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Abstract. The novel technique of dynamical mode decomposition (DMD) is applied

to the outputs of a numerical simulation of Kelvin-Helmholtz turbulence in a cylindical

plasma, so as to capture and quantify the time evolution of the dominant nonlinear

structures. Empirically, these structures comprise rotationally symmetric deformations

together with spiral patterns, and they are found to be identified as the main modes

of the DMD. A new method to calculate the time evolution of DMD mode amplitudes

is proposed, based on convolution-type correlation integrals, and then applied to the

simulation outputs in a limit cycle regime. The resulting time traces capture the

essential physics far better than Fourier techniques applied to the same data.

1. Introduction

Strongly nonlinear phenomena are ubiquitous in plasma physics, both in experimental

measurements and in the outputs from numerical simulations. The nonlinear
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phenomenology may be temporally transient [1, 2] or sustained [3], spatially localised

[4] or global [5]. Identifying the dominant dynamical features and their interactions,

and quantifying their time evolution, is therefore a central task. Fourier decomposition

has major limitations in this context, because the empirically identified key structures

are localised with a finite extent, and therefore require a very large number of Fourier

modes to represent them.

Here we consider the application of dynamical mode decomposition (DMD) [6, 7, 8]

to this problem. DMD is attractive, in that it: assumes no functional form for the

structures; is entirely data-driven, see Eq. (1) below; and is mathematically linear -

mode identification and growth rates reduce to an eigenvector-eigenvalue procedure.

When the time evolution of the mode amplitude is modulated, as in most cases of

turbulence, the single DMD derived growth rate is insufficient to capture the dynamics.

Here we therefore propose and develop a method to extract the modulation dynamics

from the outputs of the DMD technique, as applied to a simulation of turbulence in a

cylindrical plasma.

2. Extraction of nonlinear dynamics

The turbulence dataset is obtained from a direct numerical simulation, based on

an extension of the Hasega-Wakatani reduced fluid model which includes ion-neutral

collisions and electron parallel velocity evolution [9, 10]. Turbulent and nonlinear

phenomena can be simulated, such as those arising from resistive drift waves and the

Kelvin-Helmholtz (KH) instability in linear devices [11, 12]. The turbulence addressed

here originates from the KH instability for the plasma parameters in MISTRAL [12]. Its

phenomenology includes a limit cycle oscillation between the background plasma and

turbulent fluctuations; for more detail, see [13]. The time evolution of the energy of

each Fourier mode in a saturated state, and the two-dimensional patterns of the density

at t = 3050, 3150 and 3200, are shown in Fig. 1, where time t is normalized by the ion

gyrofrequency. The energies (squared amplitudes) of the background and the turbulence

are modulated in time: the period of the limit cycle, TLCO ∼ 100, which is much longer

than the timescale of turbulent oscillation, Tturb = O(10). The computational time-step

is much smaller, δt = 2× 10−2. The spatial pattern in Fig. 1 changes on the timescale

TLCO. Let us now apply the DMD to the underlying dataset, and then propose and

develop a novel method to extract the modulation dynamics.

We represent the system at time t by an array (state vector) X =

X(r1, r2, · · · |t1, t2, · · ·), which is a matrix recording the value of the set of simulation

outputs X (for example, density) at each point rj and at each time tj. The system

transits to the state X′ = X(r1, r2, · · · |t1 + ∆t, t2 + ∆t, · · ·), where ∆t is the unit of

time resolution chosen for DMD analysis. Here ∆t = 5, which is large enough to reduce

the computational cost, while remaining sufficient to resolve the turbulence evolution.

