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Abstract—The interaction of the SH0, SH1, SH2 and SH3 guided wave modes on a 11 

metal plate with a thickness discontinuity is numerically and experimentally investigated. 12 

Two different geometries were evaluated, namely symmetric and non-symmetric 13 

discontinuities, relative to the plate longitudinal mid-plane. Experiments were performed 14 

with periodic permanent magnet array EMATs as transmitters and receivers. Mode 15 

separation in transmission and reception was experimentally and numerically performed 16 

by dual transduction and by modal decomposition post-processing techniques, 17 

respectively. The reflection and transmission coefficients at the discontinuity for each of 18 

the investigated SH modes was calculated. It has been experimentally confirmed that 19 

when interacting with symmetric discontinuities, only modes that share the same 20 

symmetry as the incident mode are created by mode conversion, whereas mode 21 

conversion to modes of different symmetry can occur with non-symmetric discontinuities. 22 

Experimental and numerical data show good agreement, revealing that the higher the 23 

order of the incident mode, the more complex the behaviour of the reflection coefficient 24 

is, as a function of the discontinuity depth. For the same incident mode, symmetric 25 

discontinuities impose less complexity than non-symmetric ones.  26 

Keywords—SH guided waves; mode conversion; PPM EMAT; wall thinning; reflection 27 

and transmission coefficients; symmetric discontinuities.  28 
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1. Introduction 29 

Ultrasonic guided waves are used widely for detecting defects, such as cracks and corrosion, 30 

in plates or pipes [1-4]. Non-destructive defect characterisation by means of ultrasonic guided 31 

waves relies on detecting the forward-scattered or back-scattered field produced by a guided 32 

wave mode that impinges on a defect [5]. Since the scattered field depends on the defect shape 33 

and size [6-8], comprehensive knowledge of the interaction of guided wave modes with defects 34 

is of great interest. Shear Horizontal (SH) waves are a family of guided waves that present in-35 

plane particle motion, perpendicular to the direction of propagation. SH waves present some 36 

advantages, such as no energy leakage to surrounding non-viscous fluids, and they also have 37 

relatively simple dispersion relations compared to other guided wave modes. SH waves can be 38 

generated efficiently and detected in metallic samples with electromagnetic acoustic 39 

transducers (EMAT) [9-11]. 40 

Several authors investigated the interaction of SH guided wave in plates and torsional waves 41 

in pipes with notch and thickness discontinuities, that are commonly used to crudely describe 42 

corrosion-like defects [12-17]. Quantitative analysis is usually performed by calculating the 43 

reflection and transmission coefficient of the scattered waves [6, 12-14, 16-21]. Depending on 44 

the product of frequency and plate thickness, several SH modes can propagate, which can make 45 

interpretation of SH waves complicated. As a result, experiments are often restricted to the so-46 

called low frequency-thickness regime, where only the SH0 mode or the T(0,1) mode, can 47 

propagate, in plates or pipes, respectively [6, 8, 12-14, 16, 18, 21-25]. Demma et al. 48 

investigated the scattering of the SH0 mode from rectangular notches in plates [12], and of the 49 

torsional mode T(0,1) in pipes [13], where both reflection from the notch leading edge and 50 

transmission away from the defect were analysed. The reflection and transmission from step-51 

up and step-down thickness changes at low frequency were well approximated by simply 52 

considering an analogy of the thickness reduction with an acoustic impedance change. Wang 53 
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et al. [24] numerically calculated the reflection and transmission coefficients for the 54 

circumferentially propagating SH0 mode with slots in pipes, that were used to simulate finite 55 

length axial cracks. More realistic defect geometries were also investigated, such as three-56 

dimensional elliptical defects [22], tapered edge defects [6] and irregular shapes [8, 23, 26] and 57 

also overlap joint of plates [25]. 58 

In the high frequency-thickness regime, the interaction of guided waves with defects is more 59 

complicated, since the scattered waves may be composed of several propagating SH modes 60 

due to mode conversion [7, 15, 17, 19, 20]. Nurmalia et al. [7, 15] experimentally analysed the 61 

SH0 and SH1 modes in plates and the T(0,1) and T(0,2) modes in pipes [27] with gradual 62 

thickness reduction sections, showing that the interaction with defects depends on the thickness 63 

reduction rate. Recently, Kubrusly et al. [20] calculated the coefficients for reflection and 64 

transmission, for a large range of wall thinning depths and edge angles in plates, in a frequency-65 

thickness product region where both the SH0 and SH1 were able to propagate. Kubrusly 66 

experimentally proved that mode conversion behaviour is complex, resulting in non-monotonic 67 

reflection and transmission coefficients. In the low frequency-thickness regime, the reflection 68 

and transmission coefficients tend to behave monotonically as a function of the discontinuity 69 

depth [12, 14, 16, 24]. 70 

Most published work considers discontinuities located on one of the surfaces of the plate, 71 

rather than being symmetrically present on both surfaces. Nevertheless, the interaction with 72 

symmetric discontinuities has also attracted the attention of researchers. Pau et al. analysed the 73 

reflection and transmission [16, 17] coefficients for the incident SH0 mode in both the low and 74 

high frequency-thickness regime in a plate with symmetric and non-symmetric notches. An 75 

analytical model was used in order to evaluate the coefficients as a function of the discontinuity 76 

depth and was further compared with finite element simulations. In the low-frequency 77 

thickness regime, no significant difference between the symmetric and non-symmetric 78 
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discontinuities was observed [16, 17], whereas in the high-frequency regime [17] symmetric 79 

and non-symmetric discontinuities behave differently. It was observed that conversion to any 80 

propagating mode is allowed for non-symmetric discontinuities, whereas only symmetric 81 

modes were produced when a symmetric mode interacts with a symmetric discontinuity. Pau 82 

and Achillopoulou [19] extended their analysis for different geometries of the thinner section. 83 

