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Distinct clinical syndromes have been associated with path-
ogenicMT-ATP6 variants. In this cohort study, we identified
125 individuals (60 families) including 88 clinically affected
individuals and 37 asymptomatic carriers. Thirty-one indi-
viduals presented with Leigh syndrome and 7 with neurop-
athy ataxia retinitis pigmentosa. The remaining 50 patients
presented with variable nonsyndromic features including
ataxia, neuropathy, and learning disability. We confirmed
maternal inheritance in 39 families and demonstrated that
tissue segregation patterns and phenotypic threshold are
variant dependent. Our findings suggest that MT-ATP6–
related mitochondrial DNA disease is best conceptualized

as a mitochondrial disease spectrum disorder and should
be routinely included in genetic ataxia and neuropathy
gene panels.
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Mutations in MT-ATP6 are a recognized cause of
maternally inherited mitochondrial DNA disease.

Established syndromes of MT-ATP6–related mitochondrial
disease include Leigh syndrome (LS),1 and the syndrome of
neuropathy, ataxia, and retinitis pigmentosa (NARP).2 Other
presentations associated with MT-ATP6 mutations include a
Charcot-Marie-Tooth (CMT) disease–like pure peripheral
neuropathy3 and spinocerebellar ataxia (SCA) with upper
motor neuron signs.4 However, the relative frequency of vari-
ous presentations and features most suggestive of MT-ATP6
disease remains unclear. To elucidate the genotype–phenotype
correlate of MT-ATP6–related mitochondrial disease and
associations with the underlying mutations, we sought to
characterize MT-ATP6–associated mitochondrial disease in a
well-characterized, large mitochondrial disease patient cohort.
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Patients and Methods
Subjects
Inclusion Criteria. Subjects harboring pathogenic MT-ATP6
variants were identified from the National Health Service
(NHS) Highly Specialised Service for Rare Mitochondrial Dis-
orders (Newcastle, Oxford, and London, United Kingdom)
and from the UK Mitochondrial Disease Patient Cohort
(REC: 13/NE/0326) between January 2009 and June 2018.
Diagnostic criteria used for LS was described elsewhere.5,6

Carrier testing was offered to all maternal family members fol-
lowing genetic confirmation in the proband, and they were
assigned as asymptomatic if the clinical assessment was nor-
mal. A standardized pro forma was used to capture clinical,
radiological, neurophysiological, and molecular genetic data.

Exclusion Criteria. Previously unreported novel variants with
unknown clinical significance were excluded from this study.

This study was approved and performed under the ethi-
cal guidelines and Declaration of Helsinki. Written informed
consent for genetic testing was obtained from all participants.

Molecular Genetics and Measurement of Mutant
Heteroplasmy
MT-ATP6 and MT-ATP8 genes were screened by direct
sequencing of polymerase chain reaction (PCR)-amplified
products as previously described.7,8 Individual pathogenic
MT-ATP6 variants were screened either by quantitative
pyrosequencing or by fluorescent restriction fragment
length polymorphism analysis, which permitted the quan-
titation of mtDNA heteroplasmy at the relevant nucleo-
tide to a level of >3% heteroplasmy.9,10

Statistical Analysis
Descriptive statistical analysis was performed using Minitab
(version 17.0; Minitab, State College, PA), SPSS (version
23.0; IBM, Armonk, NY), and R (version 3.5, R Foundation
for Statistical Computing, Vienna, Austria). Nonparametric
tests were performed to determine if there was any statistically
significant difference between the different groups. The statis-
tical significance was determined at ≤0.05. χ2 tests were per-
formed to compare the proportion of variables between
different categories, and the adjusted p value was reported
where appropriate based on Bonferroni correction. A logistic
progression model was used to evaluate the relationship of
mutant blood heteroplasmy levels and individual risk of man-
ifesting with disease, based on the methods previously
described elsewhere.11–13

RESULTS
Demographic Description
We identified 125 individuals from 60 pedigrees harboring
pathogenicMT-ATP6 variants. These included 88 clinically

symptomatic individuals (39 female; median age at last
follow-up = 26.5 years, range = 0.75–74 years, interquartile
range [IQR] = 33.3 years) and 37 asymptomatic family
members (32 female; median age at last follow-up = 40 years,
range = 10–84 years, IQR = 23 years). Overall, the median
age of disease onset was 3.75 years (range = 0–71 years,
IQR = 16.9 years). Patients with LS had a significantly lower
median age of onset compared to those without LS (1.5 vs
15 years, p < 0.001). Fifteen patients were deceased (median
age = 20.5 years, range = 0.75–74 years, IQR = 26.6 years),
and the survival status of 4 patients was unknown at the
time of analysis.

