

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/126059

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

SYMPLECTIC AND ORTHOGONAL K-GROUPS OF THE INTEGERS

MARCO SCHLICHTING

ABSTRACT. Nous calculons explicitement les groupes d'homotopie des espaces topologiques $B \operatorname{Sp}(\mathbb{Z})^+$, $BO_{\infty,\infty}(\mathbb{Z})^+$ et $BO_{\infty}(\mathbb{Z})^+$.

We explicitly compute the homotopy groups of the topological spaces $B \operatorname{Sp}(\mathbb{Z})^+$, $BO_{\infty,\infty}(\mathbb{Z})^+$ and $BO_{\infty}(\mathbb{Z})^+$.

1. ÉNONCÉ DES RÉSULTATS

Soient $\operatorname{Sp}(\mathbb{Z}), O_{\infty,\infty}(\mathbb{Z})$ et $O_{\infty}(\mathbb{Z})$ le groupe symplectique infini, le $\langle 1, -1 \rangle$ -groupe orthogonal infini et le groupe orthogonal hyperbolique sur l'anneau des entiers \mathbb{Z} . Ils sont obtenus comme réunion des sous-groupes $\operatorname{Sp}_{2n}(\mathbb{Z}), O_{n,n}(\mathbb{Z})$ et $O_{2n}(\mathbb{Z})$ de $GL_{2n}(\mathbb{Z})$ laissant invariant les formes bilinéaires de matrices de Gram

$$\begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & \ddots & & \\ & & -1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & & \\ 0 & -1 & & \\ & \ddots & & \\ & & 1 & 0 \\ & & 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 & & \\ 1 & 0 & & \\ & \ddots & & \\ & & 0 & 1 \\ & & 1 & 0 \end{pmatrix}.$$

Les groupes $\operatorname{Sp}(\mathbb{Z})$, $O_{\infty,\infty}(\mathbb{Z})$ et $O_{\infty}(\mathbb{Z})$ ont des sous-groupes de commutateurs parfaits. Rappelons que pour un tel groupe G la construction plus de Quillen BG^+ appliquée à l'espace classifiant BG de G est munie d'une application continue $BG \to BG^+$ qui induit un isomorphisme sur les groupes d'homologie intégrale et vaut $G \to G/[G, G]$ sur π_1 .

Le but de cet article est de calculer explicitement les groupes d'homotopie des espaces topologiques $B\operatorname{Sp}(\mathbb{Z})^+$, $BO_{\infty,\infty}(\mathbb{Z})^+$ et $BO_{\infty}(\mathbb{Z})^+$. Ces espaces sont des espaces de lacets infinis puisqu'ils sont les composants connexes des espaces the K-théorie $K\operatorname{Sp}(\mathbb{Z})$, $GW(\mathbb{Z})$ et $KQ(\mathbb{Z})$ des formes non dégénérées symplectiques, bilinéaires symétriques et quadratiques sur \mathbb{Z} . On sait que les groupes d'homotopie de ces espaces sont des groupes abéliens de génération finie.

Pour un groupe abélien A, on note A_{odd} le sous-groupe des éléments d'ordre impaire fini.

Theorem 1.1. Les groupes d'homotopie des espaces $B \operatorname{Sp}(\mathbb{Z})^+$ et $BO_{\infty,\infty}(\mathbb{Z})^+$ pour $n \ge 1$ sont donnés dans le tableau du Theorem 2.1

Theorem 1.2. L'application qui envoie une forme quadratique sur sa forme bilinéaire symétrique associée induit un morphisme d'espaces de K-théorie $KQ(\mathbb{Z}) \to GW(\mathbb{Z})$ qui est un isomorphisme

 $\pi_n BO_{\infty}(\mathbb{Z})^+ \xrightarrow{\cong} \pi_n BO_{\infty,\infty}(\mathbb{Z})^+ \quad en \ degré \ n \ge 2$

et le monomorphisme $(\mathbb{Z}/2)^2 \subset (\mathbb{Z}/2)^3$ en degré n = 1.

Date: September 9, 2019.

This work was partially funded by the Leverhulme Trust.