Guided wave interactions with rectangular and elliptic profile notches and voids in the middle 84 

of the plate's cross-section were numerically simulated. Symmetric notches and voids allowed 85 

conversion to symmetric modes only, whereas non-symmetric notches and voids permitted 86 

mode conversion to modes of either symmetry. In both cases, the coefficients depend on the 87 

notch or void depth. Interestingly, for both low and high frequency-thickness cases, symmetric 88 

notches and voids in the middle of the plate present the same coefficient's values, and the 89 

elliptical and the rectangular notches showed similar results. Yan and Yuan [28] numerically 90 

analysed the conversion from the evanescent SH1 mode from either symmetric or non-91 

symmetric apertures, such as a thinner section of a plate, into propagating modes in the full 92 

thickness section. In the former, the evanescent SH1 mode was converted only to the 93 

propagating SH1 mode, whereas in the latter, it was converted to either the propagating SH0 94 

or SH1 modes. 95 

The aforementioned papers show that the characteristics of the scattered waves depend on 96 

whether a discontinuity is symmetric or not; a symmetric mode can only be mode converted to 97 

symmetric modes when interacting with a symmetric discontinuity. However, no experimental 98 

validation was performed and only the propagating symmetric SH0 mode was used as the 99 

incident mode; the interaction of higher-order SH modes with symmetric or non-symmetric 100 

discontinuities was not investigated. It is indeed non-trivial to experimentally quantitative 101 

evaluate such phenomena, due to mode mixing of the several possible propagating modes, 102 

which render interpretation of the received signal complicated. In this paper, we address the 103 
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interaction of the first four SH guided waves modes with thickness reduction discontinuities in 104 

plates in two different shapes, namely non-symmetric and symmetric, in order to analyse the 105 

mode conversion phenomena of symmetric and antisymmetric modes in these cases. Both 106 

experiments and numerical simulation were performed. Quantitative experimental data was 107 

obtained using the dual excitation and reception technique [29], which enables the calculation 108 

of the reflection and transmission coefficients for the discontinuity, considering all mode 109 

conversion possibilities.  110 

2. SH guided waves  111 

Shear horizontal guided waves have vibrational displacement perpendicular to the 112 

propagation direction and parallel to the plate’s surface [30] which is given by: 113 

 𝑢𝑧(𝑥, 𝑦, 𝑡) = 𝐴𝑛𝑈𝑛(𝑦)𝑒𝑗(𝜔𝑡−𝜅𝑛𝑥), (1) 

where  𝑥  is the propagation direction, 𝑦  is the coordinate of the plate thickness, 𝑧  is the 114 

polarization direction, 𝜔 is the angular frequency, 𝑛 is the mode order, 𝜅𝑛, 𝐴𝑛 and 𝑈𝑛(𝑦) are 115 

the wavenumber, amplitude and displacement profile of mode 𝑛, respectively. SH modes are 116 

usually classified as symmetric and antisymmetric according to their displacement profile, 117 

which can be described by: 118 

 𝑈𝑛(𝑦) = cos(𝑛𝜋𝑦 ℎ⁄ + 3𝑛𝜋 2⁄ ), (2) 

where ℎ is the plate thickness. Symmetric modes have equal displacement at both surfaces (𝑦 =119 

± ℎ 2⁄ ), whereas antisymmetric modes have displacement with the same absolute value, but of 120 

opposite sign at each surface. Even-order modes are symmetric, whereas odd-order modes are 121 

antisymmetric. Fig. 1(a) shows the displacement profile for modes SH0 to SH3. Apart from 122 

the fundamental zero-order SH0 mode, all other higher-order modes are dispersive and are only 123 

able to propagate for a frequency-thickness product above a cut-off value. At a fixed frequency, 124 
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higher-order modes cannot propagate if the plate’s thickness is below the cut-off thickness 125 

given by: 126 

 ℎcut-off = 𝑛 𝑐𝑇 2𝑓⁄  , (3) 

where 𝑐𝑇 is the transverse wave speed and 𝑓 is the frequency. For dispersive modes, the phase 127 

and group velocities depend on the frequency. Fig. 1(b) show the dispersion curves of SH 128 

guided wave modes for an 8 mm thick aluminium plate. 129 

 130 

Fig. 1. (a) SH modes displacement profile. Continuous and dashed lines represent symmetric and antisymmetric 131 
modes, respectively. (b) Phase velocity dispersion curves of an 8 mm thick aluminium plate, red lines represent 132 
symmetric modes and blue lines, antisymmetric modes. The dashed lines represent a constant wavelength of 10 133 
mm and 6 mm. The operating region for generation of the SH2 mode, centred at frequency 649 kHz and at 6 mm 134 
wavelength is shown behind the dispersion curves. 135 

 136 

 137 

An ultrasonic wave carries energy whose power density is given by the vector [31]:  138 

 𝒔 = −
1

2
𝒗∗ ⋅ 𝝈  , (4) 
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where 𝒗 is the particle velocity vector, 𝝈 is the stress tensor and the asterisk means complex 139 

conjugate. For an SH guided wave mode, the relevant components of 𝒗 and 𝝈 can be obtained 140 

from Eq. (1), yielding, respectively: 141 

 𝑣𝑧 = 𝑗𝜔𝐴𝑛𝑈𝑛(𝑦)𝑒𝑗(𝜔𝑡−𝜅𝑛𝑥)   , (5) 

 142 

 𝜎𝑥𝑧 = −𝑗𝜇𝜅𝑛𝐴𝑛𝑈𝑛(𝑦)𝑒𝑗(𝜔𝑡−𝜅𝑛𝑥)   . (6) 

where 𝜇 is the second Lamé constant. Therefore, the power density along the propagating 143 

direction for mode n is: 144 

𝑆𝑛 =
1

2
𝜇𝜔𝜅𝑛𝑈𝑛

2(𝑦)|𝐴𝑛|2  , (7) 

and the power per unit width in the plate is given by the integral of 𝑆𝑛 over the plate’s height, 145 

which can be written as  146 

𝑃𝑛 = 𝐸𝑛|𝐴𝑛|2  , (8) 

where 𝐸𝑛 is here called the power level of the mode n, whose value is: 147 

𝐸𝑛 =
1

2
𝜇𝜔𝜅𝑛 ∫ 𝑈𝑛

2(𝑦)𝑑𝑦

ℎ 2⁄

𝑦=−ℎ 2⁄

  . (9) 