Spectrum of Clinical Features
Summative analysis of the available clinical data revealed that
the most common clinical examination findings were cerebel-
lar ataxia (60/72), followed by peripheral neuropathy (43/58)
and learning disability (40/62). Mixed upper and lower
motor neuron signs were identified in 34 individuals (34/63).
Thirty-one patients had a clinical phenotype compatible with
LS (31/81), whereas just 7 patients manifested with the com-
plete NARP phenotype. Among the patients who had muscle
strength documented, distal neurogenic weakness was the
most common pattern (13/53), closely followed by proximal
neurogenic weakness (11/53). A mixed pattern of neurogenic
muscle weakness was evident in 6 individuals (6/53), and the
remaining patients had normal muscle power. Seizures were
noted in 19 individuals (19/84), whereas dystonia was docu-
mented in 10 patients (10/81). The prevalence of clinical fea-
tures and findings in patients harboring the 5 most common
MT-ATP6mutations are presented in the Table.

Acute metabolic and physical decompensation during
intercurrent illness was documented in 27 patients (27/60).
Four adult patients (m.8993T>C, n = 3; m.9185T>C, n = 1)
experienced episodic, abrupt disease exacerbations in the form
of a sudden Leigh-like crisis with worsening ataxia, and
brainstem signs and symptoms including ophthalmoplegia, dys-
phagia, and cardiorespiratory disturbance, with corresponding
subacute magnetic resonance imaging (MRI) signal abnormali-
ties in the brainstem, thalamus, and cerebellum.

The profile of clinical features was compared between
patients with and without LS (adjusted p value ≤0.003). Epi-
sodic metabolic decompensation (21/23 vs 6/36, p < 0.001),
learning disability (18/19 vs 21/39, p = 0.002), and basal
ganglia lesions (19/23 vs 5/30, p < 0.001) were significantly
more common in patients with LS compared to those with-
out LS. However, other clinical features such as neuropathy
(11/15 vs 31/42, p = 1), ataxia (18/21 vs 36/45, p = 0.738),
retinitis pigmentosa (RP) (5/15 vs 11/43, p = 0.738), seizures
(10/31 vs 6/49, p = 0.044), and bulbar symptoms (11/13 vs
16/28, p = 0.156) were similarly present in both groups.
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Neuroimaging Changes
MRI head data were available for analysis in 53 clinically
affected individuals. Symmetrical basal ganglia lesions and
brainstem signal abnormalities were identified in 23 patients
and 8 patients, respectively; 5 patients who did not fulfil the
diagnostic criteria of LS had signal changes in the basal gang-
lia. Global cerebellar atrophy was identified in 24 patients.

Strokelike lesions involving the occipital lobe and cerebellar
cortex were identified in 1 patient.

Molecular Genetics
We identified 9 previously reported pathogenic variants in
our cohort of patients. The most common point mutation
was m.8993T>C (27%), followed by m.8993T>G (25%),

TABLE. Clinical Features and Findings Associated with the Five Most Common Pathogenic MT-ATP6 Variants

m.8993T>C m.8993T>G m.9035T>C m.9176T>C m.9185T>C

Demographic data

No. of patients 24 22 8 11 18

F/M 10/14 8/14 5/3 6/5 7/11

No. of pedigrees 20 19 3 5 9

No. of deceased 4 5 1 2 3

Median age, yr
(range, IQR)

27.5 (3–74, 38.8) 30 (0.75–59, 39) 24 (10–48, 23) 15.5 (2–49, 19.5) 25 (19–54, 29)

Median age of onset,
yr (range, IQR)

5.5 (0.5–71, 22.3) 2 (0–34, 11.1) 10 (3–19, 15.3) 1 (1–32, 3.9) 6 (2–15, 8)