MARCO SCHLICHTING

Remark 1.3. Notons par B_k le k-ième nombre de Bernoulli [Wei05, Example 24] et par d_n le dénominateur de $\frac{1}{n+1}B_{(n+1)/4}$ pour $n = 3 \mod 4$. Selon [Wei05, Introduction, Lemma 27] on a $K_n(\mathbb{Z}) = \mathbb{Z}/2d_n$ pour $n = 3 \mod 8$ et $K_n(\mathbb{Z}) = \mathbb{Z}/d_n$ pour $n = 7 \mod 8$. En outre les groupes $K_{4k}(\mathbb{Z})$ sont finis d'ordre impair et conjecturés zéro [Wei05, Introduction]. Par example $K_4(\mathbb{Z}) = 0$ [Rog00]. Donc on a pour $n \ge 1$ le tableau de groupes d'homotopie comme dans Remark 2.3.

2. Statement of results

Let $\operatorname{Sp}(\mathbb{Z})$, $O_{\infty,\infty}(\mathbb{Z})$ and $O_{\infty}(\mathbb{Z})$ be the infinite symplectic, infinite $\langle 1, -1 \rangle$ orthogonal and infinite hyperbolic orthogonal groups over the integers. They are obtained as the union of subgroups $\operatorname{Sp}_{2n}(\mathbb{Z})$, $O_{n,n}(\mathbb{Z})$ and $O_{2n}(\mathbb{Z})$ of $GL_{2n}(\mathbb{Z})$ fixing the bilinear forms with Gram matrix

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & \ddots \\ & & 0 & 1 \\ & & -1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ & \ddots \\ & & 1 & 0 \\ & & 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & \ddots \\ & & 0 & 1 \\ & & 1 & 0 \end{pmatrix}.$$

The groups $\operatorname{Sp}(\mathbb{Z})$, $O_{\infty,\infty}(\mathbb{Z})$ and $O_{\infty}(\mathbb{Z})$ have perfect commutator subgroups. Recall that for such groups G, Quillen's plus construction BG^+ applied to the classifying space BG of G comes with a continuous map $BG \to BG^+$ which induces an isomorphism on integral homology groups and is $G \to G/[G, G]$ on π_1 .

The purpose of this article is to compute explicitly the homotopy groups of the topological spaces $B\operatorname{Sp}(\mathbb{Z})^+$, $BO_{\infty,\infty}(\mathbb{Z})^+$ and $BO_{\infty}(\mathbb{Z})^+$. These spaces are infinite loop spaces since they are the connected components of the spaces $K\operatorname{Sp}(\mathbb{Z})$, $GW(\mathbb{Z})$ and $KQ(\mathbb{Z})$ which are the K-theory spaces of non-degenerate symplectic, symmetric bilinear and quadratic forms over \mathbb{Z} . It is known that the homotopy groups of these spaces are finitely generated abelian groups.

For an abelian group A, denote by A_{odd} the subgroup of elements of finite odd order.

Theorem 2.1. The homotopy groups of the spaces $B \operatorname{Sp}(\mathbb{Z})^+$ and $BO_{\infty,\infty}(\mathbb{Z})^+$ for $n \ge 1$ are given in the following table

$n \mod 8$	0	1	2	3	4	5	6	7
$\pi_n B \operatorname{Sp}(\mathbb{Z})^+$	$K_n(\mathbb{Z})$	0	Z	$K_n(\mathbb{Z})$	$\mathbb{Z}/2 \oplus K_n(\mathbb{Z})$	$\mathbb{Z}/2$	Z	$K_n(\mathbb{Z})$
$\pi_n BO_{\infty,\infty}(\mathbb{Z})^+$	$\mathbb{Z} \oplus \mathbb{Z}/2$	$(\mathbb{Z}/2)^3$	$(\mathbb{Z}/2)^2$	ℤ/8 ⊕	$\mathbb{Z} \oplus K_n(\mathbb{Z})$	0	0	$K_n(\mathbb{Z})$
	$K_n(\mathbb{Z})$	(-,-,		$K_n(\mathbb{Z})_{odd}$				

Theorem 2.2. The map that sends a quadratic form to its associated symmetric bilinear form induces a map of K-theory spaces $KQ(\mathbb{Z}) \to GW(\mathbb{Z})$ which is an isomorphism

 $\pi_n BO_{\infty}(\mathbb{Z})^+ \xrightarrow{\cong} \pi_n BO_{\infty,\infty}(\mathbb{Z})^+ \quad in \ degree \ n \ge 2$

and the monomorphism $(\mathbb{Z}/2)^2 \subset (\mathbb{Z}/2)^3$ in degree n = 1.