SH guided waves can be generated and detected with periodic permanent magnet (PPM) 148 

array EMATs, which consist of an array of magnets with an elongated spiral or “racetrack” coil 149 

underneath the PPM array [9, 10, 32]. The spacing or pitch of the magnets in the PPM EMATs 150 

imposes a nominal wavelength on the generated waves. Fig. 1(b) shows the nominal 151 

wavelength of a 10 mm and a 6 mm probe (straight dashed lines), superposed on the dispersion 152 

curves of the SH modes. The optimum excitation of a particular mode is achieved at the 153 

frequency where the wavelength line crosses the dispersion curve of this mode. Table I shows 154 
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the optimum excitation frequency to generate SH modes, from order 0 to 3, used in this paper. 155 

However, due to the finite number of magnets in the array, the EMAT has a finite wavelength 156 

bandwidth of waves that can be excited [9]. Similarly, the excitation electric current applied to 157 

the coil produces a temporal bandwidth. The intersection of both bandwidths defines a region 158 

of operation, in which SH waves can be generated or received [3, 20, 29]. As an example, Fig. 159 

1(b) shows the operating region for generating the SH2 mode, with a 3 cycle, 6 mm wavelength 160 

probe, using an 8 cycle tone burst at 649 kHz, which is the optimum frequency for SH2 161 

generation. One can observe that the dispersion curve of the SH2 mode crosses the centre of 162 

this region.  163 

Table I. Optimum excitation frequency for SH modes in an 8 mm thick aluminium plate and the possible mode 164 
conversions with their cut-off thicknesses; the value in parentheses means the maximum discontinuity relative depth 165 
(𝒅/𝒉) for a transmitted mode to propagate. 166 

Nominal 

𝜆 (mm) 

Generated 

mode 

Opt. excitation 

freq. (kHz) 

Cut-off thicknesses of the possible mode conversions 

SH0 SH1 SH2 SH3 

10 

SH0 311 0 mm 5.00 mm 

(37.5 %) 

10.0 mm 

(–) 

15.0 mm 

(–) 

SH1 367 0 mm 4.24 mm 

(47.0 %) 

8.48 mm 

(–) 

12.7 mm 

(–) 

SH2 498 0 mm 3.12 mm 

(61.0 %) 

6.25 mm 

(21.9 %) 

9.37 mm 

(–) 

SH3 662 0 mm 2.35 mm 

(70.6 %) 

4.70 mm 

(41.3 %) 

7.05 mm 

(11.9 %) 

6 

SH1 554 0 mm 2.81 mm 

(64.9 %) 

5.62 mm 

(29.8 %) 

8.43mm 

(–) 

SH2 649 0 mm 2.40 mm 

(70.0 %) 

4.80 mm 

(40.1 %) 

7.19 mm 

(10.12 %) 

SH3 782 0 mm 1.99 mm 

(75.1 %) 

3.99 mm 

(50.3 %) 

5.97 mm 

(25.4 %) 

 167 

When a guided wave mode impinges upon some feature in the plate, such as a section with 168 

reduced thickness, the scattered field may be composed of several modes, i.e. the incident mode 169 

may suffer mode conversion either as reflection from the discontinuity or transmission to the 170 

thinner section [7, 15, 17, 19, 20]. Mode conversion to a propagating mode can arise only if its 171 

cut-off thickness, given by Eq. (3), is less than the plate’s thickness. Table I also shows the 172 

possible converted modes, and their cut-off thickness, for incident modes from zero to third 173 
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order, in an 8 mm thick aluminium plate. Cells marked with a dash mean that the mode 174 

conversion is not possible, due to the high cut-off thickness of the converted mode. It is worth 175 

highlighting that mode conversion with transmission to a thinner section of the plate can only 176 

happen if its remaining thickness is higher than the respective cut-off thickness; the percentage 177 

values in parentheses in Table I, give the maximum depth to original thickness value that a 178 

thinner section may have for a transmitted mode propagate. 179 

3. Numerical and experimental investigation 180 

3.1. Experimental setup and geometry 181 

In order to analyse the interaction of SH waves, aluminium plates were machined with two 182 

types of discontinuity, namely symmetric and non-symmetric. In this case, a non-symmetric 183 

sample presents a discontinuity at a single surface with depth 𝑑, whereas a symmetric one 184 

presents discontinuity at both surfaces of the plate at the same longitudinal position, with each 185 

of their depths equal to 𝑑 2⁄ . Thus the total thickness reduction equals 𝑑 in both cases. The test 186 

samples were 8 mm thick, 800 mm long and 250 mm wide aluminium plates. The geometry of 187 

the samples is shown in Fig. 2: the plate’s plane lies in the 𝑥-𝑧 plane (thickness in the 𝑦-188 

direction, length in the 𝑥-direction), the origin is defined as the position where the generating 189 

transducer is placed. The discontinuity is 150 mm long, ending 10 mm away from the right end 190 

of the plate, as shown in Fig. 2. The short section at the rightmost end of the plate plays no role 191 

in this study; this section had to remain with the original thickness in order to clamp the plates 192 

for machining. Here, only reflection and transmission at the leading edge of the discontinuity 193 

were investigated, transmission or reflection at the far end of the section was not analysed. The 194 

section at the left of the discontinuity was set to be long enough (640mm) in order to allow 195 

flexibility for the positioning of transducers. For each type of sample, three different total 196 
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depths were machined, 2 mm, 4 mm and 6 mm, corresponding to 25 %, 50 % and 75 % of the 197 

original thickness, respectively. 198 

 199 

Fig. 2. Plate and discontinuity geometry. (a) Non-symmetric discontinuity. (b) Symmetric discontinuity. 200 

 201 

Experiments were performed using a RITEC ® RPR-4000 Pulser/Receiver to generate and 202 

receive the signals from PPM EMATs, that were used as generator and receiver. The received 203 

signal was acquired by an oscilloscope that was connected to a PC to automate data acquisition. 204 

PPM EMATs were supplied by Sonemat Ltd, with either 10 mm or 6 mm nominal wavelength, 205 

all with a PPM array of 3 cycles (3 pairs of north-south orientated magnets along the length of 206 

the EMAT coil). Fig. 3 shows the experimental setup. 207 

 208 

Fig. 3. Experimental setup 209 

The excitation pulse was set to an 8 cycle tone burst at the optimum frequency for each 210 

mode, according to Table I. However, even at the optimum frequency, more than one mode 211 
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can be generated or received if the dispersion curves of more than one mode intersect the 212 

operation region. For instance, in order to generate the SH2 with a 6 mm wavelength EMAT, 213 

one has to consider the operating region shown in Fig. 1(b). In this case, not only the intended 214 

mode is generated, but also the SH0 and SH1 modes are generated. Mode selection can be 215 

refined by adopting dual excitation on both surfaces of the plate [29]. This technique allows 216 

generation and reception of only symmetric or antisymmetric modes. Therefore, in the 217 

aforementioned example, apart from the SH2 mode, only the SH0 mode would be generated. 218 