Clinical findings

LS 8/23 11/17 2/8 6/11 3/18

UMN signs 9/20 10/14 4/8 6/10 10/16

Learning disability 14/18 6/8 5/7 5/9 9/16

Seizures 6/22 9/20 0/8 3/8 0/18

Dystonia 3/24 3/20 1/8 3/10 0/17

Ataxia 20/22 10/11 8/8 6/10 12/17

Neuropathya 15/17 4/6 3/7 5/10 14/14

Pes cavus 9/22 1/12 2/3 4/11 7/12

RPb 3/18 12/13 2/7 1/9 0/13

Cardiac 2/17 3/9 0/4 2/8 0/11

DM 0/22 1/14 0/6 1/11 1/11

MRI head changes

Cerebellar atrophy 9/14 7/13 4/7 1/8 5/10

BG changes 8/14 8/13 1/7 3/8 3/10

Brainstem 5/14 0/13 1/7 2/8 0/7

Denominator values vary due to missing data.
aReports of the nerve conduction studies were available for 26 patients. The most common finding was axonal, sensory-motor neuropathy (23/26),
followed by mixed axonal and demyelinating neuropathy (2/26), and only a single patient with the m.8993T>C variant had demyelinating
neuropathy.
bχ2 test (Bonferroni correction; p ≤ 0.006) showed a higher proportion of patients with the m.8993T>G mutation had RP compared to patients har-
boring either the m.8993T>C (92% vs 17%, p < 0.001) or m.9176T>C (92% vs 11%, p = 0.001) variants.
BG = basal ganglia; DM = diabetes mellitus; F = female; IQR = interquartile range; LS = Leigh syndrome; M = male; MRI = magnetic resonance imag-
ing; RP = retinitis pigmentosa; UMN = upper motor neuron sign defined as the presence of pathological brisk reflexes and/or positive Babinski sign.
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m.9185T>C (20%), m.9176T>C (13%), and m.9035T>C
(9%). We were able to establish maternal transmission in
68 patients (77%, 39 families) and that the mutation likely
arose de novo in 3 patients (3%). Maternal DNA samples
were not available in 17 patients (20%).

The age of onset and pathogenic mtDNA heter-
oplasmy levels in blood were compared across different path-
ogenic variants, as shown in Figure 1A and B. The
variability in the mutant heteroplasmy level between differ-
ent tissues (blood, urinary epithelial cells, and buccal muco-
sal cells) was typically <10% in MT-ATP6 variants (Fig 1C)
except in m.8839G>C (26%, 76%, and 58% in blood,
urine, and buccal samples, respectively), m.9032T>C (25%,
59%, and 96% in blood, urine, and muscle, respectively),

and m.9134A>G (43% and 90% in blood and urine,
respectively).

Risk of Disease Manifestation and mtDNA
Heteroplasmy Level
Our logistic regression analysis for the 4 common pathogenic
variants was performed and showed that the m.8993T>G was
associated with the lowest clinical expression threshold
followed by the m.8993T>C, m.9185T>C, and m.9176T>C
variants (Fig 2). The 95% confidence interval was not con-
structed individually for these variants due to the limited
number of patients.

Discussion
A recent review of 218 previously reported cases of 19 patho-
genic MT-ATP6 variants highlighted the marked variations
in the biochemical defect and phenotypic heterogeneity.14

This study showed the correlation between pooled patho-
genic heteroplasmy and disease onset and severity. However,
only 1 of the 14 new cases reported by Ganetzky et al had a
confirmed pathogenic variant according to the American Col-
lege of Medical Genetics criteria, illustrating the difficulties
posed in confirming novel genetic diagnoses of mtDNA dis-
ease.14 Although some of our findings are aligned to those of
Ganetzky et al, there are important additional aspects to our
study that allow us to be more authoritative in our conclu-
sions. These include the study design (a national cohort study
with standardized clinical evaluation in 3 major referral

FIGURE 1: Molecular genetic data. (A) Individual dot plot
showing the age of disease onset in patients harboring
5 common MT-ATP6 pathogenic variants. Grey circles
represent individual patient data, the red squares represent
the median blood heteroplasmy level for LS, and the blue
triangles indicate the median blood heteroplasmy level for
non-LS. *p < 0.05 (Wilcoxon test). (B) Individual dot plot
showing the variations in blood mutant heteroplasmy levels
in 3 phenotypic categories (asymptomatic carriers, LS, and
non-LS) and MT-ATP6 pathogenic variants. Grey circles
represent individual patient data, green circles represent the
median blood heteroplasmy level in asymptomatic carriers,
the red squares represent the median blood heteroplasmy
level for LS, and the blue triangles indicate the median blood
heteroplasmy level for non-LS. *p < 0.05 (Wilcoxon test). We
have examined the correlation of mutant heteroplasmy level
and age of disease onset for each of the common MT-ATP6
pathogenic variants. There is no statistical significant
correlation identified in any variants. (C) Individual dot plot
showing the difference in mutant heteroplasmy levels across
different MT-ATP6 variants. Grey circles represent individual
patient data, and the blue triangles indicate the median
difference of heteroplasmy level. B-Bu = difference in the
heteroplasmy level between blood and buccal samples;
B-M = difference in the heteroplasmy level between blood
and muscle samples; B-U = difference in the heteroplasmy
level between blood and urine samples; LS = Leigh syndrome.
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centers), a detailed description of the neurological features
(rather than a simple syndromic classification), and the novel
findings of tissue segregation patterns and variant-dependent
phenotypic threshold.