Remark 2.3. Denote by B_k the k-th Bernoulli number [Wei05, Example 24] and let d_n denote the denominator of $\frac{1}{n+1}B_{(n+1)/4}$ for $n = 3 \mod 4$. By [Wei05, Introduction, Lemma 27] we have $K_n(\mathbb{Z}) = \mathbb{Z}/2d_n$ for $n = 3 \mod 8$ and $K_n(\mathbb{Z}) = \mathbb{Z}/d_n$ for $n = 7 \mod 8$. Moreover, the groups $K_{4k}(\mathbb{Z})$ are finite of odd order which are

 $KSp(\mathbb{Z})$

conjectured to be zero [Wei05, Introduction]. For example, $K_4(\mathbb{Z}) = 0$ [Rog00]. In particular for $n \ge 1$ we have the following table of homotopy groups

$n \mod 8$	0	1	2	3	4	5	6	7
$\pi_n B \operatorname{Sp}(\mathbb{Z})^+$	(0?)	0	Z	$\mathbb{Z}/2d_n$	$\mathbb{Z}/2 \oplus (0?)$	$\mathbb{Z}/2$	\mathbb{Z}	\mathbb{Z}/d_n
$\pi_n BO_{\infty,\infty}(\mathbb{Z})^+$	$\mathbb{Z} \oplus \mathbb{Z}/2 \oplus (0?)$	$\left(\mathbb{Z}/2\right)^3$	$(\mathbb{Z}/2)^2$	\mathbb{Z}/d_n	ℤ⊕(0?)	0	0	\mathbb{Z}/d_n

where (0?) denotes a finite group of odd order conjectured to be zero.

3. Proof part 1: Odd torsion

Lemma 3.1. Let R be the ring of integers in a number field F. Then for all $n \ge 0$ there are isomorphisms

$$KQ_n(R)_{odd} \cong GW_n(R)_{odd} \cong K \operatorname{Sp}_n(R)_{odd} \cong (K_n(R)_{odd})^{C_2}$$

where the action of C_2 on K-theory is induced by $GL(R) \rightarrow GL(R) : M \mapsto {}^{t}M^{-1}$.

Proof. The natural map $KQ_n(R)_{odd} \to GW_n(R)_{odd}$ is an isomorphism with inverse the cup product with the quadratic space associated with the Leech lattice Γ₈ [MH73, Ch.2, §6]. Write $GW^{[0]}(R)$ and $GW^{[2]}(R)$ for GW(R) and $K\operatorname{Sp}(R)$; see Section 4 below for general $GW^{[n]}$. The hyperbolic and forgetful maps factor as $K^{[r]}(R)_{hC_2} \to GW^{[r]}(R) \to K^{[r]}(R)^{hC_2}$; see [Sch17, (7.3) and Lemma 7.4] which doesn't use $1/2 \in R$. Here $K^{[n]}$ denotes the K-theory spectrum K with C_2 -action induced by the n-th shifted duality Hom(, R[n]). On the spectrum level, this action depends on n = 0, 2. However, on homotopy groups the actions agree for n = 0, 2. Denote by $L^{[r]}$ the homotopy cofibre of the map of spectra¹ $K^{[r]}(R)_{hC_2} \to GW^{[r]}(R)$, then $L_i^{[r]} = L_{i-1}^{[r-1]}$ only depends on the difference n - i, $i \ge 1$ [Schc] and

$$GW_n^{[r]}(R)[1/2] \cong K_n^{[r]}(R)[1/2]^{C_2} \oplus L_n^{[r]}(R)[1/2]$$

since the composition $K^{[r]}(R)[1/2]_{hC_2} \to GW^{[r]}(R)[1/2] \to K^{[r]}(R)[1/2]^{hC_2}$ is an equivalence [Sch17, Lemma B.14]. Strictly speaking we define a non-connective version of $L^{[r]}$ as the homotopy colimit of the sequence

(3.1)
$$GW^{[r]} \to S^1 \wedge GW^{[r-1]} \to S^2 \wedge GW^{[r-2]} \to \cdots$$

with appropriate delooping of $GW^{[n]}$ as in [Sch17] using the definition of $\mathscr{E}^{[n]}$ as below. The maps in (3.1) are the connecting maps of the homotopy fibration (4.1). Then we have by definition $L_i^{[n]} = L_0^{[n-i]}$ and as in [Sch17] we formally obtain the homotopy fibration whose connected cover we used above:

$$(K^{[n]})_{hC_2} \to GW^{[n]} \to L^{[n]}.$$

By Lemma 4.4 below, the canonical map $L_i^{[r]}(R)[1/2] \rightarrow L_i^{[r]}(F)[1/2]$ is an isomorphism for $i \ge r$. By [Sch17, Proposition 7.2] and [Bal01, Theorem 5.6], we