Further differentiation of modes with the same symmetry was achieved by choosing an optimal 219 

receiving position, according to the modes’ group velocity, to ensure that unwanted generated 220 

modes, or signals from mode conversion with the same symmetry, do not overlap in time. 221 

Considering the aforementioned example, since the group velocity of the SH0 and SH2 modes 222 

are considerably different, by carefully choosing the distance between the generation position 223 

and the discontinuity, distance ℓ0  in Fig. 2, and the receiver position, either the unwanted 224 

generated SH0 mode or scattered waves from this mode can be separated in time. Similarly, by 225 

properly choosing the receiving position, one can detect the several modes that can arise due 226 

to mode conversion of the intended, SH2, mode without overlapping wave arrivals in time. The 227 

same principle applies for generation of the other modes. In this paper, ℓ0 was set to a distance 228 

of between 73 mm to 110 mm, depending on the generated mode. The position of the receiver 229 

for direct and reflected waves was set at the left of the transmitter, position (1) in Fig. 2, either 230 

at -144 mm or -257 mm. Note that the direct wave could be received at a negative position 231 

because the EMAT generates SH waves that travel both forwards and backwards. In order to 232 

receive the transmitted waves, the receiver was positioned on the middle of the machined 233 

discontinuity, position (2) in Fig. 2. It is worth highlighting that modes with opposite symmetry 234 

can arrive at the same time at the receivers, since dual reception method ensures that symmetric 235 

and antisymmetric modes can be distinguished. Dual transduction has less restrictive 236 
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experimental constraints than if a single transducer was used; for instance, shorter plates could 237 

be used. Even with dual transduction, generation of the SH0 mode at a 6 mm wavelength would 238 

result in excessively complicated interference, with generated and scattered waves needing to 239 

be resolved experimentally. At the optimum excitation frequency for the SH0 mode at 6 mm 240 

wavelength, the SH2 mode was also generated but with lower group velocity, therefore mixing 241 

in time with the scattered waves of interest, without providing a clear receiving position along 242 

the plate’s length. Thus, the fundamental, SH0 mode was generated only with a nominal 10 243 

mm wavelength probe, in order to ensure single mode generation, as shown in Table I; the 244 

remaining modes were generated at both 6 mm and 10 mm wavelengths. 245 

3.2. Finite element model 246 

Numerical analysis was performed using a commercial time-domain Finite Element Method 247 

(FEM) solver, PZFlex©, which allows simulation of SH waves in a two-dimensional model. 248 

Mirroring the experimental measurements, the symmetric and non-symmetric geometry of Fig. 249 

2 were modelled, with aluminium density and transverse wave speed equal to 2698 kg/m3 and 250 

cT =3111 m/s, respectively. In the simulation, the parameter 𝑑 was varied from 0 to 7.5 mm in 251 

0.5 mm steps, in order to analyse the SH interaction as a function of the discontinuity depth 252 

more carefully. In order to generate the SH waves, a 3 cycle spatial force distribution function 253 

with a period of 10 mm or 6 mm was applied to the surface nodes of the model using a time 254 

history that was the same as the excitation current used in the experiment. This approach allows 255 

generation of SH guided waves, without the need of including the EMAT in the model, as 256 

validated previously elsewhere [3, 10, 29, 32]. Received signals were convolved with a 3 cycle 257 

spatial tone burst to simulate the receiving transducer spatial profile. As in the experiments, 258 

dual transmission at both surfaces of the plate was adopted to generate the SH guided wave 259 

modes.  260 
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Mode reception could be modelled likewise, replicating the setup used in the experiments. 261 

However, since numerical simulation allows one to access the displacement field for every 262 

point in the plate’s cross-section, that is, as a function of 𝑦, each mode was effectively separated 263 

from the received signal based on the mode’s orthogonality relationship [33-35]. The 264 

displacement profile, given by Eq. (2), forms an orthogonal basis, i.e,  265 

 ∫ 𝑈𝑛(𝑦)𝑈𝑚(𝑦)𝑑𝑦

ℎ 2⁄

𝑦=−ℎ 2⁄

= {
  0  , 𝑛 ≠ 𝑚
𝐶𝑛 , 𝑛 = 𝑚

 , (10) 

where  266 

 𝐶𝑛 = ∫ 𝑈𝑛(𝑦)𝑈𝑛(𝑦)𝑑𝑦

ℎ 2⁄

𝑦=−ℎ 2⁄

= {
ℎ     , 𝑛 = 0
ℎ 2, 𝑛 ≠ 0⁄

 . (11) 

As the displacement field in the plate is composed of several SH modes, it can be expressed 267 

as: 268 

 𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝐴𝑚𝑈𝑚(𝑦)𝑒𝑗(𝜔𝑡−𝜅𝑚𝑥)

𝑁

𝑚=0

, (12) 

where 𝑢(𝑥, 𝑦, 𝑡) is the displacement field as a function of 𝑥 and 𝑦 coordinates and time, 𝑡, and 269 

𝑁 is the number of SH modes. Therefore, thanks to the orthogonality relationship of Eq. (10), 270 

one can separate each mode present in the received signal through: 271 

 𝑢𝑛(𝑥, 𝑡) =
1

𝐶𝑛
∫ 𝑢(𝑥, 𝑦, 𝑡)𝑈𝑛(𝑦)𝑑𝑦

ℎ 2⁄

𝑦=−ℎ 2⁄

,  (13) 

such that 𝑢𝑛(𝑥, 𝑡)  is the displacement field of mode 𝑛  as a function of the longitudinal 272 

coordinate 𝑥 and time. Normalization by the constant 𝐶𝑛 is necessary to provide the proper 273 

dimensions and compensate for the weight of the displacement profile integral.  274 
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When compared to Lamb waves, the mode profile of SH guided waves is much simpler, 275 

involving a displacement or velocity component only in one direction, meaning that mode 276 

separation based upon the modes’ orthogonality can be performed by means of a single field. 277 

