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Abstract—Recent researches have focused on nucleic acids 
as a substrate for designing biomolecular circuits for in situ 
monitoring and control. A common approach is to express 
them by a set of idealised abstract chemical reaction networks 
(ACRNs). Here, we present new results on how abstract 
chemical reactions, viz., catalysis, annihilation and 
degradation, can be used to implement circuit that accurately 
computes logarithm function using the method of Cubic 
Arithmetic-Geometric Mean (AGM). 
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I. INTRODUCTION 
An objective of synthetic biology is to design 

biomolecular circuits for in situ monitoring and control. 
Recently, nucleic acid reactions have been proposed as a 
potential solution for these purposes [1 – 4]. A key advantage 
of nucleic acid reactions consists in the ease and precision 
with which these can be implemented, as their design relies 
essentially on the well-known Watson-Crick base-pairing 
mechanism (i.e. adenine-thymine and guanine-cytosine 
pairing), which enables precise programming and timing of 
molecular interactions simply by the choice of relevant 
sequences. This approach has allowed the implementation of 
a number of complex circuits based on DNA strand 
displacement [5], DNA enzyme [6] and RNA enzyme [7] 
reactions, and has been used for the modelling and 
implementation of various nucleic-acids-based circuits such 
as feedback controllers [8] and predator-prey systems [9]. 
Recently, it has been shown that any chemical reaction 
network can be closely approximated by a set of suitably 
designed DNA strand displacement reactions [10]. This logic 
can be extended to approximate a set of linear ordinary 
differential equations (ODEs) by a set of idealised abstract 
chemical reaction networks (ACRNs) which can then be 
approximated by a set of suitably designed DNA strand 
displacement reactions [4]. 

In order to exchange information with environment and 
make decisions on their behaviour, living cells use chemical 
reactions as a mean of communication. It was shown that 
logarithmic sensing is present in various signal transduction 
mechanisms of a cell and is related to the concept of fold-
change detection. Hence, in order to decode the signals the 
cell is sending, it is necessary to compute natural logarithm 
[11 – 13]. 

In this paper, we present a circuit for computing natural 
logarithm using the method of Cubic Arithmetic-Geometric 
Mean and compare its results to those obtained by the 
method of Quadratic Arithmetic-Geometric Mean, presented 
by us earlier. 

II. NOTATION AND BACKGROUND RESULTS 
To ensure consistency, the notation used in [14] and [4] 

is used throughout in this paper. For example, a bidirectional 
(i.e., a reversible bimolecular chemical reaction) is 
represented as 

                        (1) 

where  are chemical species with and being the 
reactants and  and  being the products. Here, δ1 and δ2 
denote the forward and backward reaction rates, 
respectively. A unimolecular reaction features only one 
reactant whereas a multimolecular reaction features two or 
more reactants. Degradation of a chemical species X at rate 
K (or conversion of X into an inert form at a rate K) is 
denoted by . 

A. Representing signals using differences of concentrations 
Whereas signals in systems theory can take both positive 

and negative values, biomolecular concentrations (with 
Molar (M) as unit) can only take non-negative values. Thus, 
following the same approach suggested in [14] and [4], we 
represent a signal,  as the difference in concentration of 
two chemical species, and . Here, and  are 
respectively the positive and negative components of  such 
that . The consequence of adopting this 
scheme is that there is no unique representation for a 
particular signal. As an example,  = 20 M can be 
represented by both  = 50 M and  = 30 M or 
equivalently,  = 20 M and  = 0 M. In practice,  and  
can be realized as single strand DNA molecules, as 
illustrated in [4] where these complementary positive and 
negative components would annihilate each other at reaction 
rate  (i.e. ). A key advantage of using this 
scheme is that it allows the realization of the “subtraction” 
operation, as discussed further below. 

B. Realising elementary linear system theoretic operators 
In [14], results on how to represent linear system 

theoretic operations such as gain, summation and integration 
using idealised abstract chemical reactions are presented and 
it is shown that only three types of elementary chemical 
reactions, namely, catalysis, annihilation and degradation 
are needed for such representations. In [4], this set of 
elementary chemical reactions is further reduced to only 
two. We here summarise their main results and refer the 
interested reader to [14] and [4] for details. 



Throughout the rest of the paper, equations with 
superscript  and  are used as shorthand notations that 
represent the “+” and “-” individual reactions – for example, 

 should be understood as the set of two 

reactions:  and . Likewise, 
the notation  is used to represent the set of 

two reactions:  and . For 
brevity and following [14], we will represent such a set of 
reactions compactly as  and 

.  

As noted in [14], one limitation of representing signals 
as the difference of concentrations is that the requirement of 
having the same reaction rate, K, for both positive and 
negative components may not be easy to implement 
experimentally. However, as shown in [14], this requirement 
can be relaxed if the annihilation rate, in the annihilation 
reaction,  is chosen to be sufficiently large. 
Hence, we assume this condition of  throughout the 
rest of this paper. 
C. Arithmetic Geometric Mean (AGM) 

The arithmetic geometric mean (AGM) is a hybrid 
quantity which is defined by combining the arithmetic and 
geometric means of two positive numbers. As shown in [16], 
a cubic iteration to compute the arithmetic mean of two 
numbers w and g is given as:   

  and  . 