In the DMD approach, we focus on the properties of the matrix A which generates the
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Figure 1. Top: Time evolution of the energy (logarithmic scale) in each cylindrical

Fourier mode (m,n) of the simulation in its saturated phase, for integer 0 < m < 9

and n = 0. Here m and n denote axial and azimuthal mode numbers. The background

corresponds to the mode (0, 0). Quasiperiodic energy flows are evident, and the flow

into higher m-numbers indicates the formation of sharper spatial gradients associated

with nonlinear structures at those times. Bottom: Full two-dimensional spatial

patterns of the density from the direct numerical simulation at t = 3050, 3150 and

3200.

mapping

X′ = AX. (1)

Whereas X and X′ comprise datasets, A is taken to embody the physical dynamics

of, in the present case, Kelvin-Helmoltz plasma turbulence. The challenge is, first, to

reduce the rank of A to manageable level using singular value decomposition (SVD) [14],

and then to identify the dominant eigenvalues and eigenvectors of A. The eigenvectors

Ψ are the DMD modes: they correspond to the dominant nonlinear spatial structures,

and represent their action in the time evolution of the data. The details of the DMD

approach are summarized in the Appendix. In outline, mathematically,

Ψ = X′VrΣ
−1
r ξ. (2)

Here, the matrices V and Σ are obtained from the SVD of X, and satisfy X = UΣV ∗;

U and V are unitary matrices, and Σ is the diagonal matrix consisting of the singular

values of X. The subscript r indicates the matrix is truncated to the rank r. ξ is

the eigenvector of U∗
rAUr, which is the projection of A on U . In this way, the key

structures, together with their frequency and growth rate, are simultaneously obtained
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Figure 2. The five dominant eigenvectors, in the form of two-dimensional spatial

patterns, derived from DMD analysis of the simulation outputs. These are the

dominant nonlinear structures, Mode1 to Mode5, discussed in the main text.

by DMD. This approach is model-independent and does not draw on knowledge of the

underlying physical processes. The DMD eigenmodes are typically strongly nonlinear

spatial structures, which would require numerous Fourier modes to represent them, see

Appendix B. Hence, the DMD approach greatly reduces the number of effective degrees

of freedom, compared to a Fourier-based approach.

Figure 2 illustrates the leading DMD modes obtained for the density fluctuation

ñ(r, θ, t) in the turbulence simulation. The singular value for each of the DMD modes,

which represents the importance of the DMD mode for the dynamics of the system,

is calculated from the diagonal component of the matrix Σ. These values are shown

in Fig. 3, which motivates our truncation of the rank r of A at r = 9, for which

the singular value is a factor five below that of Mode1. These DMD modes show the

characteristic spatial structures: Mode1 and Mode2 correspond to the deformation of

the background; Mode3 is the dominant fluctuation pattern; and Mode4 and Mode5 are

the spiral structures, which transiently appear and disappear on the timescale of the

limit cycle oscillation [13]. All the physical structures rotate in the azimuthal direction,

so that each eigenvector has a counterpart complex conjugate pattern. Together, they

represent each rotating mode, and each mode in the pair has the same eigenvalue as

its complex conjugate. The real and imaginary parts of the DMD eigenvalue define the

frequency and growth rate, respectively, of the corresponding DMD mode. However,

when the turbulence is modulated, as in the case of the limit cycle oscillation here, a

single growth rate cannot express the temporal dynamics. Thus, we must now develop

a method to extract how the amplitude of each DMD mode changes with time.

We first propose a method to define the magnitude of each DMD mode. By

calculating the instantaneous correlation coefficient between each DMD mode and the
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Figure 3. Singular values for each of the DMD modes, calculated from the diagonal

component of the matrix Σ.

Figure 4. Top: Time evolution of the correlation coefficient Cj (see Eqs.(3) and (4)),

tracing the changing relative amplitude of the five DMD eigenvectors depicted in Fig.2

in the simulation outputs. Middle: Time evolution of C3 and 5×C4, re-plotted on the

same scale to assist comparison. Bottom: Time evolution of the system plotted in the

(C3, C4) plane, for three successive cycles identified from the upper panel. These closed

Lissajous figures demonstrate the limit cycle dynamics that govern C3 (KH instability)

and C4 (spiral structure) in combination.

full turbulence dataset, the dynamical change of the amplitudes of a DMD mode can

be deduced. This correlation can be estimated from the convolution integral

Fj(r, θ, t) =

∫
ñ(r − r′, θ − θ′, t)Ψ̂j(r

′, θ′)r′dr′dθ′∫
ñ(r′, θ′, t)r′dr′dθ′

. (3)

Here Ψ̂j is the jth DMD mode, normalized such that the two-dimensional spatial integral
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is unity. Recalling that the spatial pattern of the turbulence propagates in the azimuthal

direction, the correlation can be defined as

Cj(t) = max[Fj(r, θ, t)]. (4)