Similar processing with Lamb waves [33, 34] requires one to acquire both displacement (or 278 

velocity) and stress in order to use the general orthogonality relationship [28]. In fact, in this 279 

case, the general orthogonality relationship yields Eq. (10), since for SH waves, the relevant 280 

non-zero particle velocity and stress components are scaled versions of the displacement 281 

profile, 𝑈𝑚(𝑦), as seen in Eq.(5) and (6).  282 

The accuracy of the numerical computations and mode separation technique was assessed 283 

by calculating the energy balance of the scattered modes. The power of the incident and 284 

scattered modes was computed following Eq. (4): by multiplying the amplitude of the simulated 285 

velocity, 𝑣𝑧, and stress, 𝜎𝑥𝑧, fields of the reflected and transmitted modes as well as the incident 286 

mode, which were separated using the aforementioned post-processing. For the conservation 287 

of energy, the sum of the power of the scattered modes has to be equal to the incident mode’s 288 

power. Or, equivalently, 289 

 
1 = ∑

𝑃𝑖𝑗
−

𝑃𝑖
+

𝑁

𝑗=1

 + ∑
𝑃𝑖𝑗

+

𝑃𝑖
+  ,

𝑁

𝑗=1

 
(14) 

where 𝑃𝑖𝑗
− and 𝑃𝑖𝑗

+ are the power of the reflected and transmitted modes, respectively, of order j 290 

due to the incident mode i, whose power is 𝑃𝑖
+.The right-hand side of Eq. (14) was calculated 291 

for each incident mode at the simulated discontinuities depths and shapes analysed in this 292 

paper. Results were close to unity, confirming the accuracy of the numerical computations; the 293 

maximum error for each incident mode and discontinuity shape is shown in Table II. 294 

Table 2 Maximum energy balance error in simulations. 295 

Nominal 

𝜆 (mm) 

Generated 

mode 

Maximum energy balance error  

(%) 

Non-Symmetric 

discontinuity 

Symmetric 

discontinuity 
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10 

SH0 0.70 0.07 

SH1 3.08 1.77 

SH2 2.45 2.59 

SH3 2.69 2.69 

6 

SH1 1.08 2.47 

SH2 2.11 2.43 

SH3 6.05 4.51 

3.3. Reflection and transmission coefficients 296 

The coefficients for reflection from the discontinuity edge, Rij, and transmission to the 297 

discontinuity, Tij, are calculated, in order to perform quantitative analysis of the interaction of 298 

SH guided waves modes with either symmetric or non-symmetric discontinuities. The 299 

subscripts i and j in the coefficient notation represents the incident and received mode orders 300 

respectively. These coefficients are formally defined by: 301 

 𝑅𝑖𝑗 =
𝐴𝑗

(1)−

𝐴𝑖
(1)+

 , (15) 

 𝑇𝑖𝑗 =
𝐴𝑗

(2)+

𝐴𝑖
(1)+

√
ℎ − 𝑑

ℎ
  , (16) 

where A is the maximum peak-to-peak amplitude of the received signal, the superscripts “+” 302 

and “-” mean the forward and backward propagating waves, respectively. The superscripts (1) 303 

and (2) indicate the reading positions: before the thinner region edge and on the thinner region, 304 

respectively, as shown in Fig. 2. Here, i and j can be 0 to 3, corresponding to the SH0 to SH3 305 

modes, respectively. The square root in Eq. (16) is included to compensate for the natural 306 

amplitude increase of a wave when it is transmitted into a thinner region of the plate. 307 

In order to calculate the coefficients, a time gate in which the forward or backward waves 308 

are expected to arrive was defined for each mode according to the receiving position, tone burst 309 

time duration and group velocity of the modes. When the thinner region remaining thickness 310 

is below the mode cut-off thickness, its group velocity is not a real number and thus a time gate 311 
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for Ti1, Ti2 or Ti3 cannot be defined. Experimental and numerical signals were treated differently 312 

in this case. Experimental transmission coefficients were not calculated, because without a 313 

well-defined time gate, one cannot properly select the pulse relative to each mode. No time 314 

gate restriction was applied to calculate numerical coefficients since the several modes can be 315 

effectively separated through Eq. (13). This was done in order to allow analysis of any residual 316 

component inside the thinner section, when the cut-off thickness is exceeded. The same 317 

approach was applied to reflection coefficients of modes that cannot propagate in the original 318 

thickness section, dash marks in Table I.  319 

In the interest of having meaningful values of the coefficients, compensation for amplitude 320 

reduction due to attenuation and mode dispersion was necessary. Compensation was performed 321 

by calculating the amplitude decay rate per propagated length in a non-machined plate for each 322 

generated mode, which was then used to compensate the amplitude of the received signals, 323 

considering the propagated distance at the receiving point. The propagated distance includes 324 

the forward and backward path, in the case of the reflection coefficient. When considering 325 

mode conversion, the compensation considered the proper mode in each part of the propagation 326 

path. For instance, when calculating the coefficient R21, compensation should consider the 327 

mode SH2 along the forward path and the mode SH1 along the backward path. The only 328 

mechanism for amplitude decrease in the numerical simulation is pulse spreading due to 329 

dispersion since no damping was introduced in the simulation. Therefore, different 330 

compensating factors were used for experimental and numerical data. Nevertheless, once 331 

compensated, the coefficients could be straightforwardly compared. 332 

4. Results  333 

Fig. 4 (a) and (b) show a snapshot of the simulated particle velocity field due to the 334 

generation of the symmetric SH2 mode at 6 mm wavelength, in an 8 mm thick aluminium plate 335 
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with 4 mm deep non-symmetric and symmetric discontinuities, respectively. The SH2 mode is 336 

generated at the origin and propagates to the left and the right. The wave propagating to the left 337 

is seen around -160 mm, which clearly shows the SH2 symmetric structure across the plate 338 

thickness. The wave propagating to the right interacts with the discontinuity, being mode 339 

converted to several modes, either as reflection or transmission into the discontinuity, which 340 

are indicated in Fig. 4. The wave structures of the SH3 and SH2 modes are clearly seen among 341 

the reflected waves at the non-symmetric discontinuity in Fig. 4(a). Moreover, the SH0 and 342 