¹All spectra in this paper are -1-connected, and all homotopy fibrations are in the category of -1-connected spectra unless otherwise stated. In particular, the second map of a homotopy fibration need not be surjective on π_0

MARCO SCHLICHTING

have

4

$$L_i^{[r]}(F)[1/2] = \begin{cases} W(F)[1/2] & r \equiv i \mod 4\\ 0 & \text{else} \end{cases}$$

where W(F) is the usual Witt group of F. But it is well-known that W(F)[1/2] is a free $\mathbb{Z}[1/2]$ -module of rank the number of orderings of F. This proves the lemma for K_nQ , GW_n for $n \ge 0$ and K_n Sp for $n \ge 2$. From the Zariski local to global spectral sequence, we see $L_1^{[2]}(R)[1/2] = L_0^{[1]}(R)[1/2] = H^1(R, L_0^0[1/2]) = 0$ since $L_0^{[0]}[1/2]$ is constant (flasque) on a ring of integers R and $L_0^{[1]}$ is Zariskilocally trivial. So, $K_1 \operatorname{Sp}(R)_{odd} = (K_1(R)_{odd})^{C_2}$. Finally, $L_0^{[2]}(R) = 0$ for a ring of integers since $K_0 \operatorname{Sp}(R) = H^0(R, \mathbb{Z})$, by the Zariski spectral sequence, hence $H: K_0(R) \to K_0 \operatorname{Sp}(R)$ is surjective and $L_0^{[2]} = 0$.

Continue to assume that R is a ring of integers in a number field. Let $\ell \in \mathbb{Z}$ be an odd prime and set $R' = R[1/\ell]$. Then the inclusion $R \subset R'$ induces an isomorphism: $K_n(R)\{\ell\} \cong K_n(R')\{\ell\}$ on ℓ -primary torsion subgroups for $n \ge 1$. For $i \ge 1$ the abelian group $K_{2i}(R')$ is finite and the group $K_{2i-1}(R')$ is finitely generated. For all $i \ge 1$ and large ν we therefore have an exact sequence

(3.2)
$$0 \to K_{2i}(R')\{\ell\} \to K_{2i}(R', \mathbb{Z}/\ell^{\nu}) \to K_{2i-1}(R')\{\ell\} \to 0$$

[Wei05, Lemma 68]. Since ℓ is invertible in R' which has $\operatorname{cd}_{\ell}(R') \leq 2$, the proved Quillen-Lichtenbaum conjecture says that the following change of topology map is an isomorphism $K_{2i}(R', \mathbb{Z}/\ell^{\nu}) \cong K_{2i}^{\acute{e}t}(R', \mathbb{Z}/\ell^{\nu})$ for $i \geq 1$. The change of topology map is C_2 -equivariant. From the etale local to global spectral sequence for $K^{\acute{e}t}$ we obtain the C_2 -equivariant isomorphism

(3.3)
$$K_{2i}(R', \mathbb{Z}/\ell^{\nu}) \cong K_{2i}^{\acute{e}t}(R', \mathbb{Z}/\ell^{\nu}) \cong H_{\acute{e}t}^{0}(R', K_{2i}/\ell^{\nu})$$

[Wei05, Proof of Theorem 70] on which the action on the left is $GL(R) \to GL(R)$: $M \mapsto {}^{t}M^{-1}$ and on the right hand side it is multiplication with $(-1)^{i}$. Combining (3.2) and (3.3), Lemma 3.1 yields the following.

Theorem 3.2. Let R be a ring of integers in a number field, and $\ell \in \mathbb{Z}$ an odd prime. Then for all $n \ge 1$ we have isomorphisms

$$GW_n(R)\{\ell\} \cong K\operatorname{Sp}_n(R)\{\ell\} \cong KQ_n(R)\{\ell\} \cong \begin{cases} K_n(R)\{\ell\} & n \equiv 0, 3 \mod 4 \\ 0 & n \equiv 1, 2 \mod 4. \end{cases}$$