In this national cohort study, we observed a continuum
of clinical features in the MT-ATP6–related mitochondrial
disease. Cerebellar ataxia and axonal neuropathy were the
most common features among these patients, often associated
with some degree of learning disability. We identified that
patients with LS may also exhibit overlapping features of
NARP. Despite these common characteristics, we observed
some emerging patterns associated with specific MT-ATP6
mutations. RP was most prevalent in m.8993T>G-related
mitochondrial disease compared to other MT-ATP6 variants;
however, RP was only clinically identified in less than a third
of all patients. All patients with the m.9185T>C mutation
manifested with predominantly axonal, sensory-motor neu-
ropathy, but none had RP, dystonia, or seizures.

The peculiarities of mitochondrial genetics, namely het-
eroplasmy and threshold effect, are eloquently demonstrated in
this cohort of patients.15 Our results demonstrate that pheno-
typic expression of the m.8993T>G mutation appears to have
the lowest threshold level compared to other MT-ATP6 vari-
ants. Leigh syndrome appears to manifest at a high threshold
level (≥90%), whereas other clinical phenotypes are associated
with a lower mutant heteroplasmy, consistent with a previous
observation.16 Several other MT-ATP6 pathogenic variants,
including m.9035T>C, m.9176T>C, and m.9185T>C, are
associated with a very high phenotypic threshold level (>90%).
One of the most interesting findings is that once such thresh-
old levels are breached, it is not possible to predict the clinical

phenotype and disease severity based solely on the mutant het-
eroplasmy level. Moreover, the mutant loads of m.8993T>C,
m.8993T>G, and m.9185T>C overlap in some patients with
nonsyndromic neurological manifestation and in asymptom-
atic individuals. These findings have important implications
not only for presymptomatic carrier testing but also discussion
around reproductive options.17

Interestingly, of the 27 patients who experienced epi-
sodes of (sub-)acute deterioration of their functional status
during a febrile illness, 4 adult patients did not have a pre-
existing diagnosis of LS yet experienced severe brainstem
disturbance. These serious neurological sequelae emphasize
the need for early recognition of potential life-threatening
complications and instigation of timely supportive care,
irrespective of the prevailing initial clinical phenotype. Our
results also demonstrate that strokelike episodes are rare in
MT-ATP6 mutations, corroborated with the observation of
a smaller case series.16

There are several diagnostic caveats associated with
MT-ATP6–related mitochondrial disease compared to other
common mtDNA mutations. Chronic progressive external
ophthalmoplegia and systemic involvements, such as diabetes
mellitus and cardiac abnormalities, are uncommon in
MT-ATP6 variants compared to other mtDNA muta-
tions.18,19 Moreover, histochemical analysis of muscle biopsy
and conventional respiratory chain analysis (complex I-IV)
are usually unremarkable in patients with pathogenic MT-
ATP6 mutations, imposing the diagnostic challenge of vali-
dating the pathogenicity of rare or novel variants in clinical
practice.14 On the other hand, the clinical presentation of
common pathogenic MT-ATP6 variants may overlap with
other hereditary conditions such as CMT or SCA.4,5

In conclusion, we suggest that MT-ATP6–related
mtDNA disease is best defined as a mitochondrial disease
spectrum disorder that includes core clinical features of cere-
bellar ataxia, peripheral neuropathy, and learning disability,
with or without a Leigh-like phenotype. Our findings high-
light the importance of includingMT-ATP6 gene sequencing
in the gene panels of spinocerebellar ataxia and hereditary
neuropathy. Moreover, the patterns of tissue segregation and
variability in the phenotypic threshold have important impli-
cations for the genetic counseling and risk prediction of dis-
ease development.
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