SH1 modes can also be seen, mixed and ahead of the other modes due to their higher group 343 

velocity. The SH0 and SH1 modes are transmitted to the thinner region, where higher order 344 

modes cannot propagate due to their cut-off thickness (see Table I). Examining Fig. 4(b), one 345 

clearly sees that the interaction with a symmetric discontinuity differs from the non-symmetric 346 

case; there is mode conversion, either as reflection or transmission, uniquely to symmetric 347 

modes. Fig. 5 shows the wave field for the generation of the SH1 mode at 6 mm wavelength. 348 

In this case, since the incident mode is antisymmetric, the interaction with a symmetric 349 

discontinuity [Fig. 5(b)] allows mode conversion to antisymmetric modes only, whereas when 350 

the discontinuity is non-symmetric [Fig. 5(a)] all types of SH modes can be mode converted. 351 

 352 

Fig. 4. Normalized particle velocity at 75 μs for a plate with 4 mm deep (a) non-symmetric and (b) symmetric 353 
discontinuity for generation of the SH2 mode at the origin. 354 
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 355 

Fig. 5. Normalized particle velocity at 50 μs for a plate with 4 mm deep (a) non-symmetric and (b) symmetric 356 
discontinuity for generation of the SH1 mode at the origin. 357 

 358 

Fig. 6 and Fig. 7 show the numerical and experimental received signals at -257 mm, 359 

with the origin set at ℓ0 = 92 mm, due to the generation of the SH2 mode at 6 mm wavelength 360 

interacting with 4 mm deep non-symmetric and symmetric discontinuities, respectively. The 361 

separated symmetric and antisymmetric parts of the experimental signals are shown in plots (a) 362 

and (b), respectively, whereas the numerical signals are shown in plots (c) and (d) in Fig. 6 and 363 

Fig. 7. The generated mode prior to interacting with the discontinuity is observable between 364 

100 and 120 μs in plots (a) and (c), whereas the other wave packets correspond to the reflected 365 

waves from the discontinuity. Experimental signals have lower amplitude than simulated ones, 366 

as damping was not included in the simulation, and normalization was performed considering 367 

the direct wave that was not mode-converted. Considering the non-symmetric discontinuity 368 

(Fig. 6), the symmetric modes, SH2 and SH0, are received, around 180 μs  and 150 μs , 369 

respectively, in Fig. 6(a). These modes can be separated in time due to the different group 370 

velocities, but the extent to which they can be clearly separated does depend on the receiving 371 

position: generally SH0 and SH2 may overlap in time, hindering identification. In fact, the 372 

reflected SH0 mode arrives between the direct SH2 signal and the reflected SH2 signal, as this 373 

receiving position was carefully chosen for this purpose. In this position one can also 374 

distinguish the antisymmetric modes, Fig. 6 (b) and (d). The SH1 mode arrives at around 160 375 

μs and is clearly identified. The SH3 mode, on the other hand, is not clearly resolved in time; 376 

due to its low group velocity, it was expected to arrive at approximately 250 μs, being mixed 377 
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with the reflected SH1 mode from the leftmost end of the plate, resulting in a complicated 378 

interfered signal. Therefore, this position is not ideal for clearly detecting this mode 379 

experimentally; indeed, a position closer to origin was chosen in order to properly calculate 380 

this mode amplitude without mode mixing. A cleaner mode separation is achieved within the 381 

numerically simulated signal by decomposition into the orthogonal basis, using Eq. (13). The 382 

separated signals are shown in Figs. 6 (c) and (d), where the individual modes are effectively 383 

separated even when they overlap. 384 

The signals arising due to the interaction with a symmetric discontinuity are shown in 385 

Fig. 7, where one can see that the amplitude of the reflected SH0 modes is increased [Fig. 7 (a) 386 

and (b)], but mainly that signals associated with the antisymmetric modes have vanished [Fig. 387 

7 (b) and (d)]. The low amplitude, experimental antisymmetric signal in Fig. 7(b) is due to the 388 

inherent imprecision of the experimental mode selectivity procedure, which is higher for 389 

selecting modes with opposite symmetry to the generated one [29], and is also possibly due to 390 

machining imprecision, which could result in a real discontinuity that is not perfectly 391 

symmetric. The highest difference between the depths of the machined discontinuities in both 392 

surfaces was measured at 0.13 mm which implies in about 6% of maximum symmetry error. 393 

 394 

Fig. 6. Received signals at x = -257 mm due to the generation of SH2 at the origin interacting with a non-symmetric 395 
4mm deep discontinuity starting at x=92mm. Experimental signals (a) and (b) and numerical signals (c) and (d). 396 
Symmetric modes (a) and (c) and antisymmetric modes (b) and (d). 397 
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 398 

 399 

Fig. 7. Received signals at x = -257 mm due to the generation of SH2 at the origin interacting with a symmetric 400 
4mm deep discontinuity starting at x=92mm. Experimental signals (a) and (b) and numerical signals (c) and (d). 401 
Symmetric modes (a) and (c) and antisymmetric modes (b) and (d). 402 

The wave field in Fig. 4 and Fig. 5 and the experimental signals in Fig. 6 and Fig. 7 403 

show that for a symmetric discontinuity, mode conversion occurs exclusively to modes with 404 

the same symmetry as the incident one, whereas all modes can be mode converted due to the 405 

interaction with a non-symmetric discontinuity. Theoretically, this happens because a 406 

symmetric discontinuity presents identical boundary conditions in both surfaces of the plate, 407 

therefore imposing that the scattered field in both halves of the plate behaves equally with 408 

respect to the plate’s mid-plane, which consequently restricts mode-conversion within the same 409 

type of symmetry of the incident mode. On the other hand, in a non-symmetric discontinuity, 410 

there is no symmetry on the boundary conditions and therefore, any mode-conversion is 411 

allowed. Also, the intensity of the reflected and transmitted modes differs in both cases, 412 

depending on whether the discontinuity is symmetric or non-symmetric. In order to perform 413 

further analysis, quantitative data is obtained by calculating the reflection and transmission 414 

coefficients, according to Eqs. (15) and (16), respectively. The reflection coefficients due to 415 

non-symmetric and symmetric discontinuities as a function of the discontinuity depth are 416 

shown in Fig. 8 and Fig. 9, respectively. Experimental and numerical data for 10 mm and 6 417 
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mm nominal wavelengths are shown. Solid lines and circles represent signals obtained with a 418 

transducer of 10 mm wavelength, either numerically or experimentally, respectively. Dashed 419 

lines and crosses represent results for the 6 mm wavelength transducer, either numerically or 420 

experimentally, respectively. 421 

Incident symmetric modes, either the SH0 or SH2 modes, are shown in plots (a) and 422 