4. Proof part 2: 2-adic computations

For an exact category with weak equivalences und duality ($\mathscr{E}, w, \sharp, \operatorname{can}$), denote by $GW(\mathscr{E}, w, \sharp, \operatorname{can})$ the associated Grothendieck-Witt space of symmetric bilinear forms [Sch10, Definition 3]. If \mathscr{E} has a strong symmetric cone [Sch10, Definition 4], [Schc] I denote by $\mathscr{E}^{[1]} = (\operatorname{Mor} \mathscr{E}, w_{\operatorname{cone}}, \sharp, \operatorname{can})$ the exact category with weak equivalences and duality of morphisms in \mathscr{E} with duality and double dual identification induced by functoriality of \sharp and can and weak equivalences those maps $f \to g$ of arrows in \mathscr{E} such that $\operatorname{cone}(f) \to \operatorname{cone}(g)$ is a weak equivalence in \mathscr{E} . By functoriality, $\mathscr{E}^{[1]}$ also has a strong symmetric cone. Set $GW^{[0]}(\mathscr{E}) = GW(\mathscr{E})$ and define inductivily for $r \geq 1$

$$GW^{[r+1]}(\mathscr{E}) = GW^{[r]}(\mathscr{E}^{[1]}).$$

By [Sch10, Theorem 6], the sequence

$$\mathscr{E} \xrightarrow{E \mapsto 1_E} \operatorname{Mor} \mathscr{E} \xrightarrow{1} \mathscr{E}^{[1]}$$

induces a homotopy fibration $GW(\mathscr{E}) \to K(\mathscr{E}) \to GW^{[1]}(\mathscr{E})$ of -1-connected spectra and by iteration the homotopy fibration

(4.1)
$$GW^{[r]}(\mathscr{E}) \to K(\mathscr{E}) \to GW^{[r+1]}(\mathscr{E});$$

compare [Sch17, Proof of Proposition 4.9]. For details and a generalisation; see [Schc]. For r < 0, we define $GW^{[r]}(\mathscr{E})$ such that (4.1) holds for all $r \in \mathbb{Z}$. For a commutative ring R, we denote by $GW^{[r]}(R)$ the space $GW^{[r]}(Ch^b \mathcal{P}(R), quis, Hom(R), can)$ where $\mathcal{P}(R)$ is the category of finitely generated projective R-modules and quis is the set of quasi-isomorphisms.

Theorem 4.1 ([Schd]). Let R be a commutative ring, then

- (1) $GW^{[0]}(R)$ is the K-theory space GW(R) of the category of non-degenerate symmetric bilinear forms over R,
- (2) $GW^{[2]}(R)$ is the K-theory space $K \operatorname{Sp}(R)$ of the category of non-degenerate sympectic forms over R, and
- (3) $GW^{[4]}(R)$ is the K-theory space KQ(R) of the category of non-degenerate quadratic forms over R.

In particular, by [Schb, Theorem 6.6, Example 3.11 and Remark 2.19] we have

$$GW^{[0]}(\mathbb{Z}) = GW(\mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z} \times BO_{\infty,\infty}(\mathbb{Z})^{+}$$
$$GW^{[2]}(\mathbb{Z}) = K\operatorname{Sp}(\mathbb{Z}) \simeq \mathbb{Z} \times B\operatorname{Sp}(\mathbb{Z})^{+},$$
$$GW^{[4]}(\mathbb{Z}) = KQ(\mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z} \times BO_{\infty}(\mathbb{Z})^{+}.$$

Theorem 4.2 ([Scha]). Let R be a Dedekind domain and $S \in R$ a multiplicative set of non-zero divisors. Then there is a natural homotopy fibration

$$\bigoplus_{\wp \cap S \neq \emptyset} GW^{[-1]}(R/\wp) \to GW^{[0]}(R) \to GW^{[0]}(S^{-1}R).$$

Recall that Friedlander [Fri76] shows that $K_n \operatorname{Sp}(\mathbb{F}_2)$ is a finite group of odd order for $n \geq 1$. In particular its 2-adic completion $K_n \operatorname{Sp}(\mathbb{F}_2)_2^{\wedge} = 0$ for $n \geq 1$. Since the same is true for $K(\mathbb{F}_2)$, we obtain $GW_n(\mathbb{F}_2)_2^{\wedge} = 0$ for $n \geq 1$, $GW_n^{[\pm 1]}(\mathbb{F}_2)_2^{\wedge} = 0$ for $n \geq 0$ and the following from Theorems 4.1, 4.2 and the homotopy fibration (4.1).