Cj defines an effective amplitude for each DMD mode. The calculated time evolution of

Cj is plotted in Fig. 4 for Mode1 to Mode5. This captures the changing contribution of

each structure to the overall turbulence. The limit cycle between the deformation of the

background and the dominant turbulence, with the appearance and disappearance of

the spiral structure [13], is immediately evident. Mode1 and Mode2, which correspond

to the deformation of the background, show similar time evolution. The time evolution

of Mode3 and Mode4, which correspond to the dominant turbulent fluctuation (KH

instability) and spiral structure, respectively, precedes that of Mode1 and Mode2 by

an interval ∆t ≈ 10; this can be inferred from comparison of the upper and middle

panels of Fig. 4. This implies a causal connection, which arises from how the turbulent

fluctuation changes the background, which is discussed later in more detail. In order to

see the relationship between the fluctuation patterns, the closed cycle Lissajous figures

in the (C3, C4) plane are shown in the lower panel of Fig. 4, which clearly captures

the causal relation between the KH instability and the spiral structure. They increase

together, and then at a critical amplitude of the KH instability, the spiral structure

becomes suddenly stronger, which leads to the suppression of the KH instability. Both

amplitudes then decline to their starting point. Thus, the growth in the amplitude

of the KH instability is constrained, and eventually reversed, by the excitation of the

spiral structure, which itself finally decays. The next circulation on this limit cycle

then commences. The approach presented here, of combining the DMD method and the

correlation integral, Eq. (3), enables one to create an approximation to the attractor

for this strongly nonlinear and turbulent plasma system. We note that the correlation

integral approach introduced here could also be used in the same way for the SVD

[14, 15, 16] and proper orthogonal decomposition (POD) [17] methods. It is also

potentially relevant to experimental imaging techniques such as those exploiting gas

puffing [18, 19, 20], beam emission spectroscopy [21, 22], and visible light tomography

[23, 24].

Finally, we turn to the physics of the system dynamics as inferred from the

behaviour of the DMD modes. Mode3 corresponds to the KH instability, which is

driven by the spatial gradient of the vorticity, ∂2
r ⟨Vθ⟩, where ⟨Vθ⟩ is the background

azimuthal flow. The spiral structure (Mode4) has been identified as the instability

which arises from the combination of the cylindrical effect and the flow inhomogeneity

[13], which is different from the KH instability. Thus, two types of instability coexist in

this system. The system dynamics can be understood by considering the time evolution

of the fluctuations (Mode3 and Mode4) and of the background (Mode1) as follows.

Figure 5 displays the evolution of; (a) these three normalized DMD modes; (b) the

fluctuation-induced momentum flux Πr,θ (for the definition, see Eq. (12) of [13]); and (c)

the background flow. Here, each DMD mode amplitude is normalized by its maximum
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Figure 5. Time evolution of three DMD mode amplitudes, normalized to their peak

values during 3000 < t < 3500. Middle: Radial profiles of the fluctuation-induced

momentum flux Πr,θ defined by Eq. (??). Bottom: Radial profiles of background

deformation, ∂2
r

⟨
Vθ

⟩
.

value attained between t = 3000 and t = 3500, to assist identifying time lags and

causality. Figure 5 (top panel) shows that the peak level of the fluctuations (Mode3

and Mode4) precedes that of the background (Mode1) by an interval ∆t ≈ 10. All

three panels of Fig. 5 show that Mode3 induces a negative momentum flux which

suppresses the vorticity gradient (driving source of KH), and that Mode4 induces a

positive momentum flux which increases the vorticity gradient. Because the momentum

flux Πr,θ sensitively depends on the radial wavenumber, a structure with large kr, such

as the spiral structure, can drive the momentum flux effectively. Thus, although the

amplitude of the spiral structure is not so large (as seen in the top panel of Fig. 4),

the momentum flux driven by the spiral structure can be comparable to that driven by

the KH instability. In this way, the KH instability and the spiral structure couple with

each other through the background flow, and perform their different roles. The balance

between the transport due to the each structure determines the dynamics of the limit

cycle oscillation. Following the time evolution of the DMD modes clearly captures the

contributions of the key structures to the dynamics of the system.
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3. Conclusions

We have shown that the DMD technique, augmented by the correlation integral

approach introduced in Eqs. (3) and (4), has great potential for the quantitative

characterization of turbulent and strongly nonlinear phenomenology in plasmas.