(c), respectively. One can clearly see that for the symmetric discontinuity, Fig. 9(a) and (c), 423 

there is mode conversion uniquely to symmetric modes, whereas all modes can potentially be 424 

mode converted due to the interaction with a non-symmetric discontinuity, Fig. 8 (a) and (c). 425 

This experimentally confirms the numerical results of Pau et al. [17, 19], who analysed the 426 

incident SH0 mode. The coefficients for incident antisymmetric modes, either the SH1 or SH3, 427 

are shown in plots (b) and (d), respectively. In this case, a symmetric discontinuity leads only 428 

to antisymmetric modes arising from mode conversion. As shown in Table I, at the optimum 429 

excitation frequency and wavelength used to generate each of the SH modes, not all of the other 430 

modes can propagate due to their cut-off thickness. Accordingly, only conversions to the 431 

predicted allowed modes were experimentally and numerically detected in Fig. 8 and Fig. 9. 432 

The intensity of the converted modes is higher with a wavelength of 6 mm than a wavelength 433 

of 10 mm, because the dispersion curves of the shorter wavelength guided waves are closer to 434 

each other in the frequency-phase velocity plane. Therefore, converted modes are received with 435 

higher intensity due to the finite operating region [see Fig. 1(b)].  436 

 437 
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 438 

Fig. 8. Numerical (lines) and experimental (symbols) reflection coefficient versus discontinuity depth for a non-439 
symmetric discontinuity due to incident (a) SH0, (b) SH1, (c) SH2 and (d) SH3. Solid lines and circles represent 440 
transducer wavelength of 10 mm and dashed lines and crosses represent 6 mm transducer wavelength. 441 

 442 

Fig. 9. Numerical (lines) and experimental (symbols) reflection coefficient versus discontinuity depth for a 443 
symmetric discontinuity due to incident (a) SH0, (b) SH1, (c) SH2 and (d) SH3. Solid lines and circles represent 444 
transducer wavelength of 10 mm and dashed lines and crosses represent 6 mm transducer wavelength. 445 

 446 
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The transmission coefficient due to non-symmetric and symmetric discontinuity is shown 447 

in Fig. 10 and Fig. 11, respectively. Due to the mode cut-off thickness, transmission coefficient 448 

to non-fundamental modes must eventually tend to zero as the discontinuity depth increases. 449 

This behaviour can be verified in Fig. 10 and Fig. 11, and the relative depths in which the 450 

coefficients approach zero correspond to the ones theoretically calculated in Table I, either for 451 

10 mm or 6 mm wavelengths. The same mode conversion behaviour regarding the 452 

discontinuity symmetry is valid for the transmitted waves; i.e., within a symmetric 453 

discontinuity there can be mode conversion to modes that share the same symmetry condition 454 

as the incident modes, either symmetric or antisymmetric. Generally, numerical and 455 

experimental data show good agreement. 456 

 457 

 458 

Fig. 10. Numerical (lines) and experimental (symbols) transmission coefficient versus discontinuity depth for a 459 
non-symmetric discontinuity due to incident (a) SH0, (b) SH1, (c) SH2 and (d) SH3. Solid lines and circles 460 
represent transducer wavelength of 10 mm and dashed lines and crosses represent 6 mm transducer wavelength. 461 
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 462 

Fig. 11. Numerical (lines) and experimental (symbols) transmission coefficient versus discontinuity depth for a 463 
symmetric discontinuity due to incident (a) SH0, (b) SH1, (c) SH2 and (d) SH3. Solid lines and circles represent 464 
transducer wavelength of 10 mm and dashed lines and crosses represent 6 mm transducer wavelength. 465 

5. Discussion  466 

Previous work [20] has shown that the coefficients for incident SH0 and SH1 modes, 467 

in a frequency-thickness product value in which only these two modes can propagate, behave 468 

non-monotonically, unlike at the low frequency-thickness value, where coefficients are 469 

monotonic [16, 24]. Here, higher order modes were used as incident modes, and it is observed 470 

that the higher the order of the generated mode, the more intense the non-monotonic behaviour 471 

of the coefficients is. In Fig. 8, the R00 coefficient shows a linear behaviour whereas, R11 472 

presents a zero derivative point for around half thickness discontinuity with 6 mm wavelength, 473 

and one local maximum point with 10 mm wavelength, and R22 and R33 show two and three 474 

local maxima points, respectively. The peaks in the reflection coefficient occur at discontinuity 475 

depths that correspond to the remaining thicknesses being slightly higher than the cut-off 476 

thicknesses of the SH modes. One should also note that for a larger generated wavelength, 477 
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where the operating frequency is closer to the mode cut-off frequency-thickness and dispersion 478 

is at its highest [see Fig. 1(b)], the non-monotonicity is yet more acute, i.e. the peaks and 479 

troughs are more well defined, as it can be seen comparing the solid and dashed lines for R22 480 

and R33 in Fig. 8 (c) and (d). Interestingly for symmetric discontinuities, the non-monotonic 481 

behaviour is less accentuated, typically with fewer oscillations (see Fig. 9).  482 

The values for the reflection and transmission coefficients, observed in Figs. 8 to 11, are a 483 

consequence of the boundary condition at the discontinuity and the energy conservation 484 

principle. Some of the interesting behaviour as a function of the discontinuity depth can be 485 

explained from consideration of ultrasonic energy or power. The incident mode carries energy 486 

which is proportional to its power level, 𝐸𝑛, defined in Eq.(9). Note that 𝐸𝑛, does not include 487 

the amplitude of the mode, the power is given by Eq.(8), in which 𝐸𝑛 is multiplied by the square 488 

of displacement amplitude. At a fixed frequency, a high-order mode has higher phase velocity, 489 

(see Fig. 1(b)), and consequently lower wavenumber and, therefore, a lower power level (see 490 