Theorem 4.3. Let $\mathbb{Z}' = \mathbb{Z}[1/2]$ then the ring homomorphism $\mathbb{Z} \to \mathbb{Z}'$ induces isomorphisms after 2-adic completion

$$K_n \operatorname{Sp}(\mathbb{Z})_2^{\wedge} \cong K_n \operatorname{Sp}(\mathbb{Z}')_2^{\wedge}, \quad n \ge 0,$$

$$GW_n(\mathbb{Z})_2^{\wedge} \cong GW_n(\mathbb{Z}')_2^{\wedge}, \quad n \ge 1,$$

$$KQ_n(\mathbb{Z})_2^{\wedge} \cong KQ_n(\mathbb{Z}')_2^{\wedge}, \quad n \ge 2.$$

Finally, the 2-adic homotopy groups of $K \operatorname{Sp}(\mathbb{Z}')$ and $GW(\mathbb{Z}') = KQ(\mathbb{Z}')$ can be found in [Kar05, 4.7.2]. This proves the theorems in Section 2 apart from the following which was needed in the proof of Lemma 3.1.

Lemma 4.4. Let R be the ring of integers in a number field F. Then the inclusion $R \subset F$ induces an isomorphism

$$L_i^{[r]}(R)[1/2] \simeq L_i^{[r]}(F)[1/2], \quad i \ge r.$$

Proof. It suffices to prove the case r = 0 since $L_i^{[r]} = L_{i-r}^{[0]}$. From Theorem 4.2 we deduce the homotopy fibration of -1-connected spectra

$$\bigoplus_{\wp \neq (0)} GW^{[-1]}(R/\wp)[1/2] \to GW^{[0]}(R)[1/2] \to GW^{[0]}(F)[1/2]$$

in which the right horizontal map is also surjective on π_0 , by the computations in [MH73]. Using the analogous statement for K-theory, we obtain the homotopy fibration of spectra

$$\bigoplus_{\wp \neq (0)} L^{[-1]}(R/\wp)[1/2] \to L^{[0]}(R)[1/2] \to L^{[0]}(F)[1/2].$$

The left term in that fibration is trivial since for a finite field \mathbb{F}_q , we have

$$L^{\lfloor -1 \rfloor}(\mathbb{F}_q)[1/2] \simeq 0.$$

This is well-known for q odd, and for q even, $L^{[-1]}(\mathbb{F}_q)$ is a module spectrum over $L^{[0]}(\mathbb{F}_2)$ whose homotopy groups are 2-primary torsion since on π_0 it is

$$L_0^{[0]}(\mathbb{F}_2) = W(\mathbb{F}_2) = \mathbb{Z}/2.$$

References

- [Bal01] Paul Balmer. Triangular Witt groups. II. From usual to derived. Math. Z., 236(2):351– 382, 2001.
- [Fri76] Eric M. Friedlander. Computations of K-theories of finite fields. Topology, 15(1):87–109, 1976.
- [Kar05] Max Karoubi. Bott periodicity in topological, algebraic and Hermitian K-theory. In Handbook of K-theory. Vol. 1, 2, pages 111–137. Springer, Berlin, 2005.
- [MH73] John Milnor and Dale Husemoller. Symmetric bilinear forms. Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.
- [Rog00] John Rognes. $K_4(\mathbf{Z})$ is the trivial group. Topology, 39(2):267–281, 2000.
- [Sch10] Marco Schlichting. The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes. Invent. Math., 179(2):349–433, 2010.
- [Sch17] Marco Schlichting. Hermitian K-theory, derived equivalences and Karoubi's fundamental theorem. J. Pure Appl. Algebra, 221(7):1729–1844, 2017.
- [Schb] Marco Schlichting. Higher K-theory of forms I. From rings to exact categories. Accepted for publication in J. Inst. Math. Jussieu. DOI: 10.1017/S1474748019000410.
- [Schc] Marco Schlichting. Higher K-theory of forms II. From exact categories to chain complexes. In preparation.
- [Schd] Marco Schlichting. Higher K-theory of forms III. From chain complexes to derived categories. In preparation.
- [Scha] Marco Schlichting. Higher K-theory of forms for Dedekind domains. In preparation.
- [Wei05] Charles Weibel. Algebraic K-theory of rings of integers in local and global fields. In Handbook of K-theory. Vol. 1, 2, pages 139–190. Springer, Berlin, 2005.

 $\mathbf{6}$

$KSp(\mathbb{Z})$

MARCO SCHLICHTING, MATHEMATICS INSTITUTE, ZEEMAN BUILDING, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, UK E-mail address: m.schlichting@warwick.ac.uk