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1 INTRODUCTION
As an engineering substrate, DNA is well suited for the con-
struction of biochemical circuits and systems because it is
simple enough that its interactions can be rationally designed
using the Watson-Crick base pairing rules while ensuring
that the design space is remarkably rich [1]. DNA Strand
Displacement (DSD) is an implementation strategy based on
the hybridization of DNA strands with partial or full com-
plementarity, resulting in the displacement of one or more
pre-hybridized strands [1], [2], [3]. Visual DSD is a graphical
user interface (GUI) aided software platform that enables an
in silico design and simulation of DSD-based circuits [4], [5].
If a given system is modelled as either a set of DSD reactions
or as an Abstract Chemical Reaction Network (ACRN) then
it can be simulated by running the corresponding text file
in, respectively, the “DSD” or the “CRN” mode of Visual
DSD. Furthermore, it supports the notion of a degree of com-
plementarity which makes it possible to model interactions
between domains that are not exactly complementary but
instead contain one or more mismatched bases [4].
One of the difficulties in designing DSD systems is that

the end result is quite sensitive to the values of parameters
– typically, these include the reaction rates, concentrations,
the degree of complementarity, etc.

An interesting reference point is due to the semiconductor-
based electronic circuits, the development of which started
in the 1940’s. The integrated circuit design and optimization
used to be a highly time-intensive manual process until it got
accelerated by the development of the hardware description
languages (HDLs) that enabled a user to design an electronic
system through textual commands that are transformed into
a physical implementation of the circuit in silicon. Recently,
Cello has applied this approach to genetic circuits to trans-
form an HDL design into a linear DNA sequence that can be
constructed and run in living cells [6]. However, Cello does
not facilitate the design of computational nucleic acid devices.
In [3], a general purpose CRN-to-DSD compiler Nuskell has

been developed and its benefit has been illustrated through
interesting applications [7]. Unlike Visual DSD which uses
a bottom-up approach, Nuskell uses a top-down approach
and it is argued in [7] that “in a bottom-up approach it is
not obvious whether a particular DSD implementation or its
components can be generalized to implement different algo-
rithms or whether conceptually new modules are required”. In
this manuscript, we show how such generalizations can be
obtained.

2 OUR COMPILERS: RATIONALE AND OVERVIEW
Any linear time-invariant (LTI) system S can be represented
by a so-called transfer function (TF), which is a frequency-
domain representation. This, in turn, can be expressed as a
connection of a finite number of integrators, scalar gains,
and summation blocks, as shown in Figure 1(C and D). Each
of these component blocks can be realised by finitely many
CRN’s which comprise catalysis, annihilation, and degrada-
tion reactions. Each of these component blocks can also be
realised through awell-known set of DSD reactions. Also, the
particle swarming optimisation (PSO), summarised in [8], can
be adopted to optimise the reaction parameters. So, we have
synthesized two MATLAB-based compilers (1) TF-to-CRN:
its output is a text file of a ACRN representation of S which
should be run in the “CRN” mode of Visual DSD and (2)
TF-to-DSD: its output is a text file of a DSD representation
of S which should be run in the “DSD” mode of Visual DSD.
Our compilers support 2-domain, 3-domain, and 4-domain
representations: in general, the representation is called k-
domain if each chemical species is implemented as a single
strand of DNA comprising k distinct domains. The operation
of our TF-to-DSD compiler can be summarised as follows;
TF-to-CRN can be explained similarly:

(1) Step 1: In the GUI of TF-to-DSD, the user inputs TF
of the LTI system that they want to design.

(2) Step 2: In the GUI of TF-to-DSD, the user inputs the
number of domains of the desired DSD architecture.
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Figure 1: Our TF-to-DSD compiler in action. A: This Visual DSD screenshot illustrates the DSD code to implement a low-pass
filter (LPF), given in C, generated by our TF-to-DSD compiler. B: The output of this LPF when excited with a staircase input –
the red color plot represents the input and the green color plot represents the output; in this case, ideally, both plots should
overlap, which can be ensured after some parameter tuning. D: In the generated code, all necessary blocks such as "Scaled
Summation" (see line # 73) can be created and modified on the fly. To obtain the output B and the DSD design for the TF given
in C, the user need only enter 5 numbers in the GUI E and click on a DSD architecture choice in the GUI C.

(3) Step 3: TF-to-DSD computes a minimal state-space
model M for this TF; M comprises a finite number of
integrators, scalar gains, and summation blocks.

(4) Step 4: For each block, building on [2], TF-to-DSD
creates a text file containing (1) the DNA strand com-
positions and (2) a minimal set of DSD reactions.

(5) Step 5: Using PSO, TF-to-DSD optimises all DSD pa-
rameters such as the concentrations, chemical reaction
rates, the degree of complementarity.

The resulting text file can now be run in the “DSD" tab of
Visual DSD for the simulation and analysis purposes, and
to start the process for the wet-lab implementations.

3 RESULTS AND DISCUSSION
As illustrated in Figure 1, our compiler gives satisfactory
results. Also, we have shown how the bottom-up architec-
ture of Visual DSD can be adequately generalised to imple-
ment not only different algorithms but also to synthesize
new conceptual modules on the fly for LTI systems. Our ap-
proach can be generalised for dynamic nonlinear systems as
well. Besides speeding up the in silico design of DSD-based

circuits, our compilers also increase the outreach of DNA
computation to users who might only be comfortable with
mathematical models and MATLAB/Python.
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