Eq.(9)) than the other possible propagating modes. Since the energy of the incident mode has 491 

to be redistributed among the scattered modes, one can expect that the amplitude of a scattered 492 

high-order mode should be higher than that of a lower-order mode, since the latter has a higher 493 

power level. Fig. 12(a) shows the power level of the reflected and transmitted SH modes 494 

normalized per the power level of the incident SH3 at 662 kHz, calculated from Eq.(9), 495 

considering the actual wavenumber value inside the discontinuity. Following this reasoning, 496 

the values of the reflection and transmission coefficients to higher-order modes are expected 497 

to be higher than those to lower-order modes. Taking, for instance, the SH3 as the incident 498 

mode, when the discontinuity is shallow, energy balance is almost completely satisfied by a 499 

high transmission coefficient to the same-order mode, i.e., the SH3 mode, as can be seen in 500 

Fig. 10(d). As the depth increases, this mode’s cut-off thickness is approached to a point at 501 

which it can no longer propagate, i.e. it carries no energy. Simultaneously, the amplitude of the 502 



26 

 

reflected SH3 mode increases until reaching a peak [Fig. 8(d)], when the thickness of the 503 

thinner section is equal to this mode cut-off thickness. When the discontinuity depth increases 504 

further, the power level of the SH2 mode inside the thinner section decreases, approaching the 505 

power level of the incident SH3 mode, (see Fig.12.(a) at about 20% < 𝑑 ℎ⁄ < 40%), because 506 

its wavenumber decreases in the thinner section - recall that its phase velocity increases for a 507 

lower thickness [11]. Thus the transmission of the SH2 mode is maximized [Fig. 10(d)] and 508 

the reflection of the SH3 mode decreases [Fig. 8(d)]. If discontinuity depth keeps increasing, 509 

the SH2 mode can no longer propagate inside the thinner section, and reflection of the SH3 510 

mode again reaches a peak [Fig. 8(d)]. This also happens for the SH1 mode, in the 511 

discontinuity, Fig.12.(a) at about 40% < 𝑑 ℎ⁄ < 70%. This mechanism of preferred energy 512 

swapping between reflection to the same-order mode and transmission to the highest order 513 

mode that is able to propagate in the thinner section, therefore explains the occurrence of peaks 514 

in the reflection and transmission coefficients in the same quantity as the order of the incident 515 

mode, observed in Fig. 8.  516 

For symmetric discontinuities, the same principle holds if skipping consecutive modes, 517 

since only modes that share the same symmetry as the incident mode can be created in this 518 

case. Therefore, it is expected that the peaks for the reflection of the same-order mode to be 519 

even higher. Following the example for the incident SH3 mode, when its transmission is no 520 

longer possible, because the thickness of the thinner region is less than its cut-off thickness, 521 

then the reflection of the SH3 mode should be even stronger. The antisymmetric mode with the 522 

closest power level is the SH1 mode, whose power level is elevated [see Fig.12(a)], and thus 523 

would have a lower amplitude. The higher values for the peaks within a symmetric 524 

discontinuity can be verified comparing Fig.9(d) and Fig.8(d). 525 
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 526 

Figure 12 Power level for reflected (solid lines) and transmitted (dashed) modes normalized per the power level of the 527 
incident SH3 mode at (a) 662 kHz and (b) 782 kHz as a function of the discontinuity depth. The power level of a 528 
transmitted mode reaches zero at its respective cut-off thickness. 529 

When a higher-order mode is generated at a lower wavelength, and consequently, higher 530 

wavenumber, its power level is closer to the other modes, see Fig. 12.(b), and therefore, the 531 

intensity of scattered modes is more equally distributed. Consequently, the difference between 532 

peaks and valleys in the reflection coefficient is less accentuated, since the aforementioned 533 

preferred energy swap mechanism is no longer valid, as more modes significantly participate 534 

in the energy redistribution.  535 

The peaks in the reflection coefficient of higher-order modes could suggest interesting 536 

applications in NDT, if a higher amplitude reflection from a shallow discontinuity of a specific 537 

critical value is intended. For instance, a possible application would be to detect the presence 538 

of a defect of a specific depth or to monitoring the growth of a discontinuity. In this potential 539 

application, one would set the operating wavelength and frequency close to the cut-off 540 

frequency and the resulting cut-off thickness should match the remaining thickness that 541 

corresponds to a critical depth of interest. When the discontinuity depth approaches the critical 542 

value an intense reflection is received, facilitating detection. 543 
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6. Conclusion 544 

The interaction of fundamental and higher-order SH guided wave modes with symmetric 545 

and non-symmetric thickness discontinuities in plates was experimentally and numerically 546 

analysed through quantitative data. Experimentally, generation and receiving positions had to 547 

be chosen carefully, to avoid mode mixing. Dual transduction helps to avoid mode mixing by 548 

separating symmetric and antisymmetric modes. Numerically, an orthogonal mode 549 

decomposition, post-processing method allowed effective mode separation.  550 

It was experimentally confirmed that mode conversion depends not only on the thinning 551 

depth but also on its symmetry. All possible mode conversions can occur in non-symmetric 552 

discontinuities, whereas only mode conversion to modes with the same type of symmetry of 553 

the incident mode can happen due to the interaction with a symmetric discontinuity. The 554 

investigation of incident higher-order modes also revealed that the reflection coefficient of 555 

higher-order modes present even stronger non-monotonicity as a function of the discontinuity 556 

depth, which is reduced when the discontinuity is symmetric. Additionally, one can conclude 557 

that at a lower frequency, closer to the cut-off frequency of the incident mode, the behaviour 558 

of the reflection and transmission coefficients presents yet more accentuated variations over 559 

the discontinuity depth range. There are peaks in the reflection coefficient of the same mode as 560 

the incident one, and in the transmission coefficient to lower-order modes at discontinuity 561 

depths that correspond to remaining thicknesses close to the cut-off thicknesses. This behaviour 562 

is explained by consideration of the proposed mechanism based on the energy conservation 563 

principle. 564 

This paper’s results further elucidate the interaction of SH guided waves with a thickness 565 

discontinuity section. The different behaviour between symmetric and non-symmetric 566 

discontinuities was experimentally demonstrated, also showing that the behaviour of higher-567 
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order SH modes is yet more complex and highly dependent not only on the discontinuity depth 568 

but also on its positioning in the plate’s cross-section and on the frequency. 569 

 570 
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