Using this method, we have systematically extracted the time evolution of the

magnitude of each of the dominant, spatially coherent, global nonlinear structures

(Fig. 4, upper), together with their coupled cyclic behaviour (Fig. 4, lower). This

would not be extremely difficult using Fourier mode decomposition. The method

introduced here remains valid, even when the amplitude of the structure changes

drastically on a timescale much longer than the typical fluctuation period; whereas the

conventional DMD method applies on shorter timescales, comparable to the turbulence

period. Hence, by combining conventional DMD with the present method, turbulence

phenomenology that is multi-timescale (from the turbulence timescale to the transport

timescale) can be systematically addressed and quantified.
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Appendix A. A brief summary of dynamical mode decomposition

In the DMD method [6]-[8], the dynamical system is expressed asX(r1, r2, · · · |t1, t2, · · ·),
where rj and tj are the measurement location and time, respectively. So, if one observes

the system with grids that span space with N elements and time with M elements, the

size of the matrix A is N × M . The DMD method assumes that the system can be

described by the linear combination of nonlinear dynamical states, as in Eq. (1), where

the operator A governs the system evolution. The operator A is determined entirely

from the observable data, as

A = X ′X†. (A.1)
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The size of X is usually so large that a reduction of the dataset is necessary. To achieve

this, we use the SVD technique [14]. Formally, we write

X = UΣV ∗,

≈ UrΣrV
∗
r , (A.2)

where the subscript r denotes the r-rank truncation. Here, a general matrix is

decomposed into two unitary matrices, U and V , which are combined with the diagonal

matrix Σ, containing the singular values of the original matrix; Σii ̸= 0,Σij = 0 (i ̸= j)

[14]. It is necessary to construct the matrix Ã, which is the projection of A onto Ur:

Ã = U∗
rAUr

= U∗
rX

′VrΣ
−1
r . (A.3)

The eigenvalue problem for A is then recast as

Ãξ = Λξ. (A.4)

The eigenvalues Λ and eigenvectors ξ of Ã are next obtained from Eq. (A.4). Because

the eigenvalues of A and Ã are the same, the eigenvector of A, Ψ, is given as

Ψ = U ′
rξ = X ′VrΣ

−1
r ξ. (A.5)

The eigenvector Ψ is called the DMD mode. Finally, the time evolution of the system

x(t) is expressed by using DMD modes as

x(t) = ΨeΩtΨ†x(0), (A.6)

where x(0) is the initial condition. We emphasize that this expression can be used

only for the short timescale evolution, comparable to the fluctuation period, and given

monotonic growth or damping. This is because the mode amplitude Ψ†x(0) in Eq. (A.6)

is constant in time. Quantifying the time evolution of the modulated turbulence, where

the amplitude changes dynamically, is therefore difficult using DMD alone; hence the

present paper.

Appendix B. Fourier decomposition of DMD eigenvectors

Figure B1 plots the amplitudes (on a logarithmic scale) of the leading azimuthal Fourier

components of the five DMD eigenvectors displayed in Fig.2. Here the Fourier expansion

is with respect to basis eigenfunctions exp(imθ), where θ is azimuthal angle and, in Fig.

B1, m takes integer values in the range 0 ≤ m ≤ 7. In order to show the spectrum

simply, we have not attempted to calculate Fourier amplitudes for m > 7. Figure B1

shows that all DMD eigenvectors except Mode1 and Mode2 incorporate multiple Fourier

components that contribute to form steep wavefronts in the azimuthal direction. In

contrast, the DMD method can directly extract the key nonlinear structures, which

simplifies the system dynamics.
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Figure B1. Amplitudes, plotted on a logarithmic scale, of the leading poloidal Fourier

components of the five DMD eigenvectors displayed in Fig. 2, for azimuthal mode

number m in the range 0 ≤ m ≤ 7.
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