disorders. The pharmacological rationale for 

administering BNP in asthmatic patients has been proved from bench to 

bedside [8, 56, 57, 78]. Furthermore, it has been suggested that BNP may 

also modulate the bronchial tone in COPD [8], since this NP prevented the 

cholinergic tone in human isolated airways. 

The bronchorelaxant activity of BNP is mediated by the interaction with the 

NPR-A localized at the level of bronchial epithelial cells. Therefore, the 

administration of BNP via inhalation is required to deliver this NP topically on 
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the airway epithelium. The inhalant administration of BNP should reduce the 

risk of hypotension, the main potential cardiovascular adverse event related 

with the systemic activation of NPR-A [56]. Epithelium integrity is an essential 

condition for the effectiveness of BNP but, unfortunately, it has been widely 

documented that asthmatic patients can present epithelium abnormalities and 

destruction at all levels of the airways [90, 91]. In addition, also COPD is 

associated with bronchial epithelial changes [92] that may potentially affect 

the BNP activity. These peculiarities suggest that BNP may have a role as a 

bronchodilator agent prevalently in stable and controlled patients, and that 

should be administered in combination with further bronchodilators in order to 

optimize the therapeutic approach [93].  

The density of vagal innervation is greatest in proximal airways and 

diminishes peripherally, being almost insignificant or absent at the level of 

bronchioles, at the least in human airways [94, 95]. BNP modulates the 

human bronchial tone independently from the interaction with the 

parasympathetic system, thus it may have a relevant influence as a 

bronchodilator agent at the level of small airways. Nevertheless, the relatively 

high molecular weight of BNP (3.7 kDa) [96], compared with that of the 

bronchodilators that are currently used in the clinical practice (overall <0.4 

kDa) [97], might imply technological difficulties in developing specific devices 

that are able to  deliver this NP up to small airways. 

In any case, BNP has the noteworthy characteristic to stimulate a physiologic 

autocrine loop at the level of bronchial wall, leading to bronchorelaxation and 

protection against BHR, representing a potential emerging drug for chronic 

obstructive pulmonary disorders [98]. Moreover, we cannot exclude potential 
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synergistic interaction of BNP when administered by inhalation in combination 

with low doses of further bronchodilators characterized by different 

mechanisms of action, such as long-acting β2 agonists (LABAs) and long-

acting muscarinic receptor antagonists (LAMAs). Finally, this combination 

approach may be of benefit in the treatment of chronic obstructive airway 

disorders by optimizing bronchodilation and preventing potential adverse 

events [60, 93, 99-103]. 
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Figure legend 

 

Figure 1. Autocrine loop and mechanism of action of BNP inducing human airways 

relaxation. BNP activates NPR-A expressed at the level of airway epithelium, with consequent 

vesicular release of very low concentrations of acetylcholine. Picomolar concentrations of 

acetylcholine activate prevalently postsynaptic M2 muscarinic receptors localized on 

surrounding ASM cells. The M2 muscarinic receptor stimulation modulates the iNOS activity, 

which in turn increases the NO levels and activates the intracellular NO/cGMP signaling. This 

pathway stimulates specific protein kinases that activate MYPT1 and MLCP, with consequent 

increase of MLC and ASM relaxation. The NO/cGMP pathway activated by BNP also 

prevents ASM contractility through a rapid modulation of calcium homeostasis, leading to the 

inhibition of MLCK activity and reduction of MLC-P. ACh: acetylcholine; ASM: airway smooth 

muscle; BNP: brain natriuretic peptide; Ca
++

: calcium; cGMP: cyclic guanosine 

monophosphate; iNOS: inducible nitric oxide synthase; MLC: myosin light chain; MLC-P: 

myosin light chain phosphorylation; MLCK: myosin light chain kinase; MLCP: myosin light 

chain phosphatase; MYPT1: myosin phosphatase target subunit 1; NO: nitric oxide; NPR-A: 

natriuretic peptide receptor A; pMYPT1: inactive (phosphorylated) myosin phosphatase target 

subunit 1. 
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Tables 

Table 1. Influence of NPR-A activation on airways. 

