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Calibration Results for Incomplete

Preferences∗
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June 27, 2019

Abstract

in this work we demonstrate that incomplete expected utility pref-
erences are susceptible to criticism similar to that addressed at their
complete analogues: even a modest degree of risk aversion in the small
is sufficient to imply extreme and unreasonable degree of risk aver-
sion in the large. Our results thus shed doubt on the usefulness of
incomplete expected utility preferences for practical and theoretical
purposes.
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1 Introduction

Rabin [2] showed that what seems to be like a reasonable behavior by an
expected utility maximizer with respect to small lotteries necessarily implies
very unreasonable reaction to large lotteries. For example, a rejection of a the
lottery (−100, 1

2
; 110, 1

2
) at all wealth levels below 300,000 implies a rejection

of the lottery (−4000, 1
2
; 6 · 107, 1

2
). These results were obtained under the
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assumption that preferences are complete: for every two lotteries X and Y ,
either X � Y or Y � X. Several leading researchers find the assumption that
preferences of decision makers are complete to be questionable. Among them
are von-Neumann and Morgenstern [7], Aumann [1], and Schmeidler [4, 5, 6].
For example, Schmeidler [6] wrote “out of the seven axioms listed here the
completeness of the preferences seems to me the most restrictive and most
imposing assumption” and, in one of his earliest works (Schmeidler [4]) he
proved the existence of competitive equilibria in markets with (continuum
of) agents with incomplete preferences. In another paper [5] he showed the
importance of continuity assumptions in dealing with incomplete preferences.
Our aim in this paper is to extend Rabin’s results to the case of incomplete
preferences.

Consider a committee of k decision makers, making decisions by a una-
nimity rule, where choices between alternatives are made only if all members
are in agreement, as otherwise the committee makes no decision. We investi-
gate the plausibility of the assumption that all the members of this committee
are expected utility maximizers. Similarly to the case of complete individ-
ual preferences we show that even having a minimal degree of group risk
aversion or inconclusiveness implies unreasonable behavior on the part of the
committee. That is, a uniform rejection of a small gamble implies rejection
of extremely attractive (big) gambles. Similarly, a uniform non-acceptance
of a small gamble implies non-acceptance of extremely attractive gambles.
We also demonstrate that similar results hold if the uniform rejection (non-
acceptance) is restricted to an interval.

This demostrates that the limitations of the expected utility model in
the case of complete preferences extend to incomplete preferences, and hence
this model loses some of its attrctiveness. Whether or not these limitations
apply to incomplete non expected utility preferences is beyond the scope of
the current project, but we suspect that the more general results of Safra and
Segal [3] can be extended to cover incomplete non-EU preferences as well.

2 Incomplete Expected Utility preferences

Let L be a space of finite lotteries, let �1, . . . ,�k be a collection of k complete
expected utility preferences over it and assume that the preferences � of the
decision maker satisfy X � Y ⇐⇒ ∀i, X �i Y . Let ui be a vNM utility
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associated with �i. Then

X � Y ⇐⇒ ∀i, E[ui (X)] > E[ui (Y )] (1)

We assume that all preferences are risk averse, hence all ui are concave.
Suppose that for all w, the decision maker prefers δw to the lottery (w −
`, 1

2
; w + g, 1

2
). By definition, this happens iff for all i, δw �i (w − `, 1

2
; w +

g, 1
2
). From Rabin [2] we know that such preferences may lead to implausible

rejections of very attractive large lotteries. By definition, so does the decision
maker.

The requirement that this rejection occurs at all wealth levels is strong,
but as shown by Rabin, similar results can be obtained even if the rejection
of the small lotteries is restricted to a bounded domain.

Definition 1 The list {w, [a, b], X,X} is a Rabin-type paradox if a rejection
of the lottery X at all wealth levels between a and b implies a rejection of
the lottery X at the wealth level w.

Example 1 The first example is taken from Table 2 in Rabin [2]. The second
is from Table 1 in Safra and Segal [3].

• w = 290,000, a = 0, b = 300,000, X = (−100, 1
2
; 110, 1

2
), X =

(−1,000, 1
2
; 718,190, 1

2
)

• w = a = 80,000, b = 120,000, X = (−100, 1
2
; 105, 1

2
), X = (−5,035, 1

2
;

107, 1
2
)

Conclusion 1 If {w, [a, b], X,X} is a Rabin-type paradox for u1, . . . , uk,
then it is also a Rabin-type paradox for a decsion maker with preferences
as in eq. (1).

This conclusion connects reasonable rejections of small lotteries with
unreasonable rejections of extremely attractive large lotteries. But what
happens if a decision maker with incomplete preferences cannot determine
whether to accept or reject a certain small lottery? As we show next, such
inconclusiveness will lead to inconclusiveness with respect to very attractive
large lotteries.