TABLE I.  COMPUTATION OF LN USING AGM 

Computation steps: 

1) Initialisation 
w(0) = 3/x 
g(0) = 1  

2) Iteration  

 
 

=  

3) Compute ln(x) 
 

 

It is shown in [16] that this cubic iteration to compute 
the AGM can be used for approximating the natural 
logarithm as follows: 

            (2) 

Furthermore, it is proved in [16] that the error in this 
approximation is of the order of x3ln(x). The steps for 
implementing the computation are listed in Table I. Firstly, 
we set out the initial values of signals w and g, where one 
signal is set as “3/x" and the other is "1". Then we find the 
cubic arithmetic geometric mean of two inputs, after which 
we can approximate the ln(x). In [18], a quadratic iteration to 
compute the AGM was utilised to compute ln(x). Our 
objective in this paper is to modify it in order to obtain a 
faster convergence and a lower steady-state error.  

III. MAIN RESULTS 
Our cubic iteration to approximate the natural logarithm 

ln(x) of a given scalar-valued signal x is illustrated in Table I. 
Fig. 1 shows the block diagram of our ACRN circuit for 
implementing the first two steps in the computation of ln(x) 
as listed in that table. The block diagram of our ACRN 
circuit to implement the third step in the computation of ln(x) 
as listed in Table I is shown in Fig. 2 – this “ratio 
computation” circuit performs the accurate division of two 
scalar-valued signals and was presented by us earlier [17].  

 
Fig. 1. Block diagram of our circuit to implement the first two steps of the 
computation of ln(x) as described in Table I. 

 

Fig. 2. Block diagram of our circuit to implement the third step of the 
computation of ln(x) as described in Table I. 

As can be seen from Fig. 3 and 4, our cubic iteration 
method converges faster and is more accurate than the 
method proposed in [18]. 

 
Fig. 3. MATLAB simulation results for computing ln(x) via the quadratic 
iteration of [18]; x=100. 



 

Fig. 4. MATLAB simulation results for computing ln(x) via our cubic 
iteration given in Table I; x=100. 

It has proved in [16], that the quadratic iteration used in 
[18] to compute ln(x) will have a quadratic convergence and 
the steady-state error of the order of x2ln(x) whereas our 
cubic iteration to compute ln(x) will have a cubic 
convergence and the steady-state error of the order x3ln(x). 
So, our simulation results are not surprising.  

Since all the blocks in Fig. 1 and Fig. 2 can be 
represented by ACRNs, these can be implemented easily 
using idealised DNA strand displacements (see [4], [17], 
[18]). All relevant DNA strand displacement reactions, 
ACRNs and ODEs are noted down in Table II presented in 
the Appendix section. As of today, it is impossible to build 
even the simpler circuit of [18] in the wet-lab. The fact that 
our cubic iteration based circuit is more complex and 
requires more chemical reactions than the quadratic 
computation based circuit of [18] carries no adverse 
implications for the in silico Visual DSD implementation, 
such as the ones described in [4], since the Visual DSD 
computations will be carried out quite satisfactorily over a 
normal or high-performance computer.  

Unlike Newton’s iteration commented upon in [18], the 
AGM sequence does not correct errors and hence all 
numbers need to be computed with full precision. In fact, a 
somewhat greater precision is needed to compensate for 
accumulated round-off error. Since the two sequences in the 
AGM become approximately equal after k=ln(ln(x))/ln(2) 
iterations, the circuit could be further refined to implement 
the stop at the end of k iterations. 
 

CONCLUSION 
We have presented a circuit for computing natural 

logarithm using the Cubic AGM method, derived by 
Borwein-Borwein in [16]. We have also derived its 
equivalent abstract chemical reaction network (ACRN) and 
the ensuing DNA strand displacement representation. Our 
proposed ACRN computes the natural logarithm with greater 
speed and accuracy than any existing ACRN – in particular, 

we have compared its performance with the ACRN derived 
in [18] which was shown in [18] to be superior to an ACRN 
based on Newton’s iteration and the variants thereof. 
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APPENDIX 

TABLE II.  COMPUTATION OF LN(X) USING CUBIC AGM: DNA IMPLEMENTATION, THE ACRNS AND THE ODES 

 

 
 
 
 
 
 
 



 

TABLE II.  COMPUTATION OF LN(X) USING CUBIC AGM: DNA IMPLEMENTATION, THE ACRNS AND THE ODES (CONTINUED) 

 

 
 
 
 
 



 

TABLE II.  COMPUTATION OF LN(X) USING CUBIC AGM: DNA IMPLEMENTATION, THE ACRNS AND THE ODES (CONTINUED) 

 