Study NPR-A agonist Specie 
Experimental 

setting 
Functional effect 

Fernandes et al., 1992 [61] ANP 
Guinea 

pig 
In vitro 

Relaxation of tracheal smooth 
muscle 

Candenas et al., 1991 [65] ANP 
Guinea 

pig 
In vitro 

Relaxation of tracheal smooth 
muscle 

O'Donnell et al., 1985 [62] ANP Rat In vitro 
Relaxation of tracheal smooth 

muscle 

Ishii et al., 1989 [63] ANP Bovine In vitro 
Relaxation of tracheal smooth 

muscle 

Angus et al.,1994 [64] ANP Bovine In vitro 
Weak relaxation of bronchial 

smooth muscle 

Mizuguchi et al., 2000 [66] ANP 
Guinea 

pig 
In vivo 

Protection against propranolol-
induced bronchoconstriction after 

allergic reaction 

Candenas et al., 1991 [65] ANP Human In vitro 
No relaxation of bronchial smooth 

muscle 

Angus et al., 1994 [64] ANP Human In vitro 
Weak relaxation of bronchial 

smooth muscle 

Hulks et al., 1989 [71] ANP Human In vivo 
Bronchodilator response in 

asthmatic patients 

Chanez et al., 1990 [72] ANP Human In vivo 
Bronchodilator response in 

asthmatic patients 

Hulks et al., 1990 [67] ANP Human In vivo 
Reduction of airway resistance in 

normal subjects 

Hulks et al., 1991 [73] ANP Human In vivo 
Reduction of bronchial reactivity to 

inhaled histamine in asthmatic 
patients 

McAlpine et al., 1992 [74] ANP Human In vivo 
Reduction of bronchial reactivity to 

ultrasonically nebulized distilled 
water in asthmatic patients 

Angus et al., 1993 [69] ANP Human In vivo 
Bronchodilator response in 

asthmatic patients 

Angus et al., 1995 [70] ANP Human In vivo 
Reduction of bronchial reactivity to 

inhaled histamine 

Takagi et al., 1993 [76] BNP 
Guinea 

pig 
In vitro 

Relaxation of tracheal smooth 
muscle 

Ohbayashi et al., 1998 [75] BNP 
Guinea 

pig 
In vivo 

Prevention of ovalbumin-induced 
bronchoconstriction and 
microvascular leakage 

Akerman et al., 2006 [78] 
Nesiritide  

(human recombinant BNP) 
Human In vivo 

Bronchodilation in patients with 
asthma 

Edelson et al., 2012 [77] 
PL-3994  

(NPR-A agonist) 
Guinea 

pig 
In vivo 

Reduction in pulmonary inflation 
pressure 

Edelson et al., 2012 [77] 
PL-3994  

(NPR-A agonist) 
Human In vitro 

Relaxation of bronchial smooth 
muscle 
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Table 2. Pharmacological characterization of BNP on the human airways contractility. 

   
Ex vivo COPD models  

(cholinergic stimulus) 
 

In vitro / ex vivo asthma models   

(histaminergic stimulus) 

Study Specimen Experimental setting 
Delta Emax 

(% cholinergic tone) 

Delta potency 

(pEC50) 
 

Delta Emax 

(% histaminergic tone) 

Delta potency 

(pEC50) 

Matera et al., 2009 [58]  Medium bronchi Effect on pre-contracted airways <-30% NC  -61% NC 

Matera et al., 2011 [8] Medium bronchi Effect on CRC to contractile agonists -71% -1.5  -33% -0.9 

Edelson et al., 2012 [77] Bronchioles Effect on pre-contracted airways -50% NC  NA NA 

Calzetta et al., 2014 [56] ASM cells Effect on CRC to contractile agonists NA NA  NC -1.6 

Calzetta et al., 2014 [56] ASM cells Effect on pre-contracted ASM cells NA NA  -50% NC 

ASM: airway smooth muscle 

CRC: concentration response curve 

Emax: maximal effect 

NA: data not available 

NC: data not calculable 

pEC50: negative logarithm of concentrations inducing 50% Emax 
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Highlights 

 

 BNP and NT-proBNP are fast and sensitive biomarkers for diagnosing 
heart failure 

 BNP testing in COPD patients increases the detection of chronic heart 
failure by about 20% 

 BNP and NT-proBNP levels may be elevated in patients with COPD 
without a history of heart failure  

 Ex vivo studies documented a BNP bronchorelaxant and 
bronchoprotective effect in human airways 

 BNP induces a physiologic autocrine loop at the level of bronchial wall 
and is a potential drug for COPD 