Suppose that we observe that for a certain ` and g and for all w ∈
I = [a, b], the decision maker cannot determine preferences between δw and
(w − `, 1

2
;w + g, 1

2
). For each such w there must therefore be i and j such
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that δw �i (w − `, 1
2
;w + g, 1

2
) but (w − `, 1

2
;w + g, 1

2
) �j δw. Let Ii = {w ∈

I : δw �i (w − `, 1
2
;w + g, 1

2
) and observe that I = ∪iIi.

Consider a pair L,G, where G is “large.” The decision maker with wealth
level a will not accept the lottery (−L, 1

2
;G, 1

2
) iff at least one of the prefer-

ences �i rejects it. In other words, if there exists i such that

ui(a) > 1
2
ui(a− L) + 1

2
ui(a+G) (2)

Assume wlg that for all i, ui(a) = 0, u′i(a−) := lim
x↑a

= 1. The maximal

value of u(a − L) is therefore −L. For a given G, inequality (2) is satisfied
for some i if L > mini{ui(a+G)}.

Given si := ui(b + g) and ti := u′i(b + g), define the linear (risk averse)
continuation ũi of ui at b+g such that for x > b+g, ũi(x) = si+ ti(x−b−g).
Inequality (2) is thus satified if

L > min
i
{si + ti(G− b− g)} (3)

Assume for simplicity that (b+ g)− (a− `) = kM(`+ g) for some integer
M and let wm = a + m(` + g), m = 0, . . . , kM − 1. Consider the sets
J = {wm}kM−1m=0 and Ji = Ii∩J , i = 1, . . . , k. We assume that the incomplete
preferences � cannot accept (w − `, 1

2
;w + g, 1

2
) at all w ∈ [a, b], and in

particular they cannot accept this lottery at all w ∈ J . For every m there is
therefore (at least one) i such that δwm �i (wm − `, 12 ;wm + g, 1

2
). As proved

by Rabin [2], for this i and m

u′i(wm + g) 6 `
g
u′i(wm − `)

Moreover, if person i has such preferences at ri points of J , then

u′i(b+ g) 6
(

`
g

)ri
u′i(a− `)

To assure non acceptance, we need to work with the worst-case scenario,
in which a combination of the minimum of ui(b+ g) and u′i(b+ g) is as high
as possible. A necessary condition for that is that at each point of J only one
of the preferences �i will reject the lottery (−`, 1

2
; g, 1

2
). By the definition of

the partition of J1, . . . , Jk of J ,

Ji = {wm ∈ J : wm �i (wm − `, 12 ;wm + g, 1
2
)}
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Denote the elements of Ji by w1
i < . . . < wmi

i . To increase the values of
si and ti under the assumption that all the functions ui are concave we’ll
assume that between wr

i and wr+1
i the function ui is linear.

Suppose that at b + g, the derivative (from the right) of ũi is greater
than that of ũj (in our notation: ti > tj). Whatever are the values of the
corresponding functions at b + g (si and sj), ũi will become larger than ũj.
To increase the minimum of these values we will thus require that all the
slopes of the continuations are the same, that is, t1 = . . . = tk. And since at
a the derivatives of all the functions ui are the same and since at each point
of Ji the derivative is multiplied by no more than `

g
, we can restrict attention

to the case in which |J1| = . . . = |Jk| = M and therefore

t1 = . . . = tk =
(

`
g

)M
In order to make sure that inequality (2) is satisfied, we therefore need to

find a partition of J into k sets of M points such that the minimal value of
{s1, . . . , sk} will be as high as possible. Denote this value s∗. We now offer
several upper bounds for this value.

Given the points w1
i , . . . , w

M
i , the function ui is bounded from above by

the piecewise linear function vi, given by

vi(x) =



x− a x 6 w1
i

vi(w
1
i ) + `

g
(x− w1

i ) x ∈ [w1
i , w

2
i ]

. . .

vi(w
j
i ) +

(
`
g

)j
g(x− wj

i ) x ∈ [wj
i , w

j+1
i ]

. . .

vi(w
M
i ) +

(
`
g

)M
g(x− wj

i ) x ∈ [wM
i , g + b]

(4)

The highest possible value of such a function at b+ g is when Ji = {a+ (k−
1)M(`+ g), . . . , a+ (kM − 1)(`+ g) = b} and

si = ui(g + b) 6 [(k − 1)M − 1](g + `) +
M−1∑
m=1

(
`
g

)m
(g + `) +

(
`
g

)M
g

As this is the highest possible value any si may reach, the highest possible
value of s∗, the minimum of {s1, . . . , sk}, cannot be higher.

We now show that for k = 2 a much better upper bound for s∗ can be
obtained. Let J∗1 , J

∗
2 be a partition for which s∗ is obtained.
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Claim 1 Given the partition J∗1 , J
∗
2 , |s1 − s2| < 2(`+ g).

Proof: Suppose wlg that s∗ = s1 6 s2 − 2(` + g). There are m ∈ J1 and
m + 1 ∈ J2, otherwise, by eq. (4), s1 > s2. Let J ′1 = J1 ∪ {m + 1} \ {m}
and J ′2 = J2 ∪ {m} \ {m + 1} with the corresponding s′1 and s′2. Then
s1 < s′1 6 s1 + ` + g and s2 > s′2 > s2 − (` + g). But then the partition
(J ′1, J

′
2) creates a higher minimal value for {s1, s2}, a contradiction. �

It is easy to see that the highest possible sum of the values of s1 and s2
is obtained when J1 = {0, . . . ,M − 1} and J2 = {M, . . . , 2M − 1}. In that
case, by eq. (4),

s̄ := s1 + s2 6 (`+ g)
M−1∑
r=1

(
`
g

)r
+ [M(`+ g) + g]

(
`
g

)M
+

M(`+ g) + (`+ g)
M−1∑
r=1

(
`
g

)r
+ `
(

`
g

)M
By claim 1, the higest possible value of the maximum of the s-values of the
two agents cannot exceed s̄/2 + `+ g, which is therefore an upper bound for
s∗.

3 Calculations

In this section we offer some calculations bassed on the above analysis. These
numbers prove that Rabin’s argument, namely that reasonable risk aversion
in the small leads to extreme level of risk aversion with respect to large
lotteries, carries over to incomplete preferences.

Consider the case k = 2. As before, let u1(a) = u2(a) = 0 and u′1(a−) =
u′2(a−) = 1. At the point C := a + (2M − 1)(` + g) + `, the derivates from

the right of both u1 and u2 are
(

`
g

)M
, and the minimum of the two cannot
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be higher than

B := 1
2

[
(`+ g)

M−1∑
r=1

(
`
g

)r
+ [M(`+ g) + g]

(
`
g

)M
+

M(`+ g) + (`+ g)
M−1∑
r=1

(
`
g

)r
+ `
(

`
g

)M]
+ `+ g =

(`+ g)

(
M−1∑
r=0

(
`
g

)r
+ 1

2

[
(M + 1)

(
`
g

)M
+M

])
Therefore, at G > C, at least one of the two functions cannot exceed B +

(G−C)
(

`
g

)M
. For a given L, the decision maker will not accept the lottery

(−L, 1− p;G, p) if −(1− p)L+ p

[
B + (G− C)

(
`
g

)M]
6 0, that is, if

G 6 C +
[(

1−p
p

)
L−B

]/(
`
g

)M
The following tables show the critical values of G for ` = 100 and some

values of g, M , L, and p. For example, in the first table, if the decision maker
does not accept the lottery (−100, 1

2
; 110, 1

2
) at all wealth levels between his

curent wealth level w and w + 8400, then he will not accept a lottery in
which there is a 99.9% chance of losing $200 and a one-in-a-thoudand chance
of winning over 1.3 million dollar. The second table suggests that if the
decision maker does not accept the lottery (−100, 1

2
; 105, 1

2
) at all wealth

levels between his curent wealth level w and w + 41, 000, then he will not
accept a lottery in which there is a 99% chance of losing $1000 and a 1%
chance of winning over 11 million dollar.

M = 20, p = 0.001

L\g $101 $105 $110 $125
$100 120,803 258,450 650,804 8,379,847
$200 242,700 523,515 1,322,881 17,044,790
$500 608,391 1,318,708 3,339,113 43,039,622

$1,000 1,217,876 2,644,030 6,699,499 86,364,341
$5,000 6,093,755 13,246,608 33,582,589 4.3×108

$10,000 12,188,604 26,499,830 67,186,451 8.7×108
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M = 100, p = 0.01

L\g $101 $105 $110 $125
$200 724,572 96,360,075 3.6×1013

$500 102,044 4,630,159 5.1×108 1.8×1014

$1,000 235,932 11,139,471 1.2×109 4.3×1014

$5,000 1,307,039 63,213,969 6.6×109 2.4×1015

$10,000 2,645,921 1.3×108 1.4×1010 4.8×1015

M = 200, p = 0.1

L\g $101 $105 $110 $125
$5,000 114,046 3.5×108 4.1×1012 5.2×1023

$10,000 443,267 1.1×109 1.3×1013 1.6×1024

4 Concluding Remarks

Rabin [2] showed that within the expected utility model, a seemingly reason-
able degree of risk aversion with respect to small lotteries implies a rejection
of what seems to be extremely attractive large lotteries. Safra and Segal [3]
showed that these results hold for all “well-behave” extensions of expected
utility, and moreover, they provided much stronger numerical analysis.

When a decision maker has incomplete preferences, his statement “I can-
not determine which of the two options is better” indicates that none of the
options can be deemed inferior to the other. One would expect therefore that
a statement like “I can’t tell whether I prefer w or (w − `, 1

2
;w + g, 1

2
)” will

indicate a lesser degree or risk aversion than an outright preferences for the
sure outcome. Yet even this small degree of risk aversion is sufficient to imply
non-acceptance of lotteries that should obviously be accepted. Similarly to
Rabin’s [2] and Safra and Segal’s [3] criticism of using one set of complete
preferences for the analysis of decision under risk, our results cast doubt on
the reality of using incomplete preferences for these purposes